KR20020050427A - A water purification method for removal geosmin - Google Patents

A water purification method for removal geosmin Download PDF

Info

Publication number
KR20020050427A
KR20020050427A KR1020000079576A KR20000079576A KR20020050427A KR 20020050427 A KR20020050427 A KR 20020050427A KR 1020000079576 A KR1020000079576 A KR 1020000079576A KR 20000079576 A KR20000079576 A KR 20000079576A KR 20020050427 A KR20020050427 A KR 20020050427A
Authority
KR
South Korea
Prior art keywords
photocatalyst
geosmin
water
titanium dioxide
coated
Prior art date
Application number
KR1020000079576A
Other languages
Korean (ko)
Inventor
전희동
김시환
윤석민
Original Assignee
이구택
주식회사 포스코
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1020000079576A priority Critical patent/KR20020050427A/en
Publication of KR20020050427A publication Critical patent/KR20020050427A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE: A water purification method for removing geosmin(trans-1,10-dimethyl-trans-9-decanol, C11H20O), which uses an ultraviolet lamp to cope with cloudy weather and can be applied without special chemical, is provided to remove geosmin efficiently and continuously using photocatalyst coated plates with titanium dioxide. CONSTITUTION: In a water purification process which is composed of the steps of water collection, mixing, coagulation, sedimentation and filtration, the present invention is characterized in that a photocatalyst disposal tank within a photocatalyst plates coated with titanium dioxide by thickness of 0.1-0.2μg is floated on the surface of the water and pass the drained water from sedimentation tank through the photocatalyst disposal tank to filtration tank.

Description

지오스민 제거용 음용수 정수처리방법{A WATER PURIFICATION METHOD FOR REMOVAL GEOSMIN}Drinking water purification method for removing geosmin {A WATER PURIFICATION METHOD FOR REMOVAL GEOSMIN}

본 발명은 지오스민 제거용 음용수 정수처리방법에 관한 것으로, 보다 상세하게는 이산화티탄 광촉매를 코팅한 철강재를 이용하여 음용수중에 포함되어 있는 냄새 유발물질인 지오스민을 효과적으로 제거하는 방법에 관한 것이다.The present invention relates to a method for treating drinking water for removing geosmine, and more particularly, to a method for effectively removing odor causing substances contained in drinking water by using steel coated with titanium dioxide photocatalyst.

일반적으로 이산화티탄 광촉매는 도 1에 도시한 바와 같이 400nm 이하의 자외선을 조사하면 유기물을 분해할 수 있는 기능을 가지게 된다. 광촉매, 특히 이산화티탄 광촉매는 400nm이하의 짧은 파장을 가지는 햇빛 또는 자외선을 받으면 광촉매의 표면에 강력한 산화력을 가지는 OH 라디칼이 생성된다.Generally, titanium dioxide photocatalysts have a function of decomposing organic substances when irradiated with ultraviolet rays of 400 nm or less, as shown in FIG. 1. Photocatalysts, especially titanium dioxide photocatalysts, generate OH radicals with strong oxidizing power upon the surface of the photocatalyst when subjected to sunlight or ultraviolet rays having a short wavelength of less than 400 nm.

이들 라디칼은 산화력이 매우 강하여 물 혹은 공기 중의 유기물을 분해할 수 있다. 그 원리를 도 1을 참고로 하여 살펴보면, 이산화티탄의 밴드 갭 에너지보다 큰 에너지를 가지는 빛을 이산화티탄에 쬐어 주면 원자가띠(valence band)의 전자(e-)가 전도띠(conduction band)로 여기되며 원자가띠에는 전자가 부족한 양공(hole)이 생성된다.These radicals are very oxidative and can decompose organic matter in water or air. Referring to the principle of the present invention with reference to FIG. 1, when titanium dioxide is irradiated with light having energy greater than the band gap energy of titanium dioxide, electrons of the valence band (e ) are excited as a conduction band. The valence band produces holes that lack electrons.

즉, 이산화티탄의 입자 표면에 있는 물이나 OH-등과 양공이 반응하여 OH 라디칼을 생성하고, 이 라디칼이 흡착되어 있는 유기물을 산화시켜 CO2와 HCl등의 무해 물질로 분해하게 된다.That is, the positive holes react with water, OH - and the like on the particle surface of the titanium dioxide to generate OH radicals, and the organic substances adsorbed by these radicals are oxidized to decompose into harmless substances such as CO 2 and HCl.

한편, 수돗물에 있어서 냄새를 유발하는 대표적인 물질로서 지오스민(Geosmin, 화학명:Trans-1,10-dimethyl-trans-9-decanol, 분자식 C11H20O)을 들 수 있으며 이는 플랑크톤성(Planktonic), 부착성 조류(Benthuc algae), 균(Fungi), 박테리아(Bacteria)와 방사선균(Actinomycetes)로부터의 2차대사산물로 발생된다.On the other hand, as a representative substance causing the odor in the tap water (Geosmin, chemical name: Trans-1,10-dimethyl-trans-9-decanol, molecular formula C 11 H 20 O) is a planktonic (Planktonic) Occurs as secondary metabolites from adherent algae (Benthuc algae), fungi (Fungi), bacteria (Bacteria) and radiation bacteria (Actinomycetes).

녹조류가 수돗물을 만드는 원수에 발생하면 이 물질이 필연적으로 생기게 되며 이는 진흙 혹은 곰팡이 냄새가 나는 반휘발성 화학물질로서 수중 농도가 10ppt(참고로 1ppt는 1조분의 일이다)이상이면 인간의 후각으로 인식할 수 있으며 40ppt이상 존재시 사람으로 하여금 불쾌감을 일으키게 한다.When green algae occur in tap water, this substance is inevitably created. It is a mud or mildew-smelling semi-volatile chemical that is recognized as a human sense of smell when the concentration in the water is above 10ppt (1ppt is one trillion). It can cause a discomfort to a person when more than 40ppt exists.

비록 이들 물질들의 인체에 대한 위해성의 증거는 아직 명확히 밝혀지지 않았지만 일반인들로 하여금 맛과 냄새로 인한 고통을 주게되는 것은 사실이다. 또한 이들 물질들은 용존 상태에서 물고기나 수중 생물로의 흡수가 매우 빠르게 일어나기 때문에 생물조직에 있어서 무게비로 대략 0.6㎍/㎏보다 높게 존재하면 맛과 냄새에 있어서 문제점을 야기시킨다.Although the evidence of harm to these human bodies is not yet clear, it is true that ordinary people suffer from taste and smell. In addition, since these substances are absorbed into fish or aquatic organisms very quickly in the dissolved state, the presence of higher than about 0.6 µg / kg in weight ratio in biological tissues causes problems in taste and smell.

현재까지 공지기술로서 사용되고 있는 지오스민의 제거방법으로는 활성탄 흡착법, 오존산화법, 역삼투막법 등을 들 수 있다. 그러나 활성탄 흡착법과 오존 산화법은 그 효과가 비교적 우수하나 정수장에서 널리 설치하여 사용하기에는 시설비와 운전비가 매우 고가이며 특히 오존의 경우에는 시설관리에 많은 어려움이 따른다.The removal method of geosmin currently used as a well-known technique includes activated carbon adsorption, ozone oxidation, reverse osmosis membrane method, and the like. However, activated carbon adsorption and ozone oxidation have relatively good effects, but facility and operation costs are very expensive to install and use in water purification plants. Especially, ozone has many difficulties in facility management.

역삼투막법은 가정용 정수기에서 많이 사용되고 있는 방법으로서 정수장에서 사용하기에는 경제적인 면에서 불가능하다. 따라서 비용이 적게들고 효과적으로 지오스민을 제거할 수 있는 기술의 개발이 매우 필요하다.The reverse osmosis membrane method is widely used in household water purifiers and is impossible economically for use in water purification plants. Therefore, there is a great need for the development of a technology that can remove geosmin at low cost and effectively.

따라서 본 발명의 목적은 상기의 목적에 부합하도록 특별한 약품투입없이 햇빛 혹은 날씨가 흐리거나 강우시를 대비한 자외선 램프만으로 정수장에서 지오스민을 연속적으로 제거할 수 있는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for continuously removing geosmin in a water purification plant using only an ultraviolet lamp in case of cloudy weather or rain or sunlight without special chemical injection in order to meet the above object.

도 1은 광촉매의 분해 반응을 도시한 개략도,1 is a schematic diagram showing a decomposition reaction of a photocatalyst,

도 2는 광촉매를 이용하여 지오스민을 제거하기 위한 정수처리 공정개략도,2 is a schematic diagram of a water treatment process for removing geosmine using a photocatalyst;

도 3은 본 발명의 방법에 의해 광촉매가 코팅된 아연도금강판을 사용한 경우의 지오스민의 제거효율을 나타낸 그래프, 및3 is a graph showing the removal efficiency of geosmin when using a galvanized steel sheet coated with a photocatalyst by the method of the present invention, and

도 4는 본 발명의 방법에 의해 광촉매가 코팅된 스테인레스강판을 사용한 경우의 지오스민의 제거효율을 나타낸 그래프이다.Figure 4 is a graph showing the removal efficiency of geosmin when using a stainless steel sheet coated with a photocatalyst by the method of the present invention.

본 발명에 의하면,According to the invention,

음용원수를 착수공정, 혼화공정, 응집공정, 침전공정 및 여과공정을 거쳐 정수처리하는 방법에 있어서,In the method for treating drinking water through the start process, admixture process, flocculation process, precipitation process and filtration process,

0.1∼0.2㎛의 이산화티탄 박막이 코팅된 광촉매 판재를 수면에 띄운 광촉매 처리조를 설치하여, 상기 침전공정으로부터 배출된 처리수를 상기 광촉매처리조를 통과시킨후 여과공정으로 보냄을 특징으로 하는 지오스민을 제거하기 위한 음용수를 정수처리하는 방법이 제공된다.Geocatalyst characterized in that the photocatalyst treatment tank in which the titanium dioxide thin film coated with 0.1 ~ 0.2㎛ coated on the water surface is installed, and the treated water discharged from the precipitation process is passed through the photocatalyst treatment tank and then sent to the filtration process. A method of purifying drinking water for removing jasmine is provided.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자는 특정 약품을 사용할 필요없이 광촉매를 코팅한 소재와 햇빛 내지는 자외선만으로 지오스민을 효과적으로 제거할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.The present inventors have found that it is possible to effectively remove geosmin only by using a photocatalyst coated material and sunlight or ultraviolet light without using a specific chemical agent, and have completed the present invention.

즉, 도 2에서와 같이 기존의 정수공정에서 약품처리를 하여 물 속의 부유물질을 응집 침전처리할 때 침전지 후단에 광촉매가 코팅된 판형 소재를 수면에 띄운다.That is, when flocculation and flocculation of the suspended solids in the water by chemical treatment in the conventional water purification process as shown in Figure 2 floats the plate-like material coated with the photocatalyst on the water surface.

즉, 본 발명의 코팅재 적재 단계는 착수공정, 혼화공정, 응집공정, 침전공정 및 여과공정으로 이루어지는 음용수 정수도중 침전공정 이전에 설치하면 물 속의부유물질 혹은 약품처리하여 생기는 탁도로 인하여 광촉매가 코팅된 소재가 쉽게 더러워지므로 침전공정 이후에 광촉매 처리조를 설치하는 것이 좋으며, 그 광촉매 처리공정내에 적재하는 깊이 또한 50cm보다 깊이 설치하면 햇빛의 투과가 줄어들어 지오스민을 충분히 제거하기가 어렵기 때문에 수면으로부터 50cm이내에 적재시키는 것이 좋다. 이들을 수면으로부터 일정한 위치에 고정되도록 광촉매가 코팅된 판형 소재의 하단에는 물에 뜰 수 있는 스티로폼과 같은 부유체를 일정 크기로 부착시키는 것이 바람직하다.That is, the coating material loading step of the present invention is a photocatalyst is coated due to turbidity caused by floating substances or chemical treatment in the water if installed before the precipitation process of drinking water purified water consisting of the impingement process, admixture process, flocculation process, precipitation process and filtration process It is recommended to install the photocatalyst treatment tank after the precipitation process because the material is easily soiled, and if the depth to be loaded in the photocatalytic treatment process is also set more than 50cm, the penetration of sunlight decreases, making it difficult to remove geosmin sufficiently. It is good to load within. It is preferable to attach floating bodies such as styrofoam that can float on the water to the bottom of the plate-type material coated with the photocatalyst so that they are fixed at a predetermined position from the surface of the water.

이때 사용하는 판형소재로는 스테인레스 강판 및 아연도금강판, 보다 바람직하게는 아연도금강판을 사용할 수 있으며, 이뿐만 아니라 이산화티탄 광촉매가 부착되는 것이면 어떠한 종류라도 사용가능한 것이다. 또한 이와 같이 별도의 강판을 광촉매 처리조내에 적재시켜 처리할 수도 있으나, 한편 광촉매 처리조의 내벽에 직접 이산화티탄 광촉매를 처리하여도 좋다.At this time, the plate-shaped material to be used may be used a stainless steel plate and galvanized steel sheet, more preferably a galvanized steel sheet, as well as any type of titanium dioxide photocatalyst is attached. In addition, although a separate steel sheet can be loaded and processed in the photocatalyst treatment tank, the titanium dioxide photocatalyst may be treated directly on the inner wall of the photocatalyst treatment tank.

이같은 이산화티탄 광촉매가 코팅된 대상위를 물이 순환하도록 함으로써 지오스민이 충분히 제거되도록 하고, 날씨가 흐리거나 강우 시를 대비하여 자외선 램프를 판형 소재 위에 설치한다.By allowing water to circulate on the surface coated with the titanium dioxide photocatalyst, the geosmin is sufficiently removed, and an ultraviolet lamp is installed on the plate material in case of cloudy weather or rainfall.

본 발명에 있어서, 광촉매의 코팅 두께는 0.1㎛∼0.2㎛ 정도인 것이 좋다. 즉, 0.1㎛이하로 얇게 코팅하기는 매우 어려우며, 0.2㎛이상이면 지오스민 처리효율이 비슷하기 때문에 상기 범위내인 것이 바람직하다.In the present invention, the coating thickness of the photocatalyst is preferably about 0.1 μm to about 0.2 μm. That is, it is very difficult to coat thinly to 0.1㎛ or less, it is preferable to be within the above range because the treatment efficiency of geosmin is similar when 0.2㎛ or more.

상기 코팅방법은 이에 한정하는 것은 아니나, 졸-겔 방법에 의해 제조한다. 이들 졸-겔 방법을 이용하여 제조하는 방법에 대하여 예를 들어보면, 즉 이산화티탄 졸에 광촉매를 코팅할 소재를 침지후 꺼내어낸 상온에서 약1시간동안 건조한 후 200oC∼400oC범위의 온도에서 열처리하여 0.1∼0.2㎛두께로 코팅된 각종 소재를 제조하였다.The coating method is not limited thereto, but is prepared by a sol-gel method. These sol-see, for example, a method of manufacturing using the gel method, that is the dried C~400 200 o o C range for about one hour at room temperature, the material to be coated on the photocatalytic titanium dioxide sol was taken out after the immersion embellish Heat treatment at temperature to prepare a variety of materials coated with a thickness of 0.1 ~ 0.2㎛.

상기 건조시간은 상온에서 수분이 어느정도 증발된 후 열처리를 하여야 광촉매 코팅층의 균열이 발생하지 않게 되기 때문에 적용하는 것으로 대략 1시간정도 건조시키면 충분하다.The drying time is enough to be dried for about 1 hour by applying the heat treatment after the evaporation to some extent at room temperature so that the crack of the photocatalyst coating layer does not occur.

또한 상기 열처리 온도 200℃이하에서는 열처리공정에 장시간이 소요되므로 바람직하지 않으며, 400℃를 초과하면 불필요하게 에너지가 과량 소비될 뿐만 아니라 이산화티탄의 결정구조가 변하여 광촉매 기능이 떨어지게 되므로 바람직하지 않다.In addition, the heat treatment temperature is less than 200 ℃ is not preferable because it takes a long time in the heat treatment process, and if it exceeds 400 ℃ unnecessary energy is consumed unnecessarily, and the crystal structure of titanium dioxide is changed, the photocatalyst function is not preferable.

본 발명의 방법에 의해 제조된 이산화티탄 광촉매 코팅 소재를 착수공정, 혼화공정, 응집공정, 침전공정 및 여과공정으로 이루어진 음용수 정수조내에 설치된 광촉매 처리조상에 적재하고 침전공정으로부터 배출된 처리수를 상기 광촉매 처리조를 통과시키면서 햇빛 또는 자외선을 투여함으로써 지오스민을 효과적으로 저감시킬 수 있다.The titanium dioxide photocatalyst coating material prepared by the method of the present invention is loaded on a photocatalyst treatment tank installed in a drinking water purification tank consisting of a starting process, a mixing process, a coagulation process, a precipitation process, and a filtration process, and the treated water discharged from the precipitation process is discharged. By administering sunlight or ultraviolet rays while passing through the photocatalyst treatment tank, geosmin can be effectively reduced.

만약 별도의 자외선 램프를 투여할 때, 적용하는 파장은 400nm이하인 것이 좋으며, 365nm이하인 것이 보다 바람직하다.If a separate UV lamp is administered, the wavelength to be applied is preferably 400 nm or less, and more preferably 365 nm or less.

따라서 본 발명은 이산화티탄 광촉매가 코팅된 소재를 처리조상에 적재한 다음 햇빛 내지는 400nm이하의 자외선을 투여함으로써 효과적으로 처리할 수 있으며, 이뿐만 아니라 이 기술분야에서 숙련된 자라면 기술내용을 특별히 변형 내지는 변경하지 않고도 광촉매 코팅소재를 음용수처리조내 내벽에 적용하는 방식등으로 응용가능할 것으로 여겨진다.Therefore, the present invention can be effectively treated by loading a titanium dioxide photocatalyst coated material in a treatment tank and then administering sunlight or ultraviolet rays of 400 nm or less, and if the skilled person in the art is specifically modified or modified It is considered that the photocatalyst coating material can be applied to the inner wall of the drinking water treatment tank without any change.

이하, 실시예를 통하여 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

<실시예 1><Example 1>

본 실시예에서는 광촉매가 일정두께로 코팅된 강판을 제조하였다. 이같은 강판을 제조하기 위하여 졸-겔 방법을 사용하였다.In this embodiment, a steel sheet coated with a photocatalyst at a predetermined thickness was manufactured. The sol-gel method was used to produce such a steel sheet.

즉, 이산화티탄 졸에 광촉매를 코팅할 소재(본발명에서는 스테인레스 강판과 아연도금강판을 적용)를 침지후 꺼내어낸 상온에서 약1시간동안 건조한 후 200oC∼400oC 범위의 온도에서 열처리하여 0.1∼0.2㎛두께로 코팅된 각종 소재를 제조하였다.That is, the material to be coated on the photocatalytic titanium dioxide sol by heating at a temperature of 200 o dried C~400 o C range for about one hour at room temperature to embellish taken out after the immersion (in the present invention is applied to a stainless steel plate and zinc-plated steel sheet) Various materials coated with a thickness of 0.1 to 0.2 μm were prepared.

<실시예 2><Example 2>

실시예 1에서 제조한 광촉매를 코팅한 아연도금강판을 이용하여 음용수 정수과정에서 지오스민 제거실험을 수행하였다.Using a photocatalyst coated galvanized steel sheet prepared in Example 1 was carried out geosmin removal experiment in drinking water purification process.

처리하려는 음용원수내 지오스민의 초기농도는 기체크로마토그래피를 사용하여 측정한 결과 약50ppb였다. 착수정, 혼화조, 응집조, 침전지, 반응조로 이루어진 정수조중 침전지와 반응조사이에 광촉매 처리조를 설치하고, 그 반응조내에 400nm의 자외선을 조사하는 램프를 설치하고 물이 순환하는 것과 같은 효과를 내도록 자석교반기로 교반하면서 시간이 경과함에 따른 지오스민의 저감 정도를 측정하였다.The initial concentration of geosmin in the drinking water to be treated was about 50 ppb as measured using gas chromatography. A photocatalyst treatment tank is installed in the sedimentation basin in the water purification tank consisting of the impingement well, the mixing tank, the flocculation tank, the sedimentation basin, and the reaction tank, and a lamp for irradiating 400 nm ultraviolet rays in the reaction basin to produce the effect of circulating water While stirring with a magnetic stirrer, the degree of reduction of geosmin was measured as time passed.

반응 개시후 반응물의 분해 제거정도를 파악하기 위하여 일정 시간마다 시료를 채취하여 기체크로마토그라프를 사용하여 분석하고, 그 결과를 하기표 1 및 도 3에 도시하였다.In order to determine the degree of decomposition and removal of reactants after the start of the reaction, samples were taken at regular intervals and analyzed using gas chromatography, and the results are shown in Table 1 and FIG. 3.

또한 비교를 위하여 초기농도가 100ppb인 지오스민에 대하여 광촉매를 전혀 코팅하지 않은 아연도금강판을 사용하여 지오스민의 저감 효율을 측정하고 그 결과를 하기표 1 및 도 3에 함께 나타내었으며, 또한 이해를 돕기 위하여 지오스민을 본 발명의 정수처리를 전혀 거치지 않은 종래예를 도 3에 함께 나타내었다.In addition, for comparison, the reduction efficiency of geosmin was measured using a galvanized steel sheet coated with no photocatalyst with respect to geosmin having an initial concentration of 100 ppb, and the results are shown together in Tables 1 and 3 below. For the sake of simplicity, a conventional example in which the geosmine is not subjected to the water treatment of the present invention is shown in FIG.

도 3에서 보듯이, 그 초기농도가 100ppb이고 광촉매를 코팅하지 않은 아연도금강판과 UV를 사용한 경우(도면내 □)에는 지오스민이 별도의 처리를 거치지 않은 경우와 마찬가지로 감소하고 있음을 확인할 수 있었다. 즉 광촉매가 코팅되지 않은아연도금강판만으로는 지오스민을 제거하지 못함을 확인할 수 있었다.As shown in Figure 3, when the initial concentration is 100ppb and using a galvanized steel sheet and UV not coated with a photocatalyst (□ in the drawing) it can be seen that the geosmin is reduced as in the case not undergoing a separate treatment. That is, it could be confirmed that the zinc plated steel sheet not coated with the photocatalyst could not remove geosmin.

그러나 광촉매를 코팅한 아연도금강판을 설치하고 UV를 조사한 경우(도면내 ●)에는 지오스민이 약50시간후에 80% 이상이 제거되는 것으로부터, 그 제거효율이 탁월함을 확인할 수 있었다.However, when the galvanized steel sheet coated with a photocatalyst was installed and irradiated with UV (in the drawing), it was confirmed that 80% or more of geosmin was removed after about 50 hours, and thus the removal efficiency was excellent.

<실시예 3><Example 3>

이산화티탄 광촉매가 코팅된 스테인레스 강판을 사용하였으며, 초기 지오스민 농도가 110ppb인 음용원수를 사용하였으며, UV 365nm를 조사한 것을 제외하고는 실시예 2와 동일한 장치 및 지오스민 분석방법을 반복하고 지오스민의 제거효율을 측정하였으며, 그 결과를 도 4에 나타내었다.A stainless steel sheet coated with titanium dioxide photocatalyst was used. Drinking water with an initial geosmin concentration of 110 ppb was used, and the same apparatus and geosmine analysis method as in Example 2 were repeated except that UV 365nm was irradiated to remove geosmin. Efficiency was measured and the results are shown in FIG. 4.

도 4에서 보듯이, 초기농도가 110ppb이고 광촉매를 코팅하지 않은 스테인레스 강판과 UV를 사용한 경우(도면내 ◆)에는 지오스민이 역시 효과적으로 제거되지 않았으나, 광촉매를 코팅한 스테인레스강판을 설치하고 UV를 조사한 경우(도면내 ●)에는 지오스민이 약30시간후에 80%이상 제거되는 것을 확인할 수 있었다.As shown in Figure 4, when the initial concentration is 110ppb and using a stainless steel sheet and UV without coating the photocatalyst (in the drawing ◆) geosmin was also not effectively removed, but the case of installing a stainless steel sheet coated with a photocatalyst and irradiated with UV In the figure, it was confirmed that geosmin was removed more than 80% after about 30 hours.

결과적으로 본 발명의 방법은 폐기물인 스테인레스 강판이나 아연도금강판에 적정 두께의 이산화티탄 광촉매를 접촉시키고, 적절 위치에 이들을 적재함으로써 음용수중 냄새유발물질인 지오스민을 효과적으로 제거할 수 있어 결과적으로 깨끗한 수돗물을 공급할 수 있는 것이다.As a result, the method of the present invention makes it possible to effectively remove the odor-causing substance geosmin in drinking water by contacting the titanium dioxide photocatalyst having an appropriate thickness with a stainless steel plate or a galvanized steel sheet, which is a waste, and loading them at an appropriate position. Will be able to supply.

본 발명에 의하면, 조류가 다량으로 번식하여 지오스민에 의해 수돗물에서 냄새가 많이 날 경우에도 매우 경제적인 방법으로 수돗물에서 나는 냄새원인 물질을 정수장에서 미리 제거하여 각 가정에서 보다 깨끗한 수돗물을 먹을 수 있는 것이다.According to the present invention, even if the algae breeds in large quantities and smells a lot from the tap water by geosmin, it is possible to eat cleanr tap water in each household by removing the substance that is the odor source from the tap water in advance in the water purification plant in a very economical way. will be.

Claims (3)

음용원수를 착수공정, 혼화공정, 응집공정, 침전공정 및 여과공정을 거쳐 정수처리하는 방법에 있어서,In the method for treating drinking water through the start process, admixture process, flocculation process, precipitation process and filtration process, 0.1∼0.2㎛의 이산화티탄 박막이 코팅된 광촉매 판재를 수면에 띄운 광촉매 처리조를 설치하여, 상기 침전공정으로부터 배출된 처리수를 상기 광촉매처리조를 통과시킨 후 여과공정으로 보냄을 특징으로 하는 지오스민 제거용 음용수 정수처리방법Geocatalyst characterized in that the photocatalyst treatment tank floating the surface of the photocatalyst plate coated with 0.1 ~ 0.2㎛ titanium dioxide thin film on the water surface, passing the treated water discharged from the precipitation process through the photocatalyst treatment tank and sent to the filtration process Drinking Water Purification Method 제1항에 있어서, 상기 광촉매 판재는 반응조내 수면으로부터 50cm이내에 설치함을 특징으로 하는 정수처리방법The method of claim 1, wherein the photocatalyst plate is installed within 50 cm from the water surface in the reaction tank. 제1항에 있어서, 상기 이산화티탄 박막이 코팅된 광촉매 판재를 광촉매 처리조의 내벽에 장착시켜 지오스민을 제거하는 반응을 지속적으로 수행함을 특징으로 하는 정수처리방법The method of claim 1, wherein the titanium dioxide thin film-coated photocatalyst plate is mounted on an inner wall of the photocatalyst treatment tank to continuously remove the geosmine.
KR1020000079576A 2000-12-21 2000-12-21 A water purification method for removal geosmin KR20020050427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000079576A KR20020050427A (en) 2000-12-21 2000-12-21 A water purification method for removal geosmin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000079576A KR20020050427A (en) 2000-12-21 2000-12-21 A water purification method for removal geosmin

Publications (1)

Publication Number Publication Date
KR20020050427A true KR20020050427A (en) 2002-06-27

Family

ID=27684107

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000079576A KR20020050427A (en) 2000-12-21 2000-12-21 A water purification method for removal geosmin

Country Status (1)

Country Link
KR (1) KR20020050427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050393A (en) * 2000-12-21 2002-06-27 신현준 A water purification method for removal bad smell compounds
KR100987337B1 (en) * 2008-08-28 2010-10-12 현담산업 주식회사 Sealed Fuel level sender
CN105152300A (en) * 2015-08-05 2015-12-16 同济大学 Method for degrading taste and odor compound in water based on thermally-activated oxidant
CN110104896A (en) * 2019-05-31 2019-08-09 广州市龙能城市运营管理股份有限公司 A kind of residential quarters landscape water purification system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050393A (en) * 2000-12-21 2002-06-27 신현준 A water purification method for removal bad smell compounds
KR100987337B1 (en) * 2008-08-28 2010-10-12 현담산업 주식회사 Sealed Fuel level sender
CN105152300A (en) * 2015-08-05 2015-12-16 同济大学 Method for degrading taste and odor compound in water based on thermally-activated oxidant
CN110104896A (en) * 2019-05-31 2019-08-09 广州市龙能城市运营管理股份有限公司 A kind of residential quarters landscape water purification system and method

Similar Documents

Publication Publication Date Title
Bekbölet et al. Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst
Khaksar et al. Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor
Shon et al. Chemical coupling of photocatalysis with flocculation and adsorption in the removal of organic matter
CA2117397A1 (en) Photocatalyst and process for purifying water with same
Poblete et al. Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst
Shivaraju Removal of organic pollutants in the municipal sewage water by TiO2 based heterogeneous photocatalysis
CN203360047U (en) Solar nano-catalysis water treatment ship
Laoufi et al. Removal of a persistent pharmaceutical micropollutant by UV/TiO2 process using an immobilized titanium dioxide catalyst: parametric study
Karabelas et al. How far are we from large-scale PMR applications?
KR100949831B1 (en) Advanced oxidation sterilization apparatus having electrically-powered cleansing modul
EP2396111A1 (en) Photocatalyst and method for production
KR100383035B1 (en) Aquarium purifier using photocatalytic decomposer
KR20020050427A (en) A water purification method for removal geosmin
CN106186543B (en) A kind of dual-membrane type solar energy sewage-treatment plant and its technique
KR20000072137A (en) apparatus for purification of contaminated water by using rotating member coated with titanium dioxide thin film
Inamdar et al. Photocatalytic detoxification method for zero effluent discharge in dairy industry: Effect of operational parameters
KR20020050393A (en) A water purification method for removal bad smell compounds
CN109626494A (en) The ultraviolet strong oxygen advanced water treatment method of one kind and device
Portjanskaja et al. Aqueous photocatalytic oxidation of lignin and humic acids with supported TiO2
JP3118558B2 (en) Water treatment catalyst and water treatment method
Al-Dawery et al. Removal of phenol from sewage effluent using activated sludge coupled with photo-oxidation process
CN211688372U (en) Chemical oxidation-photocatalysis combined device
JP2003320243A (en) Water quality cleaning device in which woody carbonization material irradiated with light
JP2002059177A (en) Water contamination cleaning device using rotary member having titanium oxide photocatalyst coating
Murcia Visible active noble metals–structured photocatalysts for the removal of emerging contaminants

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid