KR20020046257A - Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation - Google Patents

Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation Download PDF

Info

Publication number
KR20020046257A
KR20020046257A KR1020020025693A KR20020025693A KR20020046257A KR 20020046257 A KR20020046257 A KR 20020046257A KR 1020020025693 A KR1020020025693 A KR 1020020025693A KR 20020025693 A KR20020025693 A KR 20020025693A KR 20020046257 A KR20020046257 A KR 20020046257A
Authority
KR
South Korea
Prior art keywords
outer structure
coating
aluminum foam
aluminum
thickness
Prior art date
Application number
KR1020020025693A
Other languages
Korean (ko)
Inventor
이효진
조성석
Original Assignee
이효진
조성석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이효진, 조성석 filed Critical 이효진
Priority to KR1020020025693A priority Critical patent/KR20020046257A/en
Publication of KR20020046257A publication Critical patent/KR20020046257A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials

Abstract

PURPOSE: A method for manufacturing a solid metal foam complex increasing absorption of radiant energy is provided to prevent fusion and oxidation and improve mechanical properties of an aluminum foam complex by coating a coating material absorbing a large amount of radiant heat on the surface of an outer structure. CONSTITUTION: The aluminum foam composite structure is manufactured by coating a mixed solution of carbon particles and powder or fluid on the outer surfaces(5,7) or inner surface(6) of an outer structure(1) or an aluminum foam material(2) to a thickness of 0.5 to 1.5 mm, coating a mixed solution of graphite particles and powder or fluid on the outer surfaces(5,7) or inner surface(6) of an outer structure(1) or an aluminum foam material(2) to a thickness of 0.5 to 1.5 mm, coating a mixed solution of soot particles and powder or fluid on the outer surfaces(5,7) or inner surface(6) of an outer structure(1) or an aluminum foam material(2) to a thickness of 0.5 to 1.5 mm, or coating a mixed solution containing 1 to 10 wt.% of ocher and sand on the outer surface(5) of an outer structure(1) to a thickness of 0.5 to 1.5 mm, wherein the aluminum foam material(2) is spaced apart from the outer structure in a certain gap so that radiant heat absorbed into the outer surface(5) of the outer structure(1) is transferred to the inner surface(6) of the outer structure, and then transferred to the outer surface(7) of the aluminum foam material(2), thereby maximizing transfer amount of radiant heat by coating the mixed solution on the outer and inner surfaces of the outer structure(1) and the aluminum foam material(2).

Description

복사에너지 흡수를 증대시킨 고상발포금속 복합체 제조법{Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation}Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation

알루미늄 다공질 소재는 밀도가 극히 낮을 뿐만 아니라 우수한 기계적 성질, 전기적 성질, 열적 성질, 및 음향적 성질을 고루 갖춘 금속 신소재이다. 이러한 특성으로 인하여 경량 고강도 부품, 충격 흡수용 구조물, 방화벽, 흡음벽 및 진동흡수재 등으로 쓰이고 있다. 그러나 알루미늄 다공질 소재는 굽힘강도가 낮고 용접성 및 연성이 나쁜 것이 단점이다. 이들 단점을 극복하기 위하여 알루미늄 다공질 샌드위치판 및 복합구조재가 개발되고 있다.Aluminum porous material is a new metal material with extremely low density and excellent mechanical, electrical, thermal, and acoustic properties. Due to these characteristics, they are used as lightweight high strength parts, shock absorbing structures, firewalls, sound absorbing walls, and vibration absorbing materials. However, the aluminum porous material has the disadvantage of low bending strength and poor weldability and ductility. To overcome these shortcomings, aluminum porous sandwich plates and composite structures have been developed.

고상 발포법에 의한 알루미늄 다공질 제조의 특징은 정형가공이 가능하다는 장점을 가지고 있다. 즉 샌드위치판 및 일정 형상을 갖는 복합구조체를 외피 구조물로하여 내부에 발포 소재를 장입하여 발포하면, 외피 구조물의 형상과 일치하는 형상을 갖는 구조체의 제작이 완성된다. 이러한 정형가공의 특징을 갖는 발포알루미늄 구조체를 제작하는 방법으로는 제작하고자하는 형상을 갖는 별도의 금형을 만들어 발포시킨 후, 금형을 제거하고 발포된 알루미늄을 다시 필요한 외부 구조체(1)에 장착하는 경우와, 또 다른 하나는 별도의 금형을 제작하는 대신 발포시킬 외부 구조체(1) 자체가 금형의 역할을 할 뿐만 아니라 최종 제품이 되도록 하는 방법이 있다. 상기에 언급된 두가지 모두에 있어서 가장 큰 문제점으로는 외부로 부터 발포재가 삽입된 내부로의 열 전도에 많은 문제가 있어, 상용화를 위한 대형 제품의 제작시간이 매우 길다. 일반적으로 후자의 경우가 금형비용의 절감과 생산성에서 월등한 이점을 가지고 있으나, 외피가 발포를 위해 700℃이상의 고온에 장시간 노출되기 때문에 알루미늄과 같은 융점이 낮은 외피의 경우 표면용융 및 산화가 발생하게 되며, 발포시간이 길어지게 된다. 이들로 인하여 제품의 강도 및 연성이 떨어지고 제품수율이 낮고 에너지 낭비가 심하며, 생산속도가 낮아지게 되는 문제점을 가지고 있다.A feature of the aluminum porous production by the solid state foaming method has the advantage that can be processed in a fixed form. In other words, when the sandwich material and the composite structure having a certain shape as the shell structure by charging the foam material inside and foaming, the production of a structure having a shape matching the shape of the shell structure is completed. As a method of manufacturing a foamed aluminum structure having the characteristics of such a form machining, after forming and foaming a separate mold having a shape to be manufactured, the mold is removed and the foamed aluminum is mounted on the required external structure (1) again And another one is a method of making the outer structure (1) itself to be foamed instead of making a separate mold to serve as a mold as well as the final product. In both of the above-mentioned problems, the biggest problem is a lot of problems in the heat conduction from the outside into the foam material is inserted, the production time of a large product for commercialization is very long. In general, the latter has excellent advantages in the reduction of mold cost and productivity. However, since the outer shell is exposed to high temperature of 700 ° C. or higher for foaming for a long time, surface melting and oxidation occur in the case of low melting point such as aluminum. And the foaming time becomes long. Due to these, the strength and ductility of the product is low, product yield is low, energy waste is severe, and the production speed is low.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로 본 발명의 목적은 기존의 제조방법에서 외부 구조체(1)의 표면에 복사열을 대량 흡수하는 피복재를 도포하여 내부에 장입된 알루미늄 발포재(2)로 쉽게 대량의 열을 전달시켜 용융 및 산화를 방지하며, 알루미늄 발포 복합체의 기계적 성질향상 및 에너지 절감, 수율향상, 비용절감, 및 생산속도를 증대시키는 방법을 제공하고자 한다.The present invention has been made to solve the conventional problems as described above is an object of the present invention by applying a coating material that absorbs a large amount of radiant heat on the surface of the outer structure (1) in the existing manufacturing method is inserted into the aluminum foam material (2) to easily transfer a large amount of heat to prevent melting and oxidation, and to provide a method of improving the mechanical properties and energy saving, yield improvement, cost reduction, and production speed of the aluminum foam composite.

고상발포알루미늄의 제작방법은 만들고자 하는 형상을 갖춘 외피 구조체 내에 발포알루미늄 소재를 장입한 후 700℃이상으로 내부 온도가 유지되고 있는 전기로나 가스로에 이송되어 발포 열처리과정을 진행하게 된다. 이때 전달되는 주위 온도는 대류 및 전도에 의하여 외부 구조체(1)에서 내부의 알루미늄 발포재(2)로 열이 이동하게 되는 경우가 일반적인 열의 전달경로이다. 그러나 고온의 분위기에서 대류 및 전도 이외에 복사에 의한 영향이 매우 크기 때문에 이에 대한 영향을 정확히 예측 해야만이 발포 알루미늄의 최적 발포조건을 도출할 수 있게 된다. 즉 [도1]에서 대류에 의해 외부구조체(1)의 표면에 전달된 열과 복사에 의해 표면에전달된 양을 비교하면, 열처리로(전기 또는 가스)의 특성상 전열선 및 불꽃의 온도가 1500℃ 이상의 고온을 유지하기 때문에 외부 구조체(1)의 표면에 전달된 복사열은 엄청난 양의 에너지를 수반하게 된다. 그러나 금속 표면은 복사에너지의 성질에 따라 대부분의 양이 반사되고 내부로 전달되지 못하게 된다. 그 예로서 알루미늄 호일의경우 반사율이 92∼97%이고, 알루미늄 판재는 80∼95%에 이르며, 아연도금 강판은 70∼80%의 복사열을 반사한다. 이는 단순하게 표피의 순간 겉보기온도만 상승시키고, 실제로 발포에 필요한 전도 열전달량은 매우 미미한 수준에 이르게 된다. 이는 외부 구조체(1)에 표면용융 및 산화피막을 형성시켜 알루미늄 발포 복합체의 기계적 성질을 저하시키며, 또한 전달열량의 감소에 의한 발포시간 지연으로 에너지 비용 및 생산성의 저감을 유발시키는 원인이 되고 있다.The manufacturing method of the solid foam aluminum is charged into the foamed aluminum material in the shell structure having the shape to be made and then transferred to an electric furnace or gas furnace where the internal temperature is maintained at 700 ° C. or higher to perform the foam heat treatment process. At this time, the transferred ambient temperature is a heat transfer path in which heat is transferred from the outer structure 1 to the inner aluminum foam 2 by convection and conduction. However, since the effects of radiation in addition to convection and conduction in the high-temperature atmosphere are very large, it is necessary to accurately predict the effects so that the optimum foaming conditions of the foamed aluminum can be derived. That is, when comparing the amount of heat transferred to the surface of the outer structure (1) by convection and the amount transferred to the surface by radiation in Figure 1, the temperature of the heating wire and the flame is 1500 ℃ or more due to the characteristics of the heat treatment furnace (electric or gas) Because of the high temperature maintained, the radiant heat transferred to the surface of the outer structure 1 carries enormous amounts of energy. However, the metal surface reflects most of its amount and cannot be transferred inside, depending on the nature of the radiant energy. For example, aluminum foil has a reflectance of 92 to 97%, an aluminum sheet of 80 to 95%, and a galvanized steel sheet reflects 70 to 80% of radiant heat. This simply raises the epidermal apparent temperature of the epidermis and, in fact, the amount of conduction heat transfer required for foaming is very small. This causes surface melting and oxide film formation on the outer structure 1, thereby lowering the mechanical properties of the aluminum foam composite, and also causing a reduction in energy cost and productivity due to a delay in foaming time due to a decrease in the amount of heat delivered.

이러한 문제점을 제거하기 위하여 본 발명은 [도 2]에 나타난 바와 같이 알루미늄과 같은 금속의 낮은 복사에너지 흡수율을 향상시키고, 상기의 복사에너지의 90%이상이 반사되는 것을 방지하기 위한 방법으로 금속 표면의 복사 흡수율이 매우 높은 흑연입자(Graphite 또는 Carbon/Soot), 황토분말을 외부구조체(1) 표면에 0.1∼1.5mm 두께로 도포하여 외부 구조체(1)에 도달된 복사에너지의 대부분이 흡수되어 내부의 발포알루미늄 소재(2)로 전도되도록 하여 외부 구조체(1)의 표면산화와 용융을 방지한다.In order to eliminate this problem, the present invention improves the low radiant energy absorption rate of a metal such as aluminum as shown in FIG. 2 and prevents the reflection of more than 90% of the radiant energy. Graphite particles (Graphite or Carbon / Soot) and ocher powder having a very high radiation absorption rate are applied to the surface of the outer structure 1 to a thickness of 0.1 to 1.5 mm to absorb most of the radiation energy reaching the outer structure 1. It is conducted to the foamed aluminum material (2) to prevent surface oxidation and melting of the outer structure (1).

도 1 고상 발포 구조체의 열전달 형태1 Heat Transfer Form of Solid Foam Structure

도 2 복사열에 대한 여러 재료의 온도변화에 따른 흡수율Figure 2 Absorption rate according to the temperature change of various materials to the radiant heat

도 3 발포 알루미늄 제작을 위한 외부 구조체 및 발포 알루미늄 설치도3 is a view illustrating the installation of external structure and foam aluminum for manufacturing foam aluminum

도 4 구조체 외피의 파괴 예시도Figure 4 illustrates the destruction of the structure shell

도 5 피복 전과 피복 후의 벤딩(Bending) 강도 증대 그래프5 Bending strength increase graph before and after coating

도 6 알루미늄 외부 구조체의 표면 피복되지 않은 상태에서의 용융결과 예6 shows an example of the result of melting in the uncoated state of the aluminum outer structure

도 7 탄소 피복된 표면과 피복하지 않은 알루미늄 외피 구조체의 외부 및 내부 온도변화Figure 7 External and internal temperature changes of carbon coated and uncoated aluminum skin structures

도 8 외부구조체(1)와 발포소재(2)의 표면피복 방법도8 is a surface coating method of the outer structure (1) and the foam material (2)

표 1 각종 소재의 복사열 흡수율Table 1 Radiation Heat Absorption Rate of Various Materials

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1-외부 구조체 2-발포알루미늄 소재 3-내부 구조체 4-표면 피복1-External Structure 2- Foamed Aluminum Material 3- Internal Structure 4-Surface Covering

5-외부 구조체의 외표면 6-외부 구조체의 내표면5-outer surface of the outer structure 6-outer surface of the outer structure

7-발포알루미늄 소재의 외표면Outer surface of 7-foamed aluminum

상기와 같은 본 발명의 목적을 달성하기 위해 본 발명은 고상 알루미늄 발포를 위해 열처리로에 이송시킨 후 주위의 전열선/또는 화염으로 부터 전달된 복사열에 의한 외피구조체(또는 금형)(1)의 용융과 산화를 방지하고, 내부에 장입된 알루미늄 발포소재(2)로의 열전달을 증진시키기 위하여 복사 흡수율이 높은 물질(4)을 외부구조체(1)에 피복하여 발포시키는 방법을 제공한다.In order to achieve the object of the present invention as described above, the present invention is transferred to a heat treatment furnace for solid aluminum foaming and melting of the shell structure (or mold) 1 by radiant heat transferred from an electric heating wire and / or a flame. In order to prevent oxidation and to promote heat transfer to the aluminum foam material 2 loaded therein, a method of coating and foaming the outer structure 1 with a material having a high radiation absorption is provided.

본 발명은 상기 피복하는 물질로는 흑연(Graphite) 입자를 분체 또는 유체와 혼합한 액을 외부 구조체(1) 외표면에 피복(4)하는 방법,The present invention is a method for coating (4) the outer surface of the outer structure (1) of the liquid to be coated with graphite particles powder or fluid as the material to be coated,

흑연(Carbon) 입자를 분체 또는 유체와 혼합한 액을 외부 구조체(1) 외표면(5,6,7)에 피복(4)하는 방법,A method of coating (4) the outer surface (5, 6, 7) of the outer structure (1) with a mixture of graphite particles with powder or fluid,

연소 후 회수된 그을음(Soot)입자를 분체 또는 유체와 혼합한 액을 외부 구조체(1) 외표면(5,6,7)에 피복(4)하는 방법,A method of coating (4) the outer surface (5, 6, 7) of the outer structure (1) with a liquid obtained by mixing soot particles recovered after combustion with powder or a fluid,

황토와 모래 입자를 혼합한 분체, 또는 유체와 혼합한 액을 외부 구조체(1) 외표면(5,6,7)에 피복(4)하는 방법,A method of coating (4) the powder mixed with ocher and sand particles or the liquid mixed with fluid on the outer surfaces (5, 6, 7) of the outer structure (1),

금속의 복사열 방사율(ε)이 알루미늄의 경우 5∼10%, 철재 금속의 경우 10∼20%인 반면 탄소의 경우 85∼98%의 높은 방사율을 갖는다. 그러므로 외부 구조체(1) 내부에 알루미늄 발포재(2)를 장입하였을 때 외부 구조체(1)을 통과한 복사열이 전도에 의하여 내표면(6)에 전달되고 이를 다시 복사열에 의하여 발포 알루미늄 소재(2)의 표면(7)에서 흡수가 이루어지도록 외부구조체(1)의 안쪽면(6)과 바깥면(5)에 각 각 높은 복사열 흡수(α) 및 방사율(ε)을 갖는 흑연과 같은 입자를 피복(4)하여 표면에 전달된 복사열의 흡수를 극대화 시켜 표면용융을 막고 산소를 차단시켜 표면 산화를 방지하여 제품의 기계적 성질향상과 생산비용을 절감시키는 것이 본 발명의 목적이 있다.The radiant heat emissivity of the metal is 5 to 10% for aluminum and 10 to 20% for iron metal, while it has a high emissivity of 85 to 98% for carbon. Therefore, when the aluminum foam material 2 is charged inside the outer structure 1, the radiant heat passing through the outer structure 1 is transferred to the inner surface 6 by conduction, and this is again applied to the foamed aluminum material 2 by the radiant heat. The inner surface 6 and the outer surface 5 of the outer structure 1 are coated with particles such as graphite, each having a high radiation absorption (α) and an emissivity (ε), so as to be absorbed at the surface 7 of the 4) It is an object of the present invention to maximize the absorption of radiant heat transferred to the surface to prevent surface melting and to block surface oxidation to prevent surface oxidation to improve the mechanical properties of the product and reduce the production cost.

본 발명으로 제조되는 발포 알루미늄구조체는 자동차 바디, 차량용 구조재, 선박용 내 ·외장재, 건축용 내 ·외장재 등의 제조에 용이하게 사용할 수 있고, 우수한 기계적, 열적, 전자기적, 및 음향성질을 고루 갖춘 고기능성 복합구조체이다.The foamed aluminum structure produced by the present invention can be easily used for the manufacture of automobile bodies, vehicle structural materials, marine interior and exterior materials, building interior and exterior materials, and high functionality with excellent mechanical, thermal, electromagnetic, and acoustic properties. It is a composite structure.

본 발명의 첫 번째 특징적 효과는, 외부 구조체(1) 내부나 금형에 발포알루미늄 소재(2)를 장입하여 발포시키기 위해서는 700∼800℃ 정도의 고온의 분위기 상태에 있는 열처리로에서 발포를 시키야한다. 이러한 고온에서 금속재질은 복사열 흡수율을 현저히 떨어뜨리게 된다([표 1] 참조). 발포과정에서 형성된 외부 구조체(1)의 두꺼운 산화피막(Al2O3)은 외피 구조(1)의 표면 경도를 상승시켜 매우 취약한 특징을 가지고 있다[도 4 참조]. 이러한 현상은 발포알루미늄이 삽입된 복합구조체의 장점인 강도 상승을 저해하는 주요 원인이 된다. [도 5]에 나타난 바와 같이 피복을 한 후 발포 시킨 알루미늄을 외피로 하는 구조체의 강도가 피복을 하지 않은 구조체 보다 적게는 4배에서 크게는 7배의 증가를 나타내고 있다. 이는 상기에서 언급한 외피의 두꺼운 산화피막 형성을 피복된 흑연이 산소를 차단하여 방지하고 있기 때문에 외부 구조체(1)인 알루미늄의 연성을 유지하고 있는 결과이다.The first characteristic effect of the present invention, in order to charge and foam the foamed aluminum material (2) inside the outer structure (1) or the mold must be foamed in a heat treatment furnace in a high temperature atmosphere of about 700 ~ 800 ℃. At these high temperatures, the metal material significantly reduces the radiant heat absorption rate (see Table 1). The thick oxide film (Al 2 O 3 ) of the outer structure (1) formed during the foaming process has a very fragile feature by increasing the surface hardness of the shell structure (1) [see Fig. 4]. This phenomenon is a major cause of inhibiting strength increase, which is an advantage of the composite structure in which foamed aluminum is inserted. As shown in Fig. 5, the strength of the structure coated with foamed aluminum after coating was increased from 4 times to 7 times higher than that of the uncoated structure. This is a result of maintaining the ductility of aluminum, which is the outer structure 1, because the coated graphite prevents the formation of the thick oxide film of the shell mentioned above.

두 번째 특징적 효과는, 전달된 복사열을 80∼90% 이상을 흡수하여 내부의 알루미늄 발포소재(2)로 전달하여 표면 용융을 방지할 뿐만 아니라 기존의 온도 보다 낮은 온도에서도 오히려 발포 시간을 단축하는 효과가 있다.The second characteristic effect is that it absorbs more than 80 to 90% of the transferred radiant heat and transfers it to the aluminum foam material 2 inside, thereby preventing surface melting and shortening the foaming time even at a temperature lower than the existing temperature. There is.

즉, 외부 구조체(1)의 대부분은 금속(알루미늄, 철, 스테인레스 등)이 주로 사용되고 있다. 그러나 금속물질은 복사열 반사율이 70∼95% 가량의 높은 수준으로 외부 구조체(1)의 겉표면 온도만 상승시키고 내부로의 열 전달을 저해하는 단열재 역할을 하게 된다(사례: 전열기의 금속재 반사판). 이는 발포 시간을 지연시켜 생산성의 저하를 가져 올 뿐만아니라, 장기간 고온에 노출된 외피 구조체의 재질이 상기 첫 번째 효과와 같은 산화 피막을 구성하게 되든지, 혹은 알루미늄 재질의 외부 구조체(1)는 결국에는 용융이 발생하여 제품의 품질 및 수율을 저감하는 원인이 된다([도 6] 및 [도 7]참조). 즉 [도 7]에 나타난 바와 같이 흑연 피복되지 않은 외부구조체(1)의 경우 외부 구조체(1)의 온도가 급속히 상승하고 있으며, 반면에 내부의 온도는 매우 서서히 상승하고 있다. 또한 흑연 피복된 알루미늄 외피구조체의 경우 급속한 온도상승을 하다가 열처리로 내부의 분위기 조건인 약 700∼800℃의 온도를 유지하면서 내부의 온도가 상승하여 발포 알루미늄의 융점인 500℃ 부근을 유지하고 있다. 이는 외피에 전달된 복사열이 내부로 흡수되어 발포알루미늄의 용융에 바로 활용되고 있음을 입증해주고 있다. 이는 [도 6]에 피복하지 않은 외부 구조체(1)의 용융으로 이어지는 결과를 초래하게 된다.That is, most of the outer structure 1 is mainly made of metal (aluminum, iron, stainless, etc.). However, the metal material has a high radiant heat reflectance of about 70 to 95%, which increases the temperature of the outer surface of the outer structure 1 and acts as a heat insulator that inhibits heat transfer to the inside (example: metal reflector of the heater). This not only delays the foaming time and lowers the productivity, but also the material of the shell structure exposed to high temperature for a long time constitutes the oxide film as the first effect, or the aluminum outer structure 1 eventually Melting occurs, which causes the quality and yield of the product to be reduced (see FIG. 6 and FIG. 7). That is, as shown in FIG. 7, the temperature of the outer structure 1 is rapidly rising in the case of the outer structure 1 which is not coated with graphite, while the temperature of the inside is rising very slowly. In addition, in the case of graphite coated aluminum shell structure, while the temperature rises rapidly, the internal temperature is increased while maintaining the temperature of about 700 to 800 ° C., which is the internal atmospheric condition, to maintain the melting point of the foamed aluminum near 500 ° C. This proves that the radiant heat transferred to the outer skin is absorbed into the inside and used directly for melting the foamed aluminum. This results in the melting of the outer structure 1 which is not covered with [FIG. 6].

세 번째 효과는, 발포 시간을 단축시킨다.([도 7] 참조)The third effect is to shorten the foaming time (see Fig. 7).

네 번째 효과는, 생산속도 및 생산성 향상을 가져온다.The fourth effect is an increase in production speed and productivity.

다 섯번째 효과는, 발포시간 단축에 의한 에너지 비용의 절감으로 인한 생산비 절감효과를 가져온다.The fifth effect is to reduce the production cost by reducing the energy cost by reducing the foaming time.

Claims (5)

탄소(Carbon) 입자를 분체, 또는 유체와 혼합한 액을 외부 구조체(1)나 발포 알루미늄 소재(2)의 외표면(5,7), 또는 내표면(6)에 0.5∼1.5mm 두께로 피복(4)하여 알루미늄 발포 복합구조체를 제조하는 방법,Carbon-coated liquid mixed with powder or fluid is coated on the outer surface (5,7) or inner surface (6) of the outer structure (1) or foamed aluminum material (2) to a thickness of 0.5 to 1.5 mm. (4) a method of producing an aluminum foam composite structure, 흑연(Graphite) 입자를 분체, 또는 유체와 혼합한 액을 외부 구조체(1)나 발포 알루미늄 소재(2)의 외표면(5,7), 또는 내표면(6)에 0.5∼1.5mm 두께로 피복(4)하여 알루미늄 발포 복합구조체를 제조하는 방법,A graphite or a liquid mixed with graphite particles is coated on the outer surface (5, 7) or inner surface (6) of the outer structure (1) or foamed aluminum material (2) to a thickness of 0.5 to 1.5 mm. (4) a method of producing an aluminum foam composite structure, 그을음(Soot)입자를 분체, 또는 유체와 혼합한 액을 외부 구조체(1)나 발포 알루미늄 소재(2)의 외표면(5,7), 또는 내표면(6)에 0.5∼1.5mm 두께로 피복(4)하여 알루미늄 발포 복합구조체를 제조하는 방법,The soot particles are mixed with powder or a fluid to cover the outer surface 5, 7 or inner surface 6 of the outer structure 1 or the foamed aluminum material 2 with a thickness of 0.5 to 1.5 mm. (4) a method of producing an aluminum foam composite structure, 황토와 모래(1∼10%)를 혼합한 액을 외부 구조체(1)의 외표면(5)에 0.5∼1.5mm두께로 피복(4)하여 알루미늄 발포 복합구조체를 제조하는 방법,A method of manufacturing an aluminum foam composite structure by coating (4) a mixture of ocher and sand (1 to 10%) on the outer surface 5 of the outer structure 1 to a thickness of 0.5 to 1.5 mm, 상기 1, 2, 3항에 있어서, 발포 알루미늄 소재(2)가 외부 구조체(1)의 표면에서 일정한 간격이 있도록 설치하여 외부 구조체(1)과 발포알루미늄소재(2)의 외부 및 내부표면에 피복(4)하여 복사열이 외표면(5)에 흡수된 후 내표면(6)으로 전달된 다음, 다시 복사열에 의하여 발포알루미늄 소재(2)의 외표면(7)에 전달되도록하는 복사열 전달량을 극대화하는 방법([도 8] 참조)According to the above 1, 2, 3, the foamed aluminum material (2) is installed on the surface of the outer structure 1 so as to cover the outer and inner surfaces of the outer structure (1) and the foamed aluminum material (2) (4) to maximize the amount of radiant heat transfer so that the radiant heat is absorbed by the outer surface (5) and then transferred to the inner surface (6), and then transferred to the outer surface (7) of the foamed aluminum material (2) by the radiant heat again. Method (see [Figure 8])
KR1020020025693A 2002-05-09 2002-05-09 Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation KR20020046257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020025693A KR20020046257A (en) 2002-05-09 2002-05-09 Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020025693A KR20020046257A (en) 2002-05-09 2002-05-09 Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation

Publications (1)

Publication Number Publication Date
KR20020046257A true KR20020046257A (en) 2002-06-20

Family

ID=27726251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020025693A KR20020046257A (en) 2002-05-09 2002-05-09 Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation

Country Status (1)

Country Link
KR (1) KR20020046257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507628B1 (en) * 2002-12-12 2005-08-10 엘에스전선 주식회사 Apparatus For Producing An Optical Fiber Preform
CN102321868A (en) * 2011-09-15 2012-01-18 吴江市精工铝字制造厂 Preparation process of high temperature oxidation resistant coating of foamed aluminum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302123A (en) * 1992-02-14 1993-11-16 Kubota Corp Method for heat-treating clad pipe
KR0134670B1 (en) * 1989-04-27 1998-04-18 게리 엘. 그리스월드 Secure image production
JPH11267787A (en) * 1998-03-17 1999-10-05 Jinno Tekkosho:Kk Halogen lamp heater for forging die
JP2001047188A (en) * 1999-08-03 2001-02-20 Toyota Motor Corp Resin coated particulate for molding lamination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0134670B1 (en) * 1989-04-27 1998-04-18 게리 엘. 그리스월드 Secure image production
JPH05302123A (en) * 1992-02-14 1993-11-16 Kubota Corp Method for heat-treating clad pipe
JPH11267787A (en) * 1998-03-17 1999-10-05 Jinno Tekkosho:Kk Halogen lamp heater for forging die
JP2001047188A (en) * 1999-08-03 2001-02-20 Toyota Motor Corp Resin coated particulate for molding lamination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507628B1 (en) * 2002-12-12 2005-08-10 엘에스전선 주식회사 Apparatus For Producing An Optical Fiber Preform
CN102321868A (en) * 2011-09-15 2012-01-18 吴江市精工铝字制造厂 Preparation process of high temperature oxidation resistant coating of foamed aluminum

Similar Documents

Publication Publication Date Title
US3863701A (en) Process for manufacturing heat-insulated castings
CN103422581A (en) Metal vacuum insulated panel and preparation method thereof
JP2020063190A (en) Radiation shield for shaping thin glass
KR20020046257A (en) Manufacturing Method of Solid Metal Foam Composite Bodies by Enhancing the absorption of Incident Radiation
CN101905290A (en) Sintering heat treatment furnace for precise casting mould shell
CN105258510A (en) Composite heat-preservation furnace lining and manufacturing method
CN105964979B (en) A kind of air tight high-temperature-resistant and anti-corrosion aluminum melt stalk
CN203766165U (en) Ceramic composite vacuum plate
CN101293775A (en) Industrial standard blackbody
CN103422582B (en) Ceramic composite vacuum insulation plate and preparation method thereof
CN204329599U (en) A kind of insulation of the height for the production of metal-powder intermediate frequency furnace
CN203429219U (en) Annealing furnace tail part for aluminum-zinc plated steel plate
CN108977683A (en) Applied to the light-weighted foamed aluminum materials production method of arrangements for automotive doors
CN104746752A (en) Metal vacuum composite heat-insulation plate with edge sealed by seal strip and manufacturing method thereof
CN201144212Y (en) Heat insulation water seal tank for coke dry quenching furnace
CN107642427A (en) A kind of aluminium cylinder sleeve of spiral trough body structure and preparation method thereof
CN115677180B (en) Method for improving glass flame melting furnace performance by utilizing multifunctional material
CN218059190U (en) Chemical vapor deposition furnace
CN2916547Y (en) Infrared radiation-heating energy accumulating plate
CN113336518B (en) Homogeneous plate and preparation method and application thereof
CN217803717U (en) Honeycomb panel with effectual gives sound insulation
KR20190143300A (en) Aerogel insulation composition for thin film and aerogel thin film sheet comprising the same
CN208515483U (en) A kind of high temperature resistant type shell
CN104746668A (en) Glass welded metal vacuum composite insulation board and production method thereof
CN203582902U (en) Furnace body of low-temperature annealing pit-type resistance furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application