KR20020043415A - Structure and fabrication of thermo-optic switch using SOI - Google Patents

Structure and fabrication of thermo-optic switch using SOI Download PDF

Info

Publication number
KR20020043415A
KR20020043415A KR1020000073124A KR20000073124A KR20020043415A KR 20020043415 A KR20020043415 A KR 20020043415A KR 1020000073124 A KR1020000073124 A KR 1020000073124A KR 20000073124 A KR20000073124 A KR 20000073124A KR 20020043415 A KR20020043415 A KR 20020043415A
Authority
KR
South Korea
Prior art keywords
sinx
thermo
silicon
soi
optic switch
Prior art date
Application number
KR1020000073124A
Other languages
Korean (ko)
Inventor
박종대
Original Assignee
박종대
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종대 filed Critical 박종대
Priority to KR1020000073124A priority Critical patent/KR20020043415A/en
Publication of KR20020043415A publication Critical patent/KR20020043415A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: A thermal optical switch using an SOI substrate and a manufacturing method thereof are provided to increase a heat distribution difference by forming a trench at a heat transfer path. CONSTITUTION: SiNx is deposited at both surfaces of an SOI substrate. An upper layer portion is formed by a sensitive film to protect the SiNx. A lower layer portion is formed by a sensitive film to form a pattern of the SiNx. The SiNx is etched to form a part for forming a silicon trench using KOH. A metal thin film having a high heat conduction is deposited at a lower silicon layer in order to increase a heat resistance and a cooling effect of a heat. SiNx layer pattern is formed on a trench area in order to form an optical switch output waveguide pattern. The sensitive film is removed and a silicon optical waveguide. SiNx layer is deposited on an optical waveguide and a metal electrode for a heater is formed at a predetermined location.

Description

SOI 기판을 이용한 열광학 광스위치의 구조 및 제작 방법{Structure and fabrication of thermo-optic switch using SOI}Structure and fabrication method of thermo-optic optical switch using SOI substrate {Structure and fabrication of thermo-optic switch using SOI}

본 발명은 1.3um 및 1.55um를 중심 파장인 광통신 시스템에서 광신호의 경로를 원하는 임의의 곳으로 변경할 수 있는 기능을 갖는 광스위치의 새로운 구조 및 이에 대한 제작방법에 대한 기술로서, 많은 종류의 광스위치 중에서 비교적 저가격의 스위칭 속도가 빠르지 않은 곳에서 사용할 수 있는 열광학스위치의 새로운 구조를 제안하였다. 본 발명에서 제시한 광스위치는 도 1, 2에서와 같은 digital optical switch(DOS)로서 polymer나 silica를 이용하는 방법과는 달리 silicon on insulator(SOI) 기판을 사용하였으며, SOI를 이용할 경우 열광학 스위치의 가장 중요한 파라미터인 열광학 계수면에서, 본 발명의 경우 광도파로 물질인 silicon이 다른 물질에 비해 최대 10배 이상의 값을 가짐으로 열광학 스위치의 성능 개선에 대한 높은 가능성을 가지고 있다. 이것은 polymer나 silica를 사용하는 종래의 기술과는 전혀 새로운 기술로서, 현재까지 SOI를 이용한 DOS형 광스위치에 대한 연구나 특허가 전무한 상황이다. 또한 열광학 스위치의 재잘에 관계없이, 열광학스위치에서 가장 문제가 되어온 점은, heater에서 발생한 열을 원하는 광도파로 출력 도파로에만 구속하여 원하지 않는 광도파로와의 온도차를 높여야 한다는 것이다. 본 발명에서는 도 3, 4에서와 같은 구조를 이용하여 동일한 구동전력에서 출력 광도파로간의 열분포 차이를 극대화하여 heater로부터 발생한 열의 이동경로를 효과적으로 차단함으로서 열광학 스위치의 주요 특성인 출력간의 누화, 소광비, 소모전력, 스위칭 시간 등을 개선할 수 있는 효과를 갖고 있다.The present invention relates to a new structure of an optical switch having a function of changing the path of an optical signal to a desired place in an optical communication system having a wavelength of 1.3 μm and 1.55 μm, and a manufacturing method thereof. We proposed a new structure of thermo-optic switch that can be used in a relatively low cost switching speed. The optical switch presented in the present invention uses a silicon on insulator (SOI) substrate as a digital optical switch (DOS) as shown in FIGS. 1 and 2, unlike a method using polymer or silica, and in the case of using the SOI, In terms of the thermo-optic coefficient, which is the most important parameter, the present invention has a high possibility of improving the performance of a thermo-optic switch because silicon, which is an optical waveguide material, has a value of up to 10 times or more than other materials. This is a completely new technology from the conventional technology using polymer or silica, and there is no research or patent on DOS type optical switch using SOI. In addition, regardless of the thermo-optic switch, the most problematic point in the thermo-optic switch is that the heat generated from the heater must be confined to the desired optical waveguide output waveguide to increase the temperature difference from the unwanted optical waveguide. In the present invention, by using the structure as shown in Figs. 3 and 4 to maximize the difference in the heat distribution between the output waveguides at the same driving power to effectively block the path of heat generated from the heater crosstalk between the output, the extinction ratio, It has the effect of improving power consumption and switching time.

본 발명에서 이루고자 하는 기술적 과제는 Silicon이 갖고있는 높은 열광학계수를 이용한 효율적인 열광학 스위치를 구현하기 의해 Silicon을 광도파로 및 열 전달층으로 하는 SOI 기판을 이용한 DOS형 열광학 스위치를 최초로 제안하며, 또한 종래의 열광학 스위치의 문제점인 Heater로부터 발생된 열이 원하는 특정 지역에만 상승되고 다른 지역으로의 확산을 효과적으로 막을 수 없었다는 문제점을 해결하기 위해, 열전달 통로에 인위적으로 냉각 및 열저항을 높이기기 위한 trench를 형성함으로서 열 분포 차이를 높일 수 있다는 것이다.The technical problem to be achieved in the present invention is to first propose a DOS type thermo-optic switch using an SOI substrate using silicon as an optical waveguide and a heat transfer layer by implementing an efficient thermo-optic switch using a high thermo-optic coefficient of Silicon, In addition, in order to solve the problem that the heat generated from the heater, which is a problem of the conventional thermo-optic switch, rises only in a desired area and cannot effectively prevent diffusion to other areas, it is necessary to artificially increase the cooling and heat resistance in the heat transfer path. By forming trenches, the difference in heat distribution can be increased.

도 1은 본 발명에 제안된 하부 층에 열 냉각효과용 Trench를 갖는 SOI를 이용한 열광학 스위치의 입체도1 is a three-dimensional view of a thermo-optic switch using an SOI having a trench for thermal cooling effect in the lower layer proposed in the present invention.

도 2는 본 발명에 제안된 하부 층에 열 냉각효과용 Trench를 갖는 SOI를 이용한 열광학 스위치의 평면도2 is a plan view of a thermo-optic switch using an SOI having a trench for thermal cooling effect in the lower layer proposed in the present invention.

도 3은 본 발명에 제안된 하부 층에 열 냉각효과용 Trench를 갖는 SOI를 이용한 열광학 스위치의 출력 측에서 본 정면도Figure 3 is a front view as seen from the output side of the thermo-optic switch using SOI having a thermal cooling effect trench in the lower layer proposed in the present invention

도 4는 본 발명에 제안된 하부 층에 열 냉각효과용 Trench를 갖는 SOI를 이용한 열광학 스위치의 제작 공정도4 is a manufacturing process diagram of a thermo-optic switch using an SOI having a trench for thermal cooling effect in the lower layer proposed in the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1,3 Silicon 2,7 SiO2 1,3 Silicon 2,7 SiO 2

4. 감광막 5. SiNx4. Photosensitive Film 5. SiNx

6. Heat Sink용 Metal 8. Heater용 Metal6. Metal for Heat Sink 8. Metal for Heater

본 발명의 구성은 도 1에서와 같은 SOI를 이용한 DOS형 열광학 스위치의 구조를 가지고 있다. 이에 대한 평면도 및 정면도는 도 2,3에 각각 나타낸 바와 같다. 이와 같은 열광학 스위치를 제작하기 위한 방법은 도 4에 도시되었다. 도 4의 a)는 열광학 스위치를 위한 SOI 기판의 형태를 나타내었다. 도 4의 b)는 SOI 기판의 양면에 SiNx 증착 후, 도 4의 c)와 같이 상층부는 SiNx의 보호를 위해, 하층부는 SiNx의 패턴 형성을 위해 감광막을 이용한다. 도 4의 d)와 같이 SiNx의 식각을 통하여 Silicon Trench를 형성할 부분을 도 4의 e)와 같이 KOH 등을 이용하여 제작한다. 이후 도 4의 f)에서와 같이 열저항 및 열의 냉각효과를 증대하기 위해 열전도가 높은 금속 박막을 하층부 Silicon에 증착한다. Trench를 형성한 영역 위에 원하는 광스위치 출력 도파로의 패턴을 형성하기 위해 감광막과 사진 전사과정을 이용하여 SiNx(또는 SiO2)층의 패턴을 형성한 후, 감광막을 제거하고 SiNx(또는 SiO2)을 식각 마스크로 이용하여 도 4의 I)와 같은 Silicon 광도파로를 형성한다. 이후광도파로 위의 SiNx(또는 SiO2)층을 증착한 후 도 4의 k)와 같은 위치에 heater용 metal 전극을 형성한다.The configuration of the present invention has the structure of a DOS type thermo-optic switch using SOI as shown in FIG. Top and front views thereof are as shown in FIGS. 2 and 3, respectively. The method for manufacturing such a thermo-optic switch is shown in FIG. 4. 4 a) shows the shape of the SOI substrate for the thermo-optic switch. 4B illustrates that after the deposition of SiNx on both surfaces of the SOI substrate, as shown in c) of FIG. 4, the upper layer uses a photoresist film for protecting SiNx and the lower layer uses a photosensitive film for pattern formation of SiNx. As shown in d) of FIG. 4, a portion for forming a silicon trench through etching of SiNx is manufactured by using KOH or the like as shown in FIG. 4 e). Then, as shown in f) of FIG. 4, a metal thin film having high thermal conductivity is deposited on the lower layer silicon in order to increase the thermal resistance and the cooling effect of the heat. In order to form a pattern of the desired optical switch output waveguide on the region where the trench is formed, a pattern of a SiNx (or SiO 2 ) layer is formed by using a photosensitive film and a photo transfer process, and then the photosensitive film is removed and SiNx (or SiO 2 ) is formed. The silicon optical waveguide as shown in I) of FIG. 4 is formed using the etching mask. Thereafter, after depositing a SiNx (or SiO 2 ) layer on the optical waveguide, a metal electrode for the heater is formed at a position as shown in FIG.

본 발명은 종래의 DOS형 열광학 스위치의 재료와는 전혀 다른, 열광학 계수가 10배 이상 높은 silicon층을 광도파로로 이용하는 SOI 기판을 이용한 DOS형 광스위치로서 이러한 높은 열광학 계수에 의한 광스위치의 동작특성인 광스위칭 효율의 증대를 기대할 수 있으며, 또한 안정된 Silicon 공정조건을 이용하여 양산성을 높임으로서 제품의 가격을 낮추는 효과를 기대할 수 있다. 또한 Silicon 광도파로를 사용함으로서 Silicon이 가지고 있는 물질의 안정성으로 인하여, 온도/습도 등에 대한 신뢰성을 보장할 수 있다. 아울러 polymer 및 silica 광스위치가 가지고 있는 편광에 대한 의존성을 광도파로의 구조 설계에 따라 혁신적으로 낮출 수 있는 장점이 있다.The present invention is a DOS type optical switch using an SOI substrate using a silicon layer having a thermo-optic coefficient 10 times higher than that of a conventional DOS type thermo-optic switch as an optical waveguide. It can be expected to increase the optical switching efficiency, which is the operating characteristic of, and to lower the price of the product by increasing the mass productivity using stable silicon process conditions. In addition, by using the silicon optical waveguide, it is possible to guarantee the reliability of temperature / humidity due to the stability of the material possessed by the silicon. In addition, the dependence on the polarization of the polymer and silica optical switch can be innovatively lowered according to the optical waveguide structure design.

또한 열광학 스위치의 재질에 관계없이, 열광학스위치에서 가장 문제가 되어온 점은, heater에서 발생한 열을 원하는 광도파로 출력 도파로에만 구속하여 원하지 않는 광도파로와의 온도차를 높여야 한다는 것이다. 본 발명에서는 도 3, 4에서와 같은 구조를 이용하여 동일한 구동전력에서 출력 광도파로간의 열분포 차이를 극대화하여 heater로부터 발생한 열의 이동경로를 효과적으로 차단함으로서 열광학 스위치의 주요 특성인 출력간의 누화, 소광비, 소모전력, 스위칭 시간 등을 개선할 수 있는 효과를 갖고 있다.In addition, regardless of the material of the thermo-optic switch, the most problematic point in the thermo-optic switch is that the heat generated from the heater must be confined to the desired optical waveguide output waveguide to increase the temperature difference from the unwanted optical waveguide. In the present invention, by using the structure as shown in Figs. 3 and 4 to maximize the difference in the heat distribution between the output waveguides at the same driving power to effectively block the path of heat generated from the heater crosstalk between the output, the extinction ratio, It has the effect of improving power consumption and switching time.

Claims (1)

1. Silicon on Isulator (SOI)를 이용한 DOS형 열광학 스위치 구조1. DOS type thermo-optic switch structure using Silicon on Isulator (SOI) 2. 열광학 스위치의 열상승 영역과 냉각 영역간의 온도 차를 높이기 위해 제안된 backside trench 구조 및 열 냉각효과용 Trench의 위치와 광스위치의 Heater의 형성 위치2. Proposed backside trench structure and position of trench for thermal cooling effect and formation position of heater of optical switch to increase the temperature difference between heat rise zone and cooling zone of thermo-optic switch 3. 하부 층에 열 냉각효과용 Trench를 갖는 SOI를 이용한 열광학 스위치의 제작 방법.3. Fabrication method of thermo-optic switch using SOI with thermal cooling effect on lower layer.
KR1020000073124A 2000-12-04 2000-12-04 Structure and fabrication of thermo-optic switch using SOI KR20020043415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000073124A KR20020043415A (en) 2000-12-04 2000-12-04 Structure and fabrication of thermo-optic switch using SOI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000073124A KR20020043415A (en) 2000-12-04 2000-12-04 Structure and fabrication of thermo-optic switch using SOI

Publications (1)

Publication Number Publication Date
KR20020043415A true KR20020043415A (en) 2002-06-10

Family

ID=27679485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000073124A KR20020043415A (en) 2000-12-04 2000-12-04 Structure and fabrication of thermo-optic switch using SOI

Country Status (1)

Country Link
KR (1) KR20020043415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031081A1 (en) * 2012-08-24 2014-02-27 Agency For Science, Technology And Research Waveguide structure and optical structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031081A1 (en) * 2012-08-24 2014-02-27 Agency For Science, Technology And Research Waveguide structure and optical structure

Similar Documents

Publication Publication Date Title
JP5773410B2 (en) Silicon-based electro-optic device
US7657146B2 (en) Optoelectric high frequency modulator integrated on silicon
EP2414888B1 (en) Optical device with large thermal impedance
US20060029325A1 (en) Thermally isolating optical devices
JP2010517113A (en) Thermo-optic waveguide device
KR20100075464A (en) Silicide thermal heaters for silicon-on-insulator nanophotonic devices
EP3497511B1 (en) Optical structure and method of fabricating an optical structure
US10649244B1 (en) Silicon-germanium optical modulator structure for use with optical chips
JP2013200492A (en) Athermal ring optical modulator
US9798166B1 (en) Attenuator with improved fabrication consistency
WO2015157963A1 (en) Thermo-optic phase shifter
WO2019215501A2 (en) Optoelectronic device
JPH08328049A (en) Manufacture of heater-buried plane waveguide-type optical switch
US6415066B1 (en) Thermally isolated silicon layer
KR100326046B1 (en) Thermo-optic switch and method of forming the same
EP3441817B1 (en) Optical switch
KR20020043415A (en) Structure and fabrication of thermo-optic switch using SOI
CN110045520B (en) Electro-optic phase modulator
US6370307B1 (en) Optical device formed on a substrate with thermal isolation regions formed therein
JPWO2009051148A1 (en) Optical phase shifter
CN108538785B (en) State nonvolatile optical switch based on floating gate charge and discharge and preparation method thereof
JP3534385B2 (en) Thermo-optic switch
JP7276452B2 (en) optical modulator
JP3920730B2 (en) Thermo-optic light switch
JP2010250270A (en) Optical circuit device and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application