KR20020042099A - A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property - Google Patents

A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property Download PDF

Info

Publication number
KR20020042099A
KR20020042099A KR1020000071845A KR20000071845A KR20020042099A KR 20020042099 A KR20020042099 A KR 20020042099A KR 1020000071845 A KR1020000071845 A KR 1020000071845A KR 20000071845 A KR20000071845 A KR 20000071845A KR 20020042099 A KR20020042099 A KR 20020042099A
Authority
KR
South Korea
Prior art keywords
steel sheet
rolled steel
cold rolled
mask frame
sol
Prior art date
Application number
KR1020000071845A
Other languages
Korean (ko)
Inventor
김기호
김교성
진영술
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000071845A priority Critical patent/KR20020042099A/en
Publication of KR20020042099A publication Critical patent/KR20020042099A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for manufacturing cold rolled steel sheets for Braun tube mask frame with superior magnetic property is provided, which can secure low coercive force less than 1.2Oe. CONSTITUTION: The method includes the steps of reheating a steel slab comprising C <=0.003 wt.%, Si<=0.10 wt.%, 0.1 wt.%<=Mn<=0.70 wt.%, P<=0.015 wt.%, S<=0.02 wt.%, sol-Al<=0.03 wt.%, a balance of Fe and other inevitable impurities in the temperature range of 1080 to 1250°C; hot rolling the steel slab in the temperature range of 820 to 950°C; coiling the hot rolled steel sheet in the temperature range of 650 to 750°C; cold rolling the hot coil in a reduction ratio of 20 to 50 %; and continuous annealing the cold rolled steel sheet in the temperature range of 820 to 880°C. In this method, slab reheating temperature is calculated by the following equation: MPF=0.023xSRT+100x(sol.Al£%|+1.6x(S£%|-0.06xMn£%|)-30.0).

Description

자기적 특성이 우수한 브라운관 마스크 프레임용 냉연강판의 제조방법{A METHOD FOR MANUFACTURING COLD ROLLED STEEL SHEET FOR BRAUN TUBE MASK FRAME WITH SUPERIOR MAGNETIC PROPERTY}Method for manufacturing cold rolled steel sheet for CRT mask frame with excellent magnetic properties {A METHOD FOR MANUFACTURING COLD ROLLED STEEL SHEET FOR BRAUN TUBE MASK FRAME WITH SUPERIOR MAGNETIC PROPERTY}

본 발명은 브라운관 마스크 프레임용 냉연강판의 제조방법에 관한 것으로, 보다 상세하게는 보자력 1.2 Oe 이하의 우수한 자기적 특성을 갖는 냉연강판을 제공하기 위하여, 냉연강판의 제조시 강성분 및 재가열온도를 최적화하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a cold rolled steel sheet for a CRT mask frame, and more particularly, to provide a cold rolled steel sheet having excellent magnetic properties of coercive force of 1.2 Oe or less, and to optimize the steel component and reheating temperature during manufacture of the cold rolled steel sheet. It is about how to.

최근, 브라운관의 대형화 및 고급화 경향에 따라, 브라운관 내부에서 섀도우 마스크와 인너쉴드를 지지하는 목적으로 사용되던 마스크 프레임은, 섀도우 마스크및 인너쉴드와 함께 그 중요성이 커지고 있고, 그 특성에 있어서도, 양호한 흑화처리성과 함께 우수한 자기적특성(지구자계 차폐능)이 요구되고 있다. 즉, 상기 마스크 프레임은, 전자총에서 주사된 전자빔의 형광면까지의 총 이동경로중 상당부분(대략 30%정도)을 차지하기 때문에, 인너쉴드와 마찬가지로 지구자계에 대한 자기차폐 특성(차폐도 ∝ 1/보자력)이 요구되게 된 것이다.In recent years, with the trend of larger and more advanced CRTs, the mask frame used for the purpose of supporting shadow masks and inner shields in the CRTs has become increasingly important along with the shadow masks and inner shields, and the blackening is favorable even in the characteristics thereof. In addition to the processability, excellent magnetic properties (earth magnetic shielding ability) are required. That is, since the mask frame occupies a substantial portion (about 30%) of the total moving path from the electron gun to the fluorescent surface of the scanned electron beam, the magnetic shielding characteristics of the earth's magnetic field are similar to that of the inner shield (shielding is also ∝ 1 / Coercive force) is required.

상기한 바와 같은, 마스크 프레임재의 자기적특성 및 흑화처리성에 관련된 기술로서, 일본 특개소61-174360호에서는 TV 브라운관 자기쉴드용 강판을 제조하기 위해서 C≤0.01%, 0.05%≤Mn≤0.4%, Ti: 0.01∼0.4% (C+N의 4배 이상), sol-Al≤0.10%, N≤0.015%의 성분계인 강재로 흑화처리한 후 항복점 연신현상을 제어하는 방법을 개시하였는데, 이 기술의 경우 Ti첨가로 인한 원가상승이 문제가 된다.As described above, as a technique related to the magnetic properties and blackening processability of the mask frame member, Japanese Patent Application Laid-Open No. 61-174360 discloses C≤0.01%, 0.05% ≤Mn≤0.4%, Ti: 0.01 to 0.4% (more than 4 times of C + N), sol-Al ≤ 0.10%, N ≤ 0.015% after the blackening treatment with a component system disclosed a method for controlling the yield point stretching In this case, cost increase due to Ti addition is a problem.

다른 일례로, 일본 특개평2-166230호에서는 자기쉴드재를 제조하기 위해서 C≤0.005%, sol-Al: 0.005-0.06%, Ti: 0.005-0.08%의 강재를 열간압연 마무리온도 720-800℃, 권취온도≥600℃로 하고, 소둔온도를 620℃ 이상으로 하여 1회 냉간압연으로 자기적특성이 우수한 강재를 제조하는 기술을 개시하고 있는데, 이 기술에 의하면 페라이트역 압연에 의한 집합조직 제어에 의해 종래 2회압연에 의해 생산하던 것을 1회 압연으로 해도 자기적특성이 우수한 강재를 제조할 수 있는 장점이 있다. 그러나, 이 경우 저온압연, 즉 페라이트압연시 압연공정 부하를 초래할 수 있는 문제가 있다.In another example, Japanese Patent Laid-Open No. 2-166230 hot rolls a steel sheet of C≤0.005%, sol-Al: 0.005-0.06%, and Ti: 0.005-0.08% for hot rolling to produce a magnetic shield material. , A coiling temperature ≥ 600 ℃ and an annealing temperature of 620 ℃ or more to disclose a technique for producing a steel material excellent in magnetic properties by cold rolling once, according to the technique to control the texture by ferritic reverse rolling Therefore, there is an advantage that a steel material having excellent magnetic properties can be manufactured even if the production by conventional two rolling is performed once. However, in this case, there is a problem that can cause a rolling process load during low-temperature rolling, that is, ferrite rolling.

또한, 일본 특개평11-50149호에서는 칼라 브라운관용 섀도우마스크 프레임재를 제조하기 위해서, C≤0.005%, Si≤0.02%, Mn: 0.05~0.35%, P≤0.02, S≤0.02%, sol-Al: 0.003~0.015%, N≤0.005%, B: 0.0025~0.01%, O≤0.02%이고, 또한 중량비로 B/N비가 1.6이상이 되는 슬라브를 1000~1150℃로 가열하고, 열간압연 사상온도는 750~800℃, 권취온도는 680℃이상으로 한 후, 냉간압하율은 45~65% 범위에서, 소둔온도는 750~850℃로 조업하는 기술을 개시하여 우수한 자기특성과 용접성 및 흑화처리성을 제공하고는 있으나, 이 경우는 슬라브 가열온도가 낮고 또한 열간압연 사상온도가 낮아 현장 조업상 부하를 초래하는 단점이 있다.In addition, Japanese Patent Application Laid-Open No. 11-50149 discloses C≤0.005%, Si≤0.02%, Mn: 0.05-0.35%, P≤0.02, S≤0.02%, sol- to manufacture a shadow mask frame member for a color CRT. Al: 0.003 ~ 0.015%, N ≦ 0.005%, B: 0.0025 ~ 0.01%, O ≦ 0.02%, and the slab whose B / N ratio is 1.6 or more by weight ratio is heated to 1000 ~ 1150 ° C, and hot rolling finish temperature 750 ~ 800 ℃, the coiling temperature is 680 ℃ or more, the cold rolling rate is 45 ~ 65% range, the annealing temperature is operating at 750 ~ 850 ℃, excellent magnetic properties, weldability and blackening treatment In this case, however, the slab heating temperature is low and the hot rolling temperature is low, which causes a load in the field operation.

이 밖에 흑화처리성에 관련된 기술들로서, 대한민국 특허공보(B1) 제 1177호에서는, 칼라 수상관에 내장되는 섀도우 마스크, 마스크 프레임, 인너쉴드에 흑화처리에 의해 형성되는 산화막의 밀착성을 향상시키고, 산화막 탈락을 방지하는 목적으로, Si, Cr, Al (단, Cr ≥ 1/3(Al + Si)의 조성을 가지는 것을 특징으로 하는 것을 보고하고 있으며, 일본 특개평9-41086호에서는 흑화처리성이 우수한 강판을 제조하기 위해서, C≤0.05%, Si≤0.5%, Mn: 0.04-1.0%, P≤0.05%, S≤0.02%, sol-Al≤0.005%, O: 0.008-0.06%, Cu≤0.04%, N≤0.01%을 함유하고, 여기에 B: 5-50ppm, Ti: 0.003-0.1%, Nb: 0.003-0.1% 중에 한 종류 이상을 함유하고 나머지는 Fe로 구성되는 강재를 표면평균조도 (Ra)를 1.1μm 이상으로 구성하여 흑화처리에 의하여 흑화막 밀착성을 향상시키는 것을 보고하고 있다. 그러나, 이 경우 흑화막 밀착성은 향상되더라도 결정립 미세화 원소인 Ti, Nb 등의 합금원소 첨가에 의해 자성열화를 초래할 수 있는 문제가 있다.In addition, as technologies related to blackening processability, Korean Patent Publication (B1) No. 1177 improves the adhesion of an oxide film formed by blackening treatment to a shadow mask, a mask frame, and an inner shield embedded in a color receiving tube, and removes the oxide film. In order to prevent this problem, Si, Cr, and Al (however, Cr ≥ 1/3 (Al + Si) has been reported to have a composition characterized in that, in Japanese Patent Laid-Open No. 9-41086 steel sheet excellent in blackening treatment In order to prepare, C≤0.05%, Si≤0.5%, Mn: 0.04-1.0%, P≤0.05%, S≤0.02%, sol-Al≤0.005%, O: 0.008-0.06%, Cu≤0.04% , N≤0.01%, containing at least one of B: 5-50ppm, Ti: 0.003-0.1%, and Nb: 0.003-0.1%, the remainder being composed of Fe, the surface average roughness (Ra ) Has been reported to improve the blackening film adhesion by blackening treatment by constructing 1.1μm or more. It is improved even if there is a problem that may lead to magnetic degradation by the addition of alloying elements, such as a grain refinement element Ti, Nb.

일본 특개소60-67642호는 마스크 프레임용 강판 제조법에 대한 기술인데, 흑화처리시에 나타나는 Fe2O3스케일은 브라운관 내부의 전자총에 의한 영상재현에 악영향을 미치며, Fe2O3는 Fe3C나 C가 많을수록 증가하는 경향을 나타내기 때문에, 하기 관계식(1)을 만족하도록 적당량의 Cr을 첨가하여 Fe3C를 줄이고자 하였다. 그러나, 역시 자기적 성질 향상에 대해서는 고려치 않고 있다.Japanese Patent Application Laid-Open No. 60-67642 describes a technique for manufacturing a steel plate for a mask frame. The Fe 2 O 3 scale, which appears during blackening, adversely affects image reproduction by an electron gun inside a CRT, and Fe 2 O 3 is a Fe 3 C. Since more C tends to increase, an appropriate amount of Cr is added to satisfy the following Equation (1) to reduce Fe 3 C. However, it also does not consider the improvement of magnetic properties.

[관계식 1][Relationship 1]

[C]Fe3C = [C] -12/165([Mn]-55/32[S])-24/156[Cr] <0.005[C] Fe 3 C = [C] -12/165 ([Mn] -55/32 [S])-24/156 [Cr] <0.005

* 여기서 [C]Fe3C는 [C]에서 Fe3C로부터 Mn3C와 Cr3C2로 형성되는 양을 뺀 것이며, [Mn]-55/32[S]는 총[Mn]에서 MnS로 형성되는 양을 뺀 것을 의미* Where [C] Fe 3 C will subtracting the amount of Mn to be formed into C 3 and Cr 3 C 2 from the Fe 3 C in the [C], [Mn] -55/32 [S] is MnS in the total of [Mn] Minus the amount formed by

상기한 내용을 종합해 보면, 마스크 프레임재의 자기적특성 및 시효특성 향상을 위해서 합금원소의 변화, Ni 및 Cr의 코팅처리, 페라이트역 압연 등에 대한 보고와 흑화처리성에 관련된 기술들이 보고되고는 있으나, 합금원소와 제조조건의 상관관계를 조사하고 이를 통해 자기적특성을 향상시킨 기술은 없는 실정이다.In summary, there are reports of changes in alloying elements, coating of Ni and Cr, ferritic reverse rolling, and techniques related to blackening treatment to improve the magnetic and aging characteristics of the mask frame material. There is no technology to improve the magnetic properties through investigating the correlation between alloying elements and manufacturing conditions.

이에, 본 발명자들은 합금원소와 슬라브 재가열온도와의 상관관계를 연구 및 검토하여 적절한 슬라브 재가열온도를 구하고, 또한 냉간압하율 및 소둔온도도 제어함으로써, 보자력(Hc)을 1.2Oe 이하로 확보할 수 있는 냉연강판의 제조방법을 제공하는데, 그 목적이 있다.Therefore, the present inventors can obtain the appropriate slab reheating temperature by studying and examining the correlation between the alloying element and the slab reheating temperature, and also control the cold reduction rate and the annealing temperature, thereby ensuring the coercive force (Hc) of 1.2Oe or less. The present invention provides a method for manufacturing a cold rolled steel sheet, the object of which is.

도 1은 Mn함량에 따른 보자력의 변화를 나타내는 그래프1 is a graph showing the change of coercive force according to Mn content

도 2는 슬라브 재가열온도에 따른 보자력의 변화를 나타내는 다이어그램2 is a diagram showing the change of coercive force according to slab reheating temperature

도 3은 MPF값과 보자력과의 관계를 나타내는 그래프3 is a graph showing the relationship between the MPF value and the coercive force

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C≤0.003%, Si≤0.10%, 0.1%≤Mn≤0.70%, P≤0.015%, S≤0.02%, sol-Al≤0.03%, 잔부 Fe 및 기타 불가피한 불순원소로 구성된 강 슬라브를 준비하고, 하기 관계식(2)에 의해 상기 강 슬라브의 재가열온도(이하, 'SRT'라 함)를 구한 다음,Steel slab consisting of C≤0.003%, Si≤0.10%, 0.1% ≤Mn≤0.70%, P≤0.015%, S≤0.02%, sol-Al≤0.03%, balance Fe and other unavoidable impurities Prepare and obtain the reheating temperature (hereinafter referred to as 'SRT') of the steel slab by the following relation (2),

[관계식 2][Relationship 2]

MPF < 0MPF <0

여기서, MPF= 0.023×SRT+100×(sol.Al[%]+1.6×(S[%]-0.06×Mn[%])-30.0)Where MPF = 0.023 × SRT + 100 × (sol.Al [%] + 1.6 × (S [%]-0.06 × Mn [%])-30.0)

상기 관계식(1)에서 구해진 SRT에서 상기 강 슬라브를 재가열하고, 820∼950℃에서 열간압연을 마무리한 후, 650∼750℃ 범위에서 권취하며, 이후 20∼50%의 냉간압하율로 냉간압연한 다음, 820∼880℃에서 연속소둔하는 것을 포함하여 이루어지는 자기적 특성이 우수한 브라운관 마스크 프레임용 냉연강판의 제조방법에 관한 것이다.After reheating the steel slab in the SRT obtained in the above relation (1), finishing hot rolling at 820 to 950 ° C., winding it in the range of 650 to 750 ° C., and then cold rolling at a cold rolling rate of 20 to 50%. Next, the present invention relates to a method for producing a cold rolled steel sheet for a CRT mask frame having excellent magnetic properties including continuous annealing at 820 to 880 ° C.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

마스크 프레임용으로 사용되는 냉연강판에 있어서 보자력를 낮추기 위해서는, 강 성분 중 sol.Al 및 S의 함량을 적절히 조절해야 하는데, 그 이유는, 이들 원소는 열간압연중 AlN 석출물, 및 MnS 석출물로 미세 석출하여 오스테나이트 결정립, 궁극적으로는 페라이트 결정립을 미세화시킴으로써, 소재의 보자력을 상승시키기 때문이다. 본 발명자는 이러한 점에 착안하여, sol.Al 및 S첨가량과 보자력과의 상관식을, 대한민국 특허출원 제2000-55658호에 기 제안한 바 있다.In order to lower the coercive force in the cold rolled steel sheet used for the mask frame, the content of sol.Al and S in the steel component should be properly adjusted because these elements are finely precipitated by AlN precipitate and MnS precipitate during hot rolling. This is because the coercive force of the material is increased by miniaturizing austenite grains and ultimately ferrite grains. In view of this, the present inventors have previously proposed a correlation between the addition amount of sol.Al and S and the coercive force in Korean Patent Application No. 2000-55658.

그러나, 본 발명의 발명자들은 sol.Al, S의 함량 이외에 슬라브 재가열온도(이후 'SRT'라 칭함) 및 Mn함량도, 보자력과 관계가 있는 것을 발견하였다. 즉, SRT를 저하시킴에 의해 열간압연후 미세하게 형성되는 석출물을 억제하여 자성향상에 유리한 조대한 결정립을 생성시키고, 또한 Mn함량을 증가시켜 미세한 MnS 석출물을 억제하여 결정립을 조대화시킴과 동시에 자성향상에 유리한 집합조직을 형성시키면, sol.Al 및 S의 함량범위를 완화시키면서도 보자력을 낮출 수 있는 것이다. 이에, 본 발명에서는 이들 변수로부터 하기 관계식(2)와 같은 상관식을 도출함으로써, 제조된 냉연강판에서 보자력을 1.2 Oe 이하로 낮추고자 한 것이다.However, the inventors of the present invention found that in addition to the contents of sol.Al and S, the slab reheating temperature (hereinafter referred to as 'SRT') and the Mn content are also related to the coercive force. That is, by reducing the SRT, fine precipitates formed after hot rolling are suppressed to produce coarse grains which are advantageous for magnetic enhancement, and the Mn content is increased to suppress fine MnS precipitates to coarse grains and at the same time magnetic. Forming an advantageous texture for improvement, the coercivity can be lowered while relaxing the content range of sol.Al and S. Therefore, in the present invention, by deriving a correlation such as the following relation (2) from these variables, it is intended to lower the coercive force in the manufactured cold rolled steel sheet to 1.2 Oe or less.

[관계식 2][Relationship 2]

MPF(Magnetic Property Factor) < 0Magnetic Property Factor (MPF) <0

*여기서, MPF= 0.023×SRT+100×(sol.Al[%]+1.6×(S[%]-0.06×Mn[%])-30.0)Where MPF = 0.023 × SRT + 100 × (sol.Al [%] + 1.6 × (S [%]-0.06 × Mn [%])-30.0)

이하, 강 성분 및 제조조건에 대하여 설명한다.Hereinafter, a steel component and manufacturing conditions are demonstrated.

C는 강중 불순물로 존재하는데, 함량이 증가함에 따라 보자력이 크게 증가하게 되고, 또한 탄화물 석출에 의한 자기시효 발생으로 자기적 특성이 열화될 수 있으므로, 그 함량이 낮을수록 유리하나, 현재 공업적으로 대량생산이 가능한 범위를 고려하여 그 상한은 0.003%로 설정하는 것이 바람직하다.C is present as an impurity in the steel, and as the content increases, the coercivity increases greatly, and magnetic properties may deteriorate due to the occurrence of magnetic aging due to carbide precipitation. Considering the range in which mass production is possible, the upper limit is preferably set to 0.003%.

Si는 통상 탈산제로 주로 사용하는 원소이나, 미량의 Si첨가에 의해서는 보자력이 상승하는 효과가 있으며, 또한 잔류가스 방출에 의한 흑화막 밀착성 열화를 초래하기 때문에, 그 상한을 0.10%로 제한하는 것이 바람직하다.Si is usually an element mainly used as a deoxidizer, but the addition of trace amounts of Si has an effect of increasing the coercive force and also leads to deterioration of the blackening film adhesion due to the release of residual gas. Therefore, the upper limit is limited to 0.10%. desirable.

P은 페라이트형성을 조장하는 원소로서, 강의 강도를 해치지 않고 연성을 증가시키지만, 편석이 극심한 원소이기 때문에 중심편석형성으로 인한 재질열화를 초래한다. 따라서, 가능한 낮게 관리하는 것이 바람직하며, 통상 현재의 제강방법에 의해 저P화를 일반적으로 이룰 수 있는 수준인 0.015%이하로 설정하는 것이 바람직하다.P is an element that promotes ferrite formation and increases ductility without compromising the strength of steel, but since segregation is an extreme element, it causes material degradation due to central segregation. Therefore, it is desirable to manage as low as possible, and it is usually desirable to set it to 0.015% or less, which is a level that can generally achieve low P by the current steelmaking method.

S은 강의 가공중 쉽게 크랙을 발생시키는 원소로서, 본 발명과 같은 자기적 성질이 우수한 강판의 제조시 미세한 MnS석출에 의해 결정립을 미세화시키기 때문에, 자성에 나쁜 영향을 미친다. 따라서, 상기 S은 그 함량이 가능한 낮게 관리되는 것이 유리하므로, 그 상한을 0.02%이하로 설정하는 것이 바람직하다.S is an element that easily cracks during processing of steel, and has a bad effect on magnetism since it refines crystal grains by fine MnS precipitation during production of a steel sheet having excellent magnetic properties as in the present invention. Therefore, since the S is advantageously managed as low as possible, it is preferable to set the upper limit to 0.02% or less.

Al은 탈산을 목적으로 첨가하는데, 첨가된 Al중 탈산반응후 남은 sol.Al은 N와 결합해 AlN 석출물을 형성하여 결정립을 미세하게 한다. 따라서, 본 발명에서와 같이 자기적 특성이 요구되는 소재의 경우에는, 그 상한을 0.03%로 제한하는 것이 바람직하다.Al is added for the purpose of deoxidation, and sol.Al remaining after the deoxidation in the added Al combines with N to form an AlN precipitate to make grains fine. Therefore, in the case of a material requiring magnetic properties as in the present invention, it is preferable to limit the upper limit to 0.03%.

한편, Mn은 본 발명의 특징적인 원소로서, 통상 S에 의한 적열취성을 방지하는 역할을 하지만, 본 발명에서는 이 외에도 자성을 향상시키는 역할을 한다. 즉, MnS석출물은 조대화되어 소재의 결정립을 조대화시키고, 또한 자화용이방위의 집합조직을 형성시켜 자성을 향상시키는 것이다. 이와 같은 역할을 하기 위해서는, 0.1% 이상 첨가되어야 하지만, 그 함량이 지나치게 많으면 강도를 상승시키고 가공성을 저하시키기 때문에, 상한은 0.7%로 설정하는 것이 바람직하다.On the other hand, Mn is a characteristic element of the present invention, but usually serves to prevent the red light brittleness by S, in the present invention serves to improve the magnetism in addition to this. In other words, the MnS precipitates are coarsened to coarse grains of the material, and also to increase the magnetism by forming an aggregate structure of the magnetization easy orientation. In order to play such a role, 0.1% or more should be added, but if the content is too large, the strength is increased and workability is lowered, so the upper limit is preferably set to 0.7%.

상기와 같이 조성된 강 슬라브를 재가열하는데, 본 발명에서는, 상술한 바와 같이, 하기 관계식(2)를 만족시키는 재가열온도에서 상기 강 슬라브를 재가열하는 것이 바람직하다.The steel slab formed as described above is reheated, but in the present invention, as described above, it is preferable to reheat the steel slab at a reheating temperature satisfying the following expression (2).

[관계식 2][Relationship 2]

MPF(Magnetic Property Factor) < 0Magnetic Property Factor (MPF) <0

*여기서, MPF= 0.023×SRT+100×(sol.Al[%]+1.6×(S[%]-0.06×Mn[%])-30.0)Where MPF = 0.023 × SRT + 100 × (sol.Al [%] + 1.6 × (S [%]-0.06 × Mn [%])-30.0)

즉, 상기 MPF이 음으로 되도록 하는 SRT를 구하고, 이 온도에서 슬라브를 재가열하는데, 상기 MPF가 양으로 되면 보자력이 1.2 Oe를 초과하게 되어, 자기적 특성이 나빠지는 문제가 있다. 또한, 상기 MPF < 0을 만족시키는 STR중에서, 조업이 용이한 1250~1080℃의 범위를 선택하여, 상기 강 슬라브를 재가열하는 것이 보다 바람직하다.In other words, the SRT is obtained so that the MPF becomes negative, and the slab is reheated at this temperature. When the MPF becomes positive, the coercivity exceeds 1.2 Oe, which causes a problem of deteriorating magnetic properties. Moreover, it is more preferable to reheat the said steel slab by selecting the range of 1250-1080 degreeC which is easy to operate among STR which satisfy | fills said MPF <0.

그 다음, 열간압연하고 권취하는데 있어서, 마무리 열간압연온도는 열연재 재질을 결정하는데 중요한 요소로, 과도하게 높거나 낮으면 현장 조업성에 문제가 있으므로, 조업성 적정온도범위인 820∼950℃로 제한하는 것이 바람직하다. 또한, 상기 권취온도는 650∼750℃로 설정하는 것이 바람직한데, 그 이유는 상기 온도범위에서 권취하면 자기적특성에 큰 변화가 없기 때문이다.Then, in hot rolling and winding, the final hot rolling temperature is an important factor in determining the hot rolled material, and if excessively high or low, there is a problem in the field operability, so it is limited to the optimum temperature range of 820 to 950 ° C. It is desirable to. In addition, the winding temperature is preferably set to 650 ~ 750 ℃, because when wound in the temperature range there is no significant change in the magnetic properties.

그 후, 냉간압연하고 소둔하는데, 상기 냉간압연시 냉간압하율은 20∼50%로 , 상기 소둔온도는 820~880℃로 설정하는 것이 바람직하다. 상기 냉간압하율은 자기적 특성에 중요한 변수로서, 압하율이 감소하면 보자력도 감소하므로 자기적특성 측면에서는 유리하나, 압하율이 너무 작으면 결정립 크기가 너무 조대하게 되어 가공성 측면에서 다소 불리하게 작용한다. 또한, 현장조업시 형상불량 등의 결함발생 가능성이 커지기 때문에, 20~50%로 설정하는 것이 바람직하다. 상기 소둔온도는, 재결정립의 크기와 관련있는데, 온도가 증가할수록 결정립경은 증가하여 보자력은 감소하는 경향을 나타낸다. 따라서, 자기적특성 측면에서는, 소둔온도가 높을수록유리하지만, 너무 높으면 연속소둔공정의 작업성이 나쁘기 때문에, 820~880℃로 설정하는 것이 바람직하다.Thereafter, cold rolling and annealing are performed. The cold rolling reduction rate during cold rolling is 20 to 50%, and the annealing temperature is preferably set to 820 to 880 ° C. The cold reduction rate is an important variable for the magnetic properties, which is advantageous in terms of magnetic properties since the reduction in the reduction rate decreases the coercive force, but when the reduction rate is too small, the grain size becomes too coarse, which acts somewhat disadvantageously in terms of workability. do. Moreover, since the possibility of defects, such as a shape defect, increases in the field operation, it is preferable to set it as 20-50%. The annealing temperature is related to the size of the recrystallized grains. As the temperature increases, the grain size increases and the coercive force tends to decrease. Therefore, from the standpoint of magnetic properties, the higher the annealing temperature is, the more advantageous it is. However, if the annealing temperature is too high, the workability of the continuous annealing process is bad.

이와 같이 하여 제조된 냉연강판은, 1.2 Oe 이하의 낮은 보자력을 갖아서 우수한 자기적 특성을 나타낸다.The cold rolled steel sheet thus manufactured has a low coercive force of 1.2 Oe or less and exhibits excellent magnetic properties.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

하기 표 1과 같이 조성되는 강 슬라브를 하기 표 1의 제조조건에 따라 시험재로 제조하였다. 이 때, 권취온도는 700℃, 냉간압하율은 48%, 그리고 소둔온도는 850℃로 모두 같게 하였다.To the steel slab composition as shown in Table 1 was prepared as a test material according to the manufacturing conditions of Table 1. At this time, the coiling temperature was 700 ° C., the cold reduction rate was 48%, and the annealing temperature was the same at 850 ° C.

구분division 강 성분(중량%)Steel component (% by weight) 제조조건Manufacture conditions 보자력(Oe)Coercive force (Oe) CC MnMn SS sol.Alsol.Al SRTSRT FDTFDT MPFMPF 비교재1Comparative Material 1 0.00120.0012 0.150.15 0.0090.009 0.0150.015 12501250 839839 0.250.25 1.261.26 발명재1Invention 1 0.00120.0012 0.0090.009 0.0150.015 11001100 839839 -3.20-3.20 1.081.08 비교재2Comparative Material 2 0.00100.0010 0.0090.009 0.0260.026 12501250 877877 1.351.35 1.321.32 발명재2Invention 2 0.00130.0013 0.0030.003 0.0180.018 12501250 898898 -0.41-0.41 1.161.16 발명재3Invention 3 0.00130.0013 0.0030.003 0.0180.018 11001100 898898 -3.86-3.86 1.061.06 비교재3Comparative Material 3 0.00130.0013 0.0100.010 0.0270.027 12501250 908908 1.611.61 1.371.37 비교재4Comparative Material 4 0.00130.0013 0.0100.010 0.0270.027 775775 1.611.61 1.321.32 발명재4Invention 4 0.00120.0012 0.0090.009 0.0090.009 904904 -0.35-0.35 1.151.15 발명재5Invention 5 0.00120.0012 0.0090.009 0.0020.002 908908 -1.05-1.05 1.051.05 발명재6Invention 6 0.00120.0012 0.0030.003 0.0020.002 901901 -2.01-2.01 1.031.03 비교재5Comparative Material 5 0.00120.0012 0.0100.010 0.0240.024 755755 1.311.31 1.261.26 발명재7Invention 7 0.00130.0013 0.300.30 0.0100.010 0.0230.023 910910 -0.23-0.23 1.131.13 발명재8Invention Material 8 0.00120.0012 0.500.50 0.0100.010 0.0170.017 910910 -2.75-2.75 0.950.95 *SRT(℃): 슬라브 재가열온도, FDT(℃):열간압연 마무리온도* SRT (℃): Slab reheating temperature, FDT (℃): Hot rolling finish temperature

상기 표 1에 나타난 바와 같이, 본 발명의 발명재(1)~(8)은 모두, 1.2 Oe 이하의 낮은 보자력을 갖는 반면에, MPF가 양의 값을 나타내는 비교재(1)~(5)는, 보자력이 모두 1.2 Oe를 초과한 것을 알 수 있다.As shown in Table 1, the invention materials (1) to (8) of the present invention all have a low coercive force of 1.2 Oe or less, while the comparative materials (1) to (5) in which MPF exhibits a positive value It can be seen that the coercive forces exceeded 1.2 Oe.

한편, Mn함량과 보자력의 관계를 살펴보기 위해, 상기 표 1의 비교재(1), 발명재(7), 및 발명재(8)의 Mn함량 및 보자력을 도 1에 나타내었다. 도 1에 나타난 바와 같이, 다른 조건이 유사한 이들 시험재에 있어서, Mn함량이 많아질수록 보자력은 감소되어 자기적 성질은 향상되는 것을 알 수 있다. 그 이유는, Mn첨가에 의해, 결정립 성장을 억제하는 미세한 MnS석출물의 빈도는 줄어들어 결정립이 조대화되기 때문이다. 또한, Mn첨가에 의해, 소재의 자화용이 방향인 [100]방위가 증가하는 것도 그 원인이 된다고 생각된다.On the other hand, in order to examine the relationship between the Mn content and the coercivity, the Mn content and coercive force of the comparative material (1), the invention material 7, and the invention material 8 of Table 1 is shown in FIG. As shown in FIG. 1, in these test specimens having similar conditions, as the Mn content increases, the coercive force decreases to improve the magnetic properties. The reason is that the addition of Mn decreases the frequency of fine MnS precipitates that suppress grain growth, resulting in coarse grains. It is also considered that the addition of Mn causes an increase in the orientation of [100] in which the magnetization of the material is directed.

또한, 상기 표 1의 비교재(1)과 발명재(1), 그리고 발명재(2) 및 (3)은 각각 다른 조건은 동일하고 SRT만을 변화시킨 경우로서, 상기 표 1에 나타난 바와 같이, SRT가 1100℃로 낮아지면 보자력은 보다 작아짐을 알 수 있다. 그 이유는, SRT가 저하하면 열간압연 중 생성되는 석출물의 크기가 조대화되어 결정립 미세화가 억제되기 때문이다. 이 때, SRT는 1250℃로 본 발명 범위이나 MPF가 음의 값을 나타내는 비교재(1)의 경우에는, 보자력이 1.2 Oe를 초과하는 것을 알 수 있다.In addition, the comparative material (1), the invention material (1), and the invention material (2) and (3) of Table 1 are the same as the case where only the SRT is changed with different conditions, respectively, as shown in Table 1, When the SRT is lowered to 1100 ° C., the coercive force becomes smaller. This is because, when the SRT decreases, the size of precipitates produced during hot rolling is coarsened, and grain refinement is suppressed. At this time, it is understood that the coercive force exceeds 1.2 Oe in the case of the comparative material 1 in which the SRT shows a negative value in the present invention range or MPF at 1250 ° C.

한편, 이러한 결과를 보다 쉽게 이해할 수 있도록, 도 2, 및 도 3에 나타내었는데, 도 2는 슬라브 재가열온도에 따른 보자력의 변화를 나타내는 다이어그램이고, 도 3은 MPF값과 보자력과의 관계를 나타내는 그래프이다.On the other hand, in order to understand these results more easily, it is shown in Figures 2 and 3, Figure 2 is a diagram showing the change of the coercivity according to the slab reheating temperature, Figure 3 is a graph showing the relationship between the MPF value and the coercive force to be.

(실시예 2)(Example 2)

냉간압하율에 따른 보자력의 변화를 알아보기 위하여, 하기 표 2와 같이 강 성분 및 냉간압하율을 변화시켰다. 이 때, 슬라브 재가열온도는 1250℃, 권취온도는 700℃로 동일하게 하였다.In order to determine the change in the coercivity according to the cold rolling rate, steel components and cold rolling rate were changed as shown in Table 2 below. At this time, the slab reheating temperature was 1250 占 폚 and the coiling temperature was 700 占 폚.

구분division 강 성분(중량%)Steel component (% by weight) 제조조건Manufacture conditions 보자력(Oe)Coercive force (Oe) CC MnMn SS sol.Alsol.Al FDT(℃)FDT (℃) 냉간압하율(%)Cold rolling reduction (%) SSTSST MPFMPF 발명재aInvention Materiala 0.00120.0012 0.150.15 0.0090.009 0.0020.002 908908 4848 850850 -1.05-1.05 1.051.05 비교재aComparative material a 0.00250.0025 0.120.12 0.0080.008 910910 6363 860860 -0.92-0.92 1.261.26 비교재bComparative material b 0.00250.0025 0.120.12 0.0080.008 910910 7272 860860 -0.92-0.92 1.481.48

상기 표 2에 나타난 바와 같이, 냉간압하율이 큰 비교재(a),(b)는 MPF가 음의 값을 갖아도 1.2 Oe를 넘는 보자력을 갖는 것을 알 수 있다. 그 이유는, 압하율 이 증가함에 따라 결정립의 크기가 감소하기 때문인 것으로 간주된다.As shown in Table 2, it can be seen that the comparative material (a), (b) having a large cold reduction rate has a coercive force of more than 1.2 Oe even if the MPF has a negative value. The reason is considered to be that the grain size decreases as the reduction ratio increases.

상기한 바와 같은, 본 발명에 의하면, 마스크 프레임용 냉연강판에 있어서 1.2Oe이하의 보자력을 얻을 수 있어서, 우수한 자기적 특성을 제공할 수 있는 효과가 있는 것이다.As described above, according to the present invention, a coercive force of 1.2Oe or less can be obtained in the cold rolled steel sheet for a mask frame, thereby providing an excellent magnetic property.

Claims (3)

중량%로, C≤0.003%, Si≤0.10%, 0.1%≤Mn≤0.70%, P≤0.015%, S≤0.02%, sol-Al≤0.03%, 잔부 Fe 및 기타 불가피한 불순원소로 구성된 강 슬라브를 준비하고, 하기 관계식(2)에 의해 상기 강 슬라브의 재가열온도(이하, 'SRT'라 함)를 구한 다음,Steel slab consisting of C≤0.003%, Si≤0.10%, 0.1% ≤Mn≤0.70%, P≤0.015%, S≤0.02%, sol-Al≤0.03%, balance Fe and other unavoidable impurities Prepare and obtain the reheating temperature (hereinafter referred to as 'SRT') of the steel slab by the following relation (2), [관계식 2][Relationship 2] MPF < 0MPF <0 여기서, MPF= 0.023×SRT+100×(sol.Al[%]+1.6×(S[%]-0.06×Mn[%])-30.0)Where MPF = 0.023 × SRT + 100 × (sol.Al [%] + 1.6 × (S [%]-0.06 × Mn [%])-30.0) 상기 관계식(1)에서 구해진 SRT에서 상기 강 슬라브를 재가열하고, 820∼950℃에서 열간압연을 마무리한 후, 650∼750℃ 범위에서 권취하며, 이후 20∼50%의 냉간압하율로 냉간압연한 다음, 820∼880℃에서 연속소둔하는 것을 포함하여 이루어지는 자기적 특성이 우수한 브라운관 마스크 프레임용 냉연강판의 제조방법After reheating the steel slab in the SRT obtained in the above relation (1), finishing hot rolling at 820 to 950 ° C., winding it in the range of 650 to 750 ° C., and then cold rolling at a cold rolling rate of 20 to 50%. Next, a method for producing a cold rolled steel sheet for a CRT mask frame having excellent magnetic properties including continuous annealing at 820 to 880 ° C. 제 1항에 있어서, 상기 SRT는 1080~1250℃인 것을 특징으로 하는 자기적 특성이 우수한 브라운관 마스크 프레임용 냉연강판의 제조방법According to claim 1, wherein the SRT is 1080 ~ 1250 ℃ excellent magnetic properties characterized in that the cold rolled steel sheet for CRT mask frame 제 1항 또는 제 2항에 있어서, 상기 냉연강판이 1.2Oe 이하의 보자력을 갖도록 제조하는 것을 특징으로 하는 자기적 특성이 우수한 브라운관 마스크 프레임용 냉연강판의 제조방법The method for manufacturing a cold rolled steel sheet for a CRT mask frame having excellent magnetic characteristics according to claim 1 or 2, wherein the cold rolled steel sheet is manufactured to have a coercive force of 1.2Oe or less.
KR1020000071845A 2000-11-30 2000-11-30 A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property KR20020042099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000071845A KR20020042099A (en) 2000-11-30 2000-11-30 A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000071845A KR20020042099A (en) 2000-11-30 2000-11-30 A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property

Publications (1)

Publication Number Publication Date
KR20020042099A true KR20020042099A (en) 2002-06-05

Family

ID=19702402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000071845A KR20020042099A (en) 2000-11-30 2000-11-30 A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property

Country Status (1)

Country Link
KR (1) KR20020042099A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185828A (en) * 1986-02-10 1987-08-14 Sumitomo Metal Ind Ltd Manufacture of frame material for shadow mask
JPH0867945A (en) * 1994-08-26 1996-03-12 Nisshin Steel Co Ltd Steel sheet for apeature frame and its production
JPH10251753A (en) * 1997-03-14 1998-09-22 Nippon Steel Corp Production of magnetic shielding material for television cathode-ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185828A (en) * 1986-02-10 1987-08-14 Sumitomo Metal Ind Ltd Manufacture of frame material for shadow mask
JPH0867945A (en) * 1994-08-26 1996-03-12 Nisshin Steel Co Ltd Steel sheet for apeature frame and its production
JPH10251753A (en) * 1997-03-14 1998-09-22 Nippon Steel Corp Production of magnetic shielding material for television cathode-ray tube

Similar Documents

Publication Publication Date Title
RU2109839C1 (en) Cold-rolled steel sheet for shadow mask and method for its production
KR100368236B1 (en) Manufacturing method of ultra-thin cold rolled steel sheet for inner shield with excellent magnetic shielding
US6645317B1 (en) Metal components for picture tubes
KR100435451B1 (en) A method for producing a cold rolled steel sheet for braun tube mask frame with excellent magnetic property and adhesion of black scale
KR20020042099A (en) A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic property
US7026751B2 (en) Material for shadow mask, method for production thereof, shadow mask comprising the material and picture tube using the shadow mask
KR100419643B1 (en) Manufacturing method of cold rolled steel sheet with superior magnetic properties for mask-frame in braun-tube
KR100851162B1 (en) Method of manufacturing cold rolled steel sheet for inner shied
KR100415654B1 (en) Manufacturing method of cold rolled steel sheet for inner shield having excellent adhesion of black scale and magnetic shielding property
US6641682B1 (en) Method for manufacturing an aperture grill material for color picture tube
KR100360094B1 (en) Cold rolled steel sheet for Braun tube having excellent self-shielding property and manufacturing method thereof
KR100419646B1 (en) Manufacturing method of cold rolled steel sheet with superior magnetic shield properties for mask-frame in braun-tube
KR100328078B1 (en) Thin steel sheet for TV inner shield and a method of manufacturing thereof
JP3892312B2 (en) Method for manufacturing high-strength steel sheet for CRT frame
KR100328077B1 (en) Cold rolled steel sheet for shadow mask and a method of manufacturing thereof
KR100262487B1 (en) Method of manufacturing cold rolling steel sheet with using shadowmask
KR100638043B1 (en) Steel sheep having high permeability, excellent in magnetic shielding property and processability, and a method for manufacturing it
KR100345712B1 (en) Manufacturing method of cold rolled steel sheet for CRT inner shield with excellent magnetic shielding
KR100192767B1 (en) High magnetic permeability steel and method for inner shield of color braun braun tube
KR20020023012A (en) A method for manufacturing cold rolled steel sheet for braun tube mask frame with superior magnetic properties
KR100276282B1 (en) The manufacturing method for cold rolling steelsheet used shadowmask with magnetic properties
KR100451819B1 (en) A cold-rolled steel sheet for braun tube shrinkage band with superior magnetic shielding property, and a method for manufacturing it
JP3599118B2 (en) Manufacturing method of magnetic shield material
KR100238011B1 (en) The manufacturing method for inner shield cold rolling steel sheet with surface uniformity
KR100514786B1 (en) A method of manufacturing inner shield for braun tube having superior magnetic shield properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application