KR20020039938A - Three dimensional structure analytical method of crystalline polymer - Google Patents

Three dimensional structure analytical method of crystalline polymer Download PDF

Info

Publication number
KR20020039938A
KR20020039938A KR1020000069808A KR20000069808A KR20020039938A KR 20020039938 A KR20020039938 A KR 20020039938A KR 1020000069808 A KR1020000069808 A KR 1020000069808A KR 20000069808 A KR20000069808 A KR 20000069808A KR 20020039938 A KR20020039938 A KR 20020039938A
Authority
KR
South Korea
Prior art keywords
molecular weight
temperature
separated
crystallization
crystalline polymer
Prior art date
Application number
KR1020000069808A
Other languages
Korean (ko)
Other versions
KR100384391B1 (en
Inventor
엄규영
박제명
배종선
권오준
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to KR10-2000-0069808A priority Critical patent/KR100384391B1/en
Publication of KR20020039938A publication Critical patent/KR20020039938A/en
Application granted granted Critical
Publication of KR100384391B1 publication Critical patent/KR100384391B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/885Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving polymers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: A method for analyzing three-dimensional structure of crystalline macromolecules is provided, thereby providing information of structure which is not obtained by the conventional one-dimensional method. CONSTITUTION: The method for analyzing three-dimensional structure of a crystalline macromolecule comprises dividing the crystalline macromolecules into 5 to 20 sections by their crystal size; determining the molecular weight of the crystalline macromolecules using a gel permeation chromatography; developing a function associated with molecular weight to an X axis; developing a crystal size distributing function to a Y axis; and three-dimensionally developing the combination values of X axis and Y axis according to a three-dimensional function of Z = f(X,Y).

Description

결정성 고분자의 3차원 구조 분석 방법{Three dimensional structure analytical method of crystalline polymer}Three dimensional structure analytical method of crystalline polymer

본 발명은 결정성 고분자의 3차원 구조를 해석하는 분석방법에 관한 것이다. 보다 상세하게는 재결정화된 결정성 고분자를 승온시 온도상승에 따라 용출되는 시료의 무게분율의 누적분포를 한 변수로 하고 각각의 분자량을 또 다른 변수로 하여 무게분율과 분자량의 곱을 제3의 변수로 얻어지게 함으로써 분자량과 분포, 결정성과 그 분포에 관한 상관성을 3차원 구조 스펙트럼으로 나타내어 분석하는 방법이다.The present invention relates to an analytical method for analyzing the three-dimensional structure of the crystalline polymer. More specifically, the product of the weight fraction and the molecular weight is calculated by using the cumulative distribution of the weight fraction of the sample eluted with the temperature rise at the time of temperature rise as one variable and each molecular weight as another variable. It is a method of analyzing the molecular weight, distribution, crystallinity, and the correlation about the distribution by three-dimensional structural spectrum.

본 발명은 고분자의 결정화 정도에 따른 분리와 크로스 교차 분별분석을 통하여 결정성 고분자의 3차원 구조를 해석하는 분석 방법에 관한 것으로, 더욱 상세하게는 3차원 구조 해석을 위하여 본 발명은 촉매 및 중합특성에 따라 상이한 결정성 고분자의 결정화 구조분포를 분석하는 방법과 결정크기에 따라 최적화 분리하는방법, 분리된 물질의 분자량의 분석방법, 결정구조와 분자량을 크로스 분별하여 결정성 고분자의 3차원 구조를 해석해낼 수 있는 방법에 관한 것이다.The present invention relates to an analytical method for analyzing the three-dimensional structure of the crystalline polymer through separation and cross-cross fractionation analysis according to the degree of crystallization of the polymer, and more particularly, the present invention provides a catalyst and polymerization characteristics for the three-dimensional structure analysis Analyze the crystallization structure distribution of crystalline polymers according to different sizes, optimize separation according to crystal size, analyze molecular weight of separated material, analyze three-dimensional structure of crystalline polymer by cross-dividing crystal structure and molecular weight It's about how you can do it.

종래의 결정성 고분자의 분석 및 해석 방법은 1차원적인 것으로 결정화도에 관한 분석 및 분자량에 관한 분석을 각각 실시하여 이 두가지 데이터를 중심으로 각 요소(결정화크기분포, 분자량크기분포)를 평가하고 이의 상관관계를 통해 결정성 고분자의 특성을 결정하였던 것이다.The conventional method of analyzing and analyzing crystalline polymers is one-dimensional, and analyzes the degree of crystallization and the analysis of molecular weight, respectively, and evaluates each element (crystallization size distribution and molecular weight size distribution) based on these two data and correlates them. The relationship was to determine the properties of crystalline polymers.

기존의 결정성 고분자의 분자량 등의 분석을 위하여서는 고분자를 용해후 서로 다른 크기로 되어있는 정지상의 컬럼을 통과시켜 측정하는 겔퍼미에이션 크로마토그라피나 용융점도 및 광산란장치 등을 이용하는 방법을 주로 사용하여 왔으며, 입체, 결정성 크기 분포 등의 평가를 위하여 열량계를 이용한 열분석법, 데칸용출법 등 습식분석법, 열승온 용출방법 등을 사용해 왔다.For the analysis of the molecular weight of the existing crystalline polymers, the gel permeation chromatography, the melt viscosity, the light scattering device, etc., which are measured by passing through the stationary columns having different sizes after dissolving the polymer, are mainly used. In order to evaluate the three-dimensional, crystalline size distribution, etc., a thermal analysis method using a calorimeter, a wet analysis method such as a decane dissolution method, and a heat elevated temperature dissolution method have been used.

그러나 이러한 측정방법은 모두 한가지 요소만 측정이 가능하므로 공장에서 실제 중합 생산시 변화되는 분자량의 변화, 입체, 결정, 곁가지의 변화 및 분포를 크로스로 동시 교차하여 분석하는 3차원적인 구조분석은 불가능하다.However, all of these measurement methods can measure only one element, and thus it is impossible to analyze three-dimensional structurally by cross-crossing the molecular weight changes, solids, crystals, side branches, and distributions that change during the actual polymerization production. .

이와 같은 문제점을 해결하기 위하여 미쓰비시화학은 크로스 분별방법이라는 결정성 고분자의 3차원 분석을 제시하였으나, 본 방법은 고분자의 재결정, 코팅,용출, 결정성측정, 분자량측정, 크로스분별 분석시에 재결정화시간이 짧아 결정화 분리 용출에 관련된 분해능이 현저히 떨어지는 단점을 갖고 있으며 분자량 측정시의 농도 또한 낮게 검출되므로 전체적인 감도가 떨어지는 문제점과 자동화 장치의 잦은 빈번한 고장과 분석비용이 매우 고가인 단점을 갖고 있다.In order to solve this problem, Mitsubishi Chemical has proposed three-dimensional analysis of the crystalline polymer called the cross fractionation method. However, this method recrystallizes the polymer during recrystallization, coating, elution, crystallinity measurement, molecular weight measurement, and cross fractionation analysis. Because of the short time, the resolution related to the crystallization separation elution has a significant disadvantage, and the concentration at the time of molecular weight measurement is also detected to have a low overall sensitivity, and the frequent frequent failures of the automation device and the analysis cost is very expensive.

이와 같은 문제점을 개선한 결정성 고분자의 새로운 3차원 분석 방법이 절실히 요구되고 있는 실정이다.There is an urgent need for a new three-dimensional analysis method for crystalline polymers that improves these problems.

본 발명이 이루고자 하는 기술적 과제는 상기한 문제점들을 개선하기 위하여 발명된 것으로서 새로 발명된 분석법을 이용하여 기존의 결정화크기 분포분석의 분해능을 증가시키고 분리된 물질의 농도를 일정하게 유지시켜 전체적인 분석의 신뢰성과 감도를 증가시키고자 하였다. 또한 각각의 X, Y 함수를 이용하여 최적의 값을 구하게 하고 Z = f(X,Y) 함수로 나타내어 정확한 3차원 구조분석이 가능토록 한 것이다.The technical problem to be achieved by the present invention was invented to improve the above problems, using the newly invented analysis method to increase the resolution of the existing crystallization size distribution analysis and to maintain the concentration of the separated material constant reliability of the overall analysis And to increase the sensitivity. In addition, the optimum value is obtained by using each X and Y function, and Z = f (X, Y) function is used for accurate three-dimensional structural analysis.

각각의 분자량에 관련된 함수 X = Log Mw 등 분자량의 함수와 분자량무게분율[dw.f/dLog(Mw)]로 Y축의 함수는 결정화 크기 분포의 함수로 하여 각각의 결정화 정도에 관련된 Ti(용출온도), CWFi(누적 무게분율)로 나타내며, 3차원 도식을 위하여 Z함수를 Z = f(X,Y)로 즉, 누적 무게분율 함수로 나타낸다.The function related to each molecular weight X = Log Mw, and the function of the molecular weight and the molecular weight weight ratio [dw.f / dLog (Mw)]. The Y-axis function is a function of the crystallization size distribution. ), CWFi (cumulative weight fraction), and Z function as Z = f (X, Y), that is, cumulative weight fraction function.

X = Log Mw, Y = Ti 로 표시한다. 이렇게 나타낸 3차원 스펙트럼은 X축을 분자량 및 분포의 함수, Y축을 결정화 크기분포에 관한 함수, Z축은 각각의 누적 무게분율%로서 결정성 고분자의 분자량 및 분포, 결정성 크기 분포, 단쇄가지 등의 공중합 분포도 등을 동시 또는 크로스 교차로 상세한 3차원 구조 분석이 가능하게 된다.X = Log Mw, Y = Ti. The three-dimensional spectra indicate that the X-axis is a function of molecular weight and distribution, the Y-axis is a function of crystallization size distribution, and the Z-axis is the cumulative weight percent of each, and the copolymerization of the molecular weight and distribution of the crystalline polymer, the crystalline size distribution, and short-branched branches Detailed three-dimensional structural analysis of the distribution map and the like or cross intersections is possible.

도 1은 본 발명의 용출온도에 따라 무게분율을 구하는 방법을 나타낸 하나의 실시태양으로, X축은 용출온도를 나타내고, Y축은 무게분율을 나타낸다.Figure 1 is an embodiment showing a method for obtaining the weight fraction according to the dissolution temperature of the present invention, X axis represents the elution temperature, Y axis represents the weight fraction.

도 2는 본 발명의 용출온도에 따른 시료 분리방법을 나타낸 하나의 실시태양으로, 좌측의 도면에서 X축은 시간을 Y축은 용출온도를 나타내고, 우측의 도면에서 X축은 시간을 Y축은 평균 용출속도를 나타낸다.Figure 2 is an embodiment showing a sample separation method according to the elution temperature of the present invention, X axis represents the time, Y axis represents the elution temperature, X axis represents the time, Y axis represents the average dissolution rate in the figure on the right Indicates.

도 3은 본 발명에 따른 폴리프로필렌 중 고무가 함유된 블럭 공중합체의 3차원 구조를 분석법에 따라 측정한 결과이며, 이를 3차원 스펙트럼으로 나타낸 것이다. 3차원은 X, Y, Z의 3축으로 표시된다. X축은 결정의 크기분포 정도를 나타내며, Y축은 분자량의 크기 및 분포를 나타낸다. Z축은 X, Y의 복합함수로서의 분율을 나타낸다.Figure 3 is a result of measuring the three-dimensional structure of the block copolymer containing the rubber of the polypropylene according to the present invention, which is shown in three-dimensional spectrum. Three dimensions are represented by three axes of X, Y and Z. The X axis represents the degree of size distribution of the crystal, and the Y axis represents the size and distribution of the molecular weight. Z-axis shows the fraction as a composite function of X and Y.

도 4는 본 발명에 따른 고밀도 폴리에틸렌의 3차원 구조를 분석법에 따라 측정한 결과이며, 이를 3차원 스펙트럼으로 나타낸 것이다.4 is a result of measuring the three-dimensional structure of the high-density polyethylene according to the present invention according to the analysis method, it is shown as a three-dimensional spectrum.

본 발명은 결정성 고분자를 일정한 농도를 유지해 가면서 결정크기별로 5~20 구간으로 분리한 다음 겔퍼미에이션 크로마토그라피를 이용하여 분리물의 분자량을 측정한 뒤 분자량에 관련된 함수를 X축에 전개하고, 결정화 크기 분포 함수를 Y축에 전개하여 결정화 크기 분율과 용출온도를 결합시켜 3차원 함수인 Z = f(X,Y)를 3차원으로 전개, 결정성 고분자의 3차원 구조를 분석하는 방법을 제공하는 것이다.In the present invention, the crystalline polymer is separated into 5 to 20 sections by crystal size while maintaining a constant concentration, and then the molecular weight of the isolate is measured using gel permeation chromatography, and then a function related to the molecular weight is developed on the X-axis, and crystallization is performed. Developing a three-dimensional function Z = f (X, Y) in three dimensions by combining the size distribution function on the Y axis and combining the crystallization size fraction with the elution temperature to provide a method to analyze the three-dimensional structure of the crystalline polymer. will be.

결정성 고분자 제품의 분석에 있어서, 열승온 용출분리기를 이용하여 일정한 온도에서 결정화 정도에 따라 분리되어 나오는 용출물의 무게분율과 용출온도를 구하고, 겔퍼미에이션 크로마토그라피를 이용하여 분리된 물질의 분자량과 무게분율을 구한 후, 상기 자료를 조합하여 결정화 크기 분포, 입체규칙성 크기 분포, 곁가지 크기 분포 변화에 따른 분자량 및 분포의 상관성을 3차원 공간에 전개시켜 분석하는 결정성 고분자의 3차원 구조 분석방법을 제공하는 것이다.In the analysis of the crystalline polymer product, the weight fraction and the elution temperature of the eluate separated according to the degree of crystallization at a constant temperature using a heat elevated elution separator are obtained, and the molecular weight and the molecular weight of the separated material are determined using gel permeation chromatography. After obtaining the weight fraction, the three-dimensional structure analysis method of the crystalline polymer that combines the above data to analyze the correlation between the crystallization size distribution, stereoregular size distribution, molecular weight and distribution according to the side branch size distribution change in three-dimensional space To provide.

상기 분석에서 결정성 고분자를 결정화 크기별로 분리시, 트리클로로벤젠, 다이클로로벤젠 등의 용제에 결정성 고분자 시료를 1.0~3.0 %(w/v)의 농도로 칭량한 후 교반, 가열, 환류시켜 완전히 용해한 후 100∼180℃에서 1시간이상 예비가열 숙성시킨 규조토, 실리카겔 등을 침적시키고, 1~30℃/시간의 속도로 서서히 감온하여 상온까지 냉각한 후 유속 5~20 ml/분, 분리시 경계온도에서 유지시간 3~30분, 300~600℃/시간의 속도로 승온시키며 각각의 용출온도에서 5~20 구간으로 분리시키게 된다.When the crystalline polymer is separated by the crystallization size in the analysis, the crystalline polymer sample is weighed at a concentration of 1.0 to 3.0% (w / v) in a solvent such as trichlorobenzene and dichlorobenzene, and then stirred, heated, and refluxed. After completely dissolved, diatomaceous earth, silica gel, etc. preheated at 100-180 ° C. for preheating for 1 hour or more are deposited, and gradually reduced in temperature at a rate of 1-30 ° C./hour, cooled to room temperature, and then flow rate is 5-20 ml / min. At the boundary temperature, the holding time is increased by 3 ~ 30 minutes and 300 ~ 600 ℃ / hour, and it is separated into 5 ~ 20 sections at each elution temperature.

상기 분석에서 초기 분리물의 용출온도는 30~40℃이고 최종 용출온도는 폴리에틸렌의 경우 130℃, 폴리프로필렌의 경우 140℃가 적당하다. 또한 승온분리시에 일정한 온도에서의 유지시간은 5~10분이면 완벽한 분리가 가능하다.The elution temperature of the initial separation in the analysis is 30 ~ 40 ℃ and the final elution temperature is 130 ℃ for polyethylene, 140 ℃ for polypropylene is suitable. In addition, the holding time at a constant temperature during the temperature separation can be separated completely in 5 to 10 minutes.

분리되어진 시료는 겔퍼미에이션 크로마토그라피를 이용하여 각각의 분자량을 측정하게 되며 이를 통하여 분자량함수와 결정화정도에 따른 함수를 모두 얻게된다.The separated samples are then subjected to gel permeation chromatography to measure the respective molecular weight, thereby obtaining both the molecular weight function and the degree of crystallization.

이하 본 발명에 따른 3차원 구조 분석방법에 대하여 상세히 설명한다.Hereinafter, a three-dimensional structure analysis method according to the present invention will be described in detail.

1) 용출온도에 따른 무게분율 구하는 방법1) How to find the weight fraction according to the elution temperature

실험중 시료나 용제 등에 함유되어 있을지도 모르는 공기의 영향을 최소화 하기 위하여 실험전에 충분한 퍼징을 통하여 이를 제거한 후 규조토 및 실리카겔 등에 재결정 과정을 통하여 코팅된 시료를 펌프유속 8~20 ml/분, 승온속도 100~300℃/시간으로 온도를 상승시키면서 용출온도에 따른 누적 무게분율을 구한다.In order to minimize the influence of air contained in the sample or solvent during the experiment, remove it through sufficient purging before the experiment, and then re-crystallize the diatomaceous earth and silica gel to obtain a sample coated with a pump flow rate of 8-20 ml / min, heating rate 100 While increasing the temperature to ~ 300 ℃ / hour, calculate the cumulative weight fraction according to the elution temperature.

용출온도에 따른 무게분율을 구하는 하나의 실시태양을 도 1에 나타내었다. 하기 표 1은 본 발명의 도 1에 따르는 각각의 용출온도 구간별(W1∼W10) 무게분율을 나타낸 것이다.One embodiment for obtaining the weight fraction according to the elution temperature is shown in FIG. Table 1 shows the weight fractions of the respective dissolution temperature sections (W1 to W10) according to FIG. 1 of the present invention.

용출온도(Ti)(℃)Elution temperature (Ti) (℃) 무게분율Weight fraction 40∼76 (W1)40-76 (W1) 0.00640.0064 76∼82 (W2)76 to 82 (W2) 0.01240.0124 82∼88 (W3)82-88 (W3) 0.02360.0236 88∼91 (W4)88-91 (W4) 0.03640.0364 91∼94 (W5)91-94 (W5) 0.05220.0522 94∼97 (W6)94-97 (W6) 0.07400.0740 97∼100 (W7)97-100 (W7) 0.03590.0359 100∼103 (W8)100-103 (W8) 0.02060.0206 103∼108 (W9)103-108 (W9) 0.01270.0127 108∼120 (W10)108-120 (W10) 0.00510.0051

2) 용출온도에 따른 시료분리방법2) Sample separation method according to elution temperature

본 발명에서의 시료분리를 위한 검출기는 적외선 검출기를 사용하여 분리되어 나오는 시료의 농도에 따라 적외선의 흡광도가 변화하게 되는데 이때 적외선의 cut-off 기준은 안정화된 최초의 적외선 투과도값에서 5~20%의 차이를 뺀 값을 분리시의 적외선검출기의 cut-off 로 결정하여 1~3% 농도로 재결정화된 시료를 300~600℃/시간의 속도로 승온시키게 되면 기 정해진 분리온도에서 농도변화에 따른 적외선 흡광도의 변화가 발생하게 되고 그 값이 8~15% 변화하게 되면 시료가 자동적으로 분리되게 된다. 이때 분리된 시료의 각각의 용량은 5~8 ml이 적합하다.In the present invention, the detector for sample separation changes the absorbance of infrared rays according to the concentration of the sample separated by using an infrared detector. In this case, the cut-off criterion of infrared rays is 5 to 20% at the stabilized initial infrared transmittance value. The value obtained by subtracting the difference is determined by the cut-off of the infrared detector at the time of separation, and when the sample recrystallized to a concentration of 1 to 3% is heated up at a rate of 300 to 600 ° C / hour, The change in infrared absorbance occurs and the sample is automatically separated when its value changes by 8-15%. At this time, each volume of the separated sample is suitable 5 ~ 8 ml.

도 2는 본 발명의 용출온도에 따른 시료 분리방법을 나타낸 하나의 실시태양으로, 좌측의 도면에서 X축은 시간을 Y축은 용출온도를 나타내고, 우측의 도면에서 X축은 시간을 Y축은 평균 용출속도를 나타낸다.Figure 2 is an embodiment showing a sample separation method according to the elution temperature of the present invention, X axis represents the time, Y axis represents the elution temperature, X axis represents the time, Y axis represents the average dissolution rate in the figure on the right Indicates.

3) 분자량 측정과 무게분율 측정 방법3) Molecular weight measurement and weight fraction measuring method

분리된 시료의 분자량과 무게분율은 겔퍼미에이션 크로마토그라피 장비를 이용하여 측정한다. 140℃ 온도에서 유속 1 ml/분으로 컬럼을 통과시키면서 컬럼에 머무는 시간을 측정한 뒤 폴리스티렌으로 보정된 검정선을 이용하여 로그함수로 된 분자량과 무게분율을 구한다. 이때 3차원 분석을 위하여 결정화 함수와 결합하여야 하므로 분자량을 계산시 적분값의 초기와 나중을 동일하게 일치시킨다.The molecular weight and weight fraction of the separated samples are measured using gel permeation chromatography equipment. After measuring the residence time in the column while passing through the column at a flow rate of 1 ml / min at 140 ℃ temperature, the molecular weight and the weight fraction of the log function is determined by using a calibration curve corrected with polystyrene. In this case, it must be combined with the crystallization function for the three-dimensional analysis, so that the initial and the later of the integral value are equally matched when calculating the molecular weight.

4) 3차원 구조 스펙트럼 제조방법4) 3D structure spectrum manufacturing method

온도상승에 따라 용출되는 시료의 무게분율의 누적분포와 각각의 분자량의 무게분율의 곱으로서 3차원 구조 스펙트럼을 나타낸다. 분자량에 관련된 함수 X = Log Mw, Y = dw.f/dLog(Mw), 결정화 정도에 관련된 X1 = Ti (용출온도), Y1= CWFi (누적 무게분율)로 나타내며 3차원 도식을 위하여 Z함수를 Z = f(X,Y) 로, X = Log Mw, Y = Ti 로 표시된다. 이렇게 나타낸 3차원 스펙트럼은 X축을 분자량의 함수, Y축을 결정화 크기분포에 관한 함수, Z축은 각각의 누적 무게분율% 로서 결정성 고분자의 3차원 구조분석을 충족하게 한다.Three-dimensional structural spectrum is shown as the product of the cumulative distribution of the weight fraction of the sample eluted with the temperature rise and the weight fraction of each molecular weight. Functions related to molecular weight X = Log Mw, Y = dw.f / dLog (Mw), X1 = Ti (elution temperature) and Y1 = CWFi (cumulative weight fraction) related to the degree of crystallization. Z = f (X, Y), X = Log Mw, Y = Ti. The three-dimensional spectra show that the X-axis is a function of molecular weight, the Y-axis is a function of crystallization size distribution, and the Z-axis is the cumulative weight percent of each, satisfying the three-dimensional structural analysis of the crystalline polymer.

(실시예 1)(Example 1)

본 발명의 방법에 따라 폴리프로필렌 블럭 코폴리머의 3차 분자구조를 분석하였다. 본 발명의 방법으로 측정된 폴리프로필렌 블럭 코폴리머의 3차원 구조가 도 3에 나타나 있는데 분자량 및 분자량 분포 변화에 따른 입체결정구조의 변화 상관성이 3차원 구조로 정확하게 규명되었다.The tertiary molecular structure of the polypropylene block copolymer was analyzed according to the method of the present invention. The three-dimensional structure of the polypropylene block copolymer measured by the method of the present invention is shown in FIG. 3, and the correlation of change of the stereocrystalline structure according to the change in molecular weight and molecular weight distribution was accurately identified as a three-dimensional structure.

(실시예 2)(Example 2)

본 발명의 방법에 따라 고밀도 폴리에틸렌의 3차원 분자구조를 분석하였다. 본 발명의 방법으로 측정된 고밀도 폴리에틸렌의 3차원 구조가 도 4에 나타나 있는데 분자량 및 분자량 분포 변화에 따른 입체결정구조의 변화 상관성이 3차원 구조로 정확하게 규명되었다.The three-dimensional molecular structure of high density polyethylene was analyzed according to the method of the present invention. The three-dimensional structure of the high-density polyethylene measured by the method of the present invention is shown in Figure 4, the change correlation of the three-dimensional crystal structure according to the molecular weight and the molecular weight distribution change was correctly identified as a three-dimensional structure.

본 발명의 효과는 폴리프로필렌, 에틸렌 및 폴리에틸렌비닐아세테이트, 신디오탁틱 폴리스티렌을 포함한 결정성 고분자의 입체규칙성, 결정화 크기분포, 곁가지구조 분포변화에 따른 분자량 및 분자량 분포의 상관성을 3차원 구조로 분석이 가능한 장점과 더불어 지금까지 해석이 어려웠던 제품의 3차원 분자구조 해석에 따른 중합, 물성, 가공해석이 용이해짐은 물론 신 촉매개발 및 분자구조 디자인을 통한 신제품 연구, 중합공정 연구에 필요한 분석정보제공이 기대된다.The effect of the present invention is to analyze the correlation of molecular weight and molecular weight distribution according to the stereoregularity, crystallization size distribution, and side branch structure distribution of crystalline polymer including polypropylene, ethylene and polyethylene vinyl acetate, syndiotactic polystyrene In addition to this possible advantage, it is easy to make polymerization, physical properties, and processing analysis according to the three-dimensional molecular structure analysis of products that have been difficult to analyze, and provide analysis information necessary for new product research and polymerization process research through new catalyst development and molecular structure design. This is expected.

Claims (5)

결정성 고분자를 일정한 농도를 유지해 가면서 결정크기별로 5~20 구간으로 분리한 다음 겔퍼미에이션 크로마토그라피를 이용하여 분리물의 분자량을 측정한 뒤 분자량에 관련된 함수를 X축에 전개하고, 결정화 크기 분포 함수를 Y축에 전개하여 결정화 크기 분율과 용출온도를 결합시켜 3차원 함수인 Z = f(X,Y)를 3차원으로 전개, 결정성 고분자의 3차원 구조를 분석하는 방법The crystalline polymer is separated into 5 ~ 20 sections according to the crystal size while maintaining a constant concentration. The molecular weight of the isolate is measured using gel permeation chromatography, and the function related to the molecular weight is developed on the X-axis. To develop the three-dimensional function Z = f (X, Y) in three dimensions by combining the crystallization size fraction and the elution temperature by developing on the Y axis to analyze the three-dimensional structure of the crystalline polymer. 제 1항에 있어서, 상기 분석 방법은 결정성 고분자 제품의 분석에 있어서 열승온 용출분리기를 이용하여 일정한 온도에서 결정화 정도에 따라 분리되어 나오는 용출물의 무게분율과 용출온도를 구하고, 겔퍼미에이션 크로마토그라피를 이용하여 분리된 물질의 분자량과 무게분율을 구한 후, 상기 자료를 조합하여 결정화 크기 분포, 입체규칙성 크기 분포, 곁가지 크기 분포 변화에 따른 분자량 및 분포의 상관성을 3차원 공간에 전개시켜 분석함을 특징으로 하는 분석 방법The method of claim 1, wherein the analysis method is to determine the weight fraction and elution temperature of the eluate separated according to the degree of crystallization at a constant temperature using a heat-heat eluting separator in the analysis of the crystalline polymer product, gel permeation chromatography After the molecular weight and weight fraction of the separated material were determined, the data were combined to analyze the correlation between the molecular weight and the distribution according to the crystallization size distribution, stereoregular size distribution, and side branch size distribution. Analysis method characterized by 제 1항 또는 제 2항에 있어서, 상기 분석 방법은 결정성 고분자를 결정화 크기별로 분리시, 트리클로로벤젠, 다이클로로벤젠 등의 용제에 결정성 고분자 시료를 1.0~3.0 %(w/v)의 농도로 칭량한 후 교반, 가열, 환류시켜 완전히 용해한 후100∼180℃에서 1시간이상 예비가열 숙성시킨 규조토, 실리카겔 등을 침적시키고, 1~30℃/시간의 속도로 서서히 감온하여 상온까지 냉각한 후 유속 5~20 ml/분, 분리시 경계온도에서 유지시간 3~30분, 300~600℃/시간의 속도로 승온시키며 각각의 용출온도에서 5~20 구간으로 분리함을 특징으로 하는 분석 방법The method according to claim 1 or 2, wherein the analysis method comprises separating 1.0% to 3.0% (w / v) of a crystalline polymer sample in a solvent such as trichlorobenzene and dichlorobenzene when the crystalline polymers are separated by crystallization size. After weighing to a concentration, completely dissolved by stirring, heating, and refluxing, the diatomaceous earth, silica gel, and the like which were preheated at 100 to 180 ° C. for pre-aging for 1 hour or more were deposited, and gradually cooled to room temperature at a rate of 1 to 30 ° C./hour. Analytical method characterized in that after the flow rate of 5 ~ 20 ml / min, separation temperature at a temperature of 3 ~ 30 minutes, 300 ~ 600 ℃ / hour at a boundary temperature, separated by 5 ~ 20 at each elution temperature 제 3항에 있어서, 상기 분석 방법에서 초기 분리물의 용출온도는 30~40℃이고, 최종 용출온도는 폴리에틸렌의 경우 130℃이고, 폴리프로필렌의 경우 140℃이고, 또한 승온분리시에 일정한 온도에서의 유지시간은 5~10분임을 특징으로 하는 분석 방법The elution temperature of the initial separation in the analysis method is 30 ~ 40 ℃, the final elution temperature is 130 ℃ for polyethylene, 140 ℃ for polypropylene, and at a constant temperature during temperature separation Analysis method characterized in that the retention time is 5 to 10 minutes 제 3항에 있어서, 상기 분석 방법은 분리되어진 시료를 겔퍼미에이션 크로마토그라피를 이용하여 각각의 분자량을 측정하게 되고, 이를 통하여 분자량함수와 결정화정도에 따른 함수를 모두 구함을 특징으로 하는 분석 방법The method of claim 3, wherein the analysis method is to measure each molecular weight of the separated sample using gel permeation chromatography, through which the molecular weight function and the function according to the degree of crystallization is obtained.
KR10-2000-0069808A 2000-11-23 2000-11-23 Three dimensional structure analytical method of crystalline polymer KR100384391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0069808A KR100384391B1 (en) 2000-11-23 2000-11-23 Three dimensional structure analytical method of crystalline polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0069808A KR100384391B1 (en) 2000-11-23 2000-11-23 Three dimensional structure analytical method of crystalline polymer

Publications (2)

Publication Number Publication Date
KR20020039938A true KR20020039938A (en) 2002-05-30
KR100384391B1 KR100384391B1 (en) 2003-05-22

Family

ID=19700750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0069808A KR100384391B1 (en) 2000-11-23 2000-11-23 Three dimensional structure analytical method of crystalline polymer

Country Status (1)

Country Link
KR (1) KR100384391B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112868A (en) * 2000-06-15 2001-12-22 유현식 3-dimensional analytical apparatus for crystallized polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769728B2 (en) * 1989-10-31 1998-06-25 日本石油化学株式会社 Measurement method of branch distribution of polymer
KR0161546B1 (en) * 1994-11-14 1999-05-01 황선두 Evaluation method of polypropylene solid regulation
JPH10300748A (en) * 1997-04-24 1998-11-13 Toyota Central Res & Dev Lab Inc Crystal structure inspection method of crystal macromolecule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112868A (en) * 2000-06-15 2001-12-22 유현식 3-dimensional analytical apparatus for crystallized polymer

Also Published As

Publication number Publication date
KR100384391B1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
Baker et al. 456. A new chromatographic procedure and its application to high polymers
Gaborieau et al. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides
Striegel et al. Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography
Burgi et al. Sedimentation rate as a measure of molecular weight of DNA
Grcev et al. Determination of molecular weight and size distribution and branching characteristics of PVAc by means of size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS)
US6618144B1 (en) Device and method of simultaneously measuring the light scattering from multiple liquid samples containing polymers and/or colloids
Malik et al. Novel developments in the multidimensional characterization of segmented copolymers
EP0665433B1 (en) Precision determination for molecular weights
US7630076B2 (en) Dual-detector systems and methods having utility in biomolecular measurements
Otte et al. Optimisation of ambient and high temperature asymmetric flow field-flow fractionation with dual/multi-angle light scattering and infrared/refractive index detection
US20060266708A1 (en) Integrated on-line two-dimensional method and device for synchroned analytical temperature rising elution fractionation and gel permeation chromatography
Pasch et al. Analysis of polyolefin blends by crystallization analysis fractionation
Wyatt Multiangle light scattering: The basic tool for macromolecular characterization
US10312063B2 (en) Eluate analysis and collection
Harding et al. Light scattering
Yau et al. Polymer characterization by SEC-viscometry: molecular weight (MW), size (Rg) and intrinsic viscosity (IV) distribution
KR100384391B1 (en) Three dimensional structure analytical method of crystalline polymer
CN113960189B (en) Detection method of bio-based degradable material poly (butylene adipate)/terephthalate
CN101799435B (en) Method and device for detecting whether polycarbonate food contact ware uses reclaimed materials
Joshi et al. Evaluating bulk-to-surface partitioning of erucamide in LLDPE films using FT-IR microspectroscopy
CN103323541B (en) Quality detection method for heparin sodium tube-enveloping injection
Pasch Recent developments in polyolefin characterization
CN110274972A (en) A method of series connection gel chromatography Dendrobium nobile polysaccharide molecular weight distribution
Hagenaars et al. Preparative fractionation and characterization of polycarbonate/eugenol-siloxane copolymers
Subramanian Polymer testing: new instrumental methods

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090326

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee