KR20020037185A - Gas sensor having good sensitivity and selectivity and process for the preparation thereof - Google Patents
Gas sensor having good sensitivity and selectivity and process for the preparation thereof Download PDFInfo
- Publication number
- KR20020037185A KR20020037185A KR1020000067214A KR20000067214A KR20020037185A KR 20020037185 A KR20020037185 A KR 20020037185A KR 1020000067214 A KR1020000067214 A KR 1020000067214A KR 20000067214 A KR20000067214 A KR 20000067214A KR 20020037185 A KR20020037185 A KR 20020037185A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- gas sensor
- sno
- sensitivity
- selectivity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000035945 sensitivity Effects 0.000 title abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 239000011540 sensing material Substances 0.000 claims abstract description 10
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 68
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 57
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 57
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 35
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract description 6
- 229910009116 xCuO Inorganic materials 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000009965 odorless effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- -1 heated to 80 ° C. Chemical compound 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
- C01G19/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/004—CO or CO2
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/005—H2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
본 발명은 환원성 가스를 감지하기 위한 반도체식 가스센서 및 이의 제조방법에 관한 것으로서, 특히 일산화탄소 및 수소 가스 둘 다에 대해 각각 선택적인 감지능을 가진, CuO와 임의로 ZnO가 첨가된 SnO2감지재료로부터 제조된 가스센서 및 이의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor gas sensor for sensing a reducing gas and a method for manufacturing the same, particularly from a SnO 2 sensing material added with CuO and optionally ZnO, each having selective sensing ability for both carbon monoxide and hydrogen gas. It relates to a manufactured gas sensor and a method of manufacturing the same.
일산화탄소(CO) 가스는 산업체 및 가정에서 불완전연소 과정을 통해 유출되기 쉬운 무색무취의 유독성 가스로서, 현재 상용화된 CO 가스센서는 SnO2를 감지물질로 이용한 반도체식 가스센서이다. 반도체식 가스센서는 장치가 간단하고 생산비용과 유지비용이 비교적 저렴하다는 장점이 있는데, 상술한 바와 같이 SnO2를 이용한 반도체식 가스센서는 환원성 가스 대부분에 대해 감지를 하기 때문에, 검출하고자 하는 가스 이외의 다른 가스나 수분에 의해 오동작을 일으키는 단점이 있다.Carbon monoxide (CO) gas is a colorless, odorless and toxic gas that is likely to leak through incomplete combustion processes in industry and homes. Currently commercially available CO gas sensor is a semiconductor gas sensor using SnO 2 as a sensing material. The semiconductor gas sensor has the advantage that the device is simple and the production cost and the maintenance cost are relatively low. As described above, the semiconductor gas sensor using SnO 2 detects most of the reducing gas. There is a disadvantage of malfunction due to other gases or moisture.
또한, 현재까지 상용화된 CO 가스센서의 감지재료는 감도가 우수하고 비교적 저온에서 작동하는 SnO2를 모물질로 하면서 Pt나 Pd과 같은 귀금속 첨가물을 넣어 특성을 향상시켜 왔다 (문헌 [Kousuke Ihokura and Joseph Watson, "The Stannic Oxide Gas Sensor, principles and applications", CRC Press, 1994, pp11~23] 참조). 그러나, 귀금속을 사용하는 것으로 인해, 센서 제작비가 많이 든다는 문제점이 있다.In addition, the detection material of the commercially available CO gas sensor has improved characteristics by adding noble metal additives such as Pt and Pd while using SnO 2 as a parent material having excellent sensitivity and operating at a relatively low temperature (Kousuke Ihokura and Joseph). Watson, "The Stannic Oxide Gas Sensor, principles and applications", CRC Press, 1994, pp 11-23). However, due to the use of precious metals, there is a problem that the manufacturing cost of the sensor is high.
따라서, CO 가스에 대한 우수한 감도 및 선택성을 가진 저렴한 센서가 절실히 요구된다.Thus, there is an urgent need for inexpensive sensors with good sensitivity and selectivity for CO gas.
한편, 수소가스는 무색 무취의 가장 가벼운 기체로 가연성이 매우 뛰어나 고효율의 연료로 사용되며, 유기물과의 결합성이 우수하여 화학공업 뿐만 아니라 전자산업에 있어서도 매우 광범위하게 사용되는 가스이다. 또한, 수소가스는 차세대 에너지원으로서 그 효용가치가 매우 높기 때문에 앞으로 수소가스의 이용은 더욱 늘어날 전말이다. 그러나 폭발력이 강한 수소가스의 유출은 곧바로 대형 화재의 원인이 되므로 이를 감지할 수 있는 센서의 개발이 또한 절실히 요구된다.Hydrogen gas, on the other hand, is a colorless, odorless, lightest gas that is highly flammable and is used as a fuel of high efficiency. In addition, hydrogen gas is the next generation energy source, and its utility value is very high, so the use of hydrogen gas will increase further. However, the outflow of highly explosive hydrogen gas directly causes large fires, so there is an urgent need to develop a sensor that can detect this.
따라서, 본 발명은, 기존의 반도체식 가스센서의 감지물질의 선택적 감응성 부족의 문제점을 해결하고자, 특히 CO 및 H2가스에 대한 선택적 감응성을 갖는 새로운 센서물질을 개발하는데 그 목적이 있다.Accordingly, an object of the present invention is to develop a new sensor material having a selective sensitivity to CO and H 2 gas in order to solve the problem of the lack of selective sensitivity of the sensing material of the conventional semiconductor gas sensor.
도 1a 및 b는 각각, 순수한 SnO2및 본 발명에 따른 CuO-SnO2를 감지재료로 사용한 가스센서의 일산화탄소(200ppm) 및 수소 가스(200ppm)에 대한 감도를 온도 변화에 따라 측정한 그래프이고,1A and 1B are graphs of sensitivity of carbon monoxide (200 ppm) and hydrogen gas (200 ppm) of a gas sensor using pure SnO 2 and CuO—SnO 2 according to the present invention as sensing materials, respectively, according to temperature change;
도 2a 및 b는 각각 본 발명에 따른 가스센서의 CuO의 첨가량에 따라 변화하는 일산화탄소(200ppm) 및 수소 가스(200ppm)에 대한 감도를 160℃와 280℃에서 비교한 그래프이고,2A and 2B are graphs comparing sensitivity of carbon monoxide (200ppm) and hydrogen gas (200ppm), which vary according to the amount of CuO added to the gas sensor according to the present invention, at 160 ° C. and 280 ° C., respectively.
도 3a 및 b는 각각 본 발명에 따른 가스센서의 열처리 온도에 따라 변화하는 일산화탄소(200ppm) 및 수소 가스(200ppm)에 대한 감도를 160℃와 280℃에서 비교한 그래프이고,3A and 3B are graphs comparing sensitivity of carbon monoxide (200ppm) and hydrogen gas (200ppm), which vary according to the heat treatment temperature of the gas sensor according to the present invention, at 160 ° C. and 280 ° C., respectively.
도 4는 본 발명에 따른 가스센서의 일산화탄소 및 수소가스의 농도에 따라 변화하는 전류값을 160℃에서 측정한 그래프이고,4 is a graph measuring a current value changed at 160 ° C. according to concentrations of carbon monoxide and hydrogen gas of a gas sensor according to the present invention;
도 5a 및 b는 각각 본 발명에 따른 가스센서의 ZnO 첨가량에 따라 변화하는 일산화탄소(200ppm) 및 수소 가스(200ppm)에 대한 감도를 200℃와 350℃에서 비교한 그래프이다.5a and b are graphs comparing sensitivity of carbon monoxide (200ppm) and hydrogen gas (200ppm), which vary according to the amount of ZnO addition of the gas sensor according to the present invention, at 200 ° C. and 350 ° C., respectively.
상기 목적을 달성하기 위해, 본 발명에서는 환원성 가스 감지재료로부터 형성된 가스 감응층 및 그의 양쪽 측면의 양극과 음극을 포함하는 환원성 가스 센서에 있어서, 상기 가스감응층이 xCuO-(1-x)SnO2(이때, 0 < x < 0.1) 조성의 재료를 포함함을 특징으로 하는, 가스 센서를 제공한다.In order to achieve the above object, in the present invention, in the reducing gas sensor comprising a gas sensitive layer formed from a reducing gas sensing material and the anode and cathode on both sides thereof, the gas sensitive layer is xCuO- (1-x) SnO 2 Provided is a gas sensor, characterized in that it comprises a material of composition (where 0 <x <0.1).
본 발명에서는 또한, 상기 본 발명의 가스 센서에 있어서 가스감응층이 ZnO를 추가로 포함하여 xCuO-yZnO-(1-x-y)SnO2(이때, 0 < x < 0.1, 0 < y < 0.99. 0 < x+y < 1) 조성의 재료를 포함할 수 있다.In the present invention, in the gas sensor of the present invention, the gas-sensitive layer further contains ZnO, wherein xCuO-yZnO- (1-xy) SnO 2 (where 0 <x <0.1, 0 <y <0.99.0). <x + y <1) may comprise a material of composition.
또한, 본 발명에서는 CuO 분말 및 임의의 ZnO 분말과 SnO2분말을 혼합한 후 건조 및 열처리하여 소결체를 형성하고, 소결체의 양 측면에 전극을 형성하는 것을 포함하는, 본 발명에 따른 가스 센서의 제조방법을 제공한다.In addition, in the present invention, the production of a gas sensor according to the present invention comprising mixing CuO powder and any ZnO powder and SnO 2 powder, followed by drying and heat treatment to form a sintered body, and forming electrodes on both sides of the sintered body. Provide a method.
또한, 본 발명에서는 ZnO 분말과 SnO2분말을 혼합한 후 건조 및 열처리하여 소결체를 형성한 다음, 이 소결체를 CuO 용액으로 함침시킨 후 열처리하여 다시 소결체를 형성한 후, 이 소결체의 양 측면에 전극을 형성하는 것을 포함하는, 가스 센서의 제조방법을 제공한다.In addition, in the present invention, after mixing the ZnO powder and SnO 2 powder to form a sintered body by drying and heat treatment, the sintered body is impregnated with CuO solution and then heat-treated to form a sintered body, and then the electrodes on both sides of the sintered body It provides a method of manufacturing a gas sensor, comprising forming a.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은, 일산화탄소(CO) 가스 또는 수소 가스와 같은 환원성 가스의 감응 센서에 있어서, 가스감응층에 SnO2재료에 CuO를 첨가한 것을 사용함으로써, 센서의 CO 가스 및 수소 가스에 대한 감도와 선택성을 향상시킨 것을 특징으로 한다. 본 발명에 따른 가스감응층은 100 내지 300 ℃ 범위의 온도에서 감도를 나타내지만, 특히 약 160℃의 온도에서 최대의 CO 가스 감지 선택성을 나타내며, 약 280℃의 온도에서 최대의 수소 가스 감지선택성을 나타낸다. 순수한 SnO2의 최대 CO 가스 감지 온도가 340 ℃임을 고려할 때, 본 발명에 따라 SnO2에 CuO가 혼입되면 상당히 낮아진 온도에서 CO 및 수소 가스를 감지할 수 있게 된다.The present invention provides a sensitivity and selectivity for a CO gas and a hydrogen gas of a sensor by using CuO added to a SnO 2 material in a gas sensitive layer in a gas sensitive layer sensitive sensor such as carbon monoxide (CO) gas or hydrogen gas. Characterized in that improved. The gas sensitive layer according to the invention exhibits sensitivity at temperatures in the range of 100 to 300 ° C., but in particular exhibits the highest CO gas sensing selectivity at temperatures of about 160 ° C., and maximum hydrogen gas sensing selectivity at temperatures of about 280 ° C. Indicates. Considering that the maximum CO gas detection temperature of pure SnO 2 is 340 ° C., when CuO is incorporated into SnO 2 according to the present invention, CO and hydrogen gas can be detected at a significantly lower temperature.
CuO가 혼입된 SnO2재료는, 통상의 방법에 따라 예를 들면 볼 밀(ball mill) 등의 방법을 이용하여 소량의 용매 중에서 각 재료의 분말을 습식 혼합한 후, 약 100 ℃에서 건조하고, 약 700 내지 900℃ 범위의 온도에서 열처리함으로써 수득할 수 있다.The SnO 2 material in which CuO is mixed is wet mixed with powder of each material in a small amount of solvent using a method such as a ball mill according to a conventional method, and then dried at about 100 ° C., It can be obtained by heat treatment at a temperature in the range of about 700 to 900 ℃.
본 발명에 따른 가스센서의 가스감응층 재료에서, CuO의 첨가량은 적절한 감도를 얻기 위해서는 SnO2를 기준으로 10 몰% 이하, 바람직하게는 1 몰% 이하의 양이 적합하다.In the gas sensitive layer material of the gas sensor according to the present invention, the amount of CuO added is preferably 10 mol% or less, preferably 1 mol% or less, based on SnO 2 , in order to obtain appropriate sensitivity.
본 발명에 따른 가스 센서의 가스감응층 재료는 또한, ZnO 성분을 추가로 포함할 수 있다. 이와 같이 CuO가 첨가된 SnO2에 ZnO를 혼합함으로써, 수소가스에 대한 감응온도를 고온으로 유도하고 일산화탄소에 대한 감응온도는 저온으로 유지시킴으로써, 저온에서는 일산화탄소 가스에 대한 선택성을, 고온에서는 수소가스에 대한 선택성을 보다 증대시킬 수 있다. 이때, ZnO 성분의 사용량은 SnO2를 기준으로 99몰% 이하, 바람직하게는 1 내지 40몰% 범위이다.The gas sensitive layer material of the gas sensor according to the present invention may further comprise a ZnO component. By mixing ZnO with CuO-added SnO 2 , the reaction temperature for hydrogen gas is induced at a high temperature and the temperature for carbon monoxide is kept at a low temperature, thereby selecting selectivity for carbon monoxide gas at low temperatures and hydrogen gas at high temperatures. Can increase the selectivity. At this time, the amount of ZnO component used is 99 mol% or less, preferably 1 to 40 mol%, based on SnO 2 .
본 발명에 따라 ZnO가 포함된 CuO-SnO2가스감응층 재료는, 상술한 바와 같은 통상의 분말혼합법에 의해 ZnO 분말과 CuO 분말을 SnO2분말과 소정의 몰비로 습식 혼합한 후 건조 및 열처리하여 수득할 수도 있고, 달리 ZnO 분말과 SnO2분말을 먼저 분말혼합법에 의해 열처리된 소결체로 형성한 후 이를 CuO 용액에 침지하여 함침시킨 후 다시 건조 및 열처리함으로써 수득할 수도 있다.According to the present invention, the ZnO-containing CuO-SnO 2 gas sensitive layer material is dried and heat-treated after wet mixing ZnO powder and CuO powder with SnO 2 powder in a predetermined molar ratio by a conventional powder mixing method as described above. Alternatively, ZnO powder and SnO 2 powder may be obtained by forming a sintered body heat-treated by powder mixing first, then immersing it in a CuO solution, followed by drying and heat treatment.
상기와 같이하여 형성된 본 발명에 따른 가스 감응층에 통상의 Pt, Au 등을 전극으로 사용하여 가스 센서를 제작할 수 있으며, 전극의 적용방법은 도포(painting), 스크린 인쇄(screen printing) 또는 스퍼터링(sputtering) 등이 있다.In the gas sensitive layer according to the present invention formed as described above, a gas sensor may be manufactured using ordinary Pt, Au, or the like as an electrode, and the method of applying the electrode may include painting, screen printing, or sputtering ( sputtering).
본 발명에 따른 가스 센서는 통상의 형태, 예를 들면 디스크(disc), 후막(thick film), 박막(thin film) 등의 형상으로 제작될 수 있으며, 제작은 통상의 방법, 예를 들면 프레스 성형(press molding), 스크린 인쇄, 스퍼터링 등의 방법에 의해 수행될 수 있다.The gas sensor according to the present invention may be manufactured in a conventional shape, for example, in the form of a disc, a thick film, a thin film, and the like, and the production may be performed in a conventional method, for example, press molding. (press molding), screen printing, sputtering, or the like.
본 원에서, 가스 센서의 감도는 공기 중에서 인가된 전압 하에서 감지물질을 통과하는 전류(IAIR) 를 측정한 후, 검출하고자 하는 가스(CO 혹은 H2)를 일정한 농도로 주입하였을 때 증가된 전류(ICO혹은 IH2)를 측정하여 그 비로서 정의한다. 즉 일산화탄소에 대한 감도 SCO=ICO/IAIR, 수소가스에 대한 감도는 SH2=IH2/IAIR로 정의된다. 본 원에서, 선택성은 일산화탄소에 대한 감도와 수소에 대한 감도의 비로 정의되며, 일산화탄소에 대한 선택성은 SCO/SH2로 정의되고, 수소에 대한 선택성은 SH2/SCO로 정의된다.In this application, the sensitivity of the gas sensor is increased by measuring the current (I AIR ) passing through the sensing material under a voltage applied in the air and then injecting the gas (CO or H 2 ) to be detected at a constant concentration. (I CO or I H2 ) is measured and defined as the ratio. That is, the sensitivity to carbon monoxide S CO = I CO / I AIR and the sensitivity to hydrogen gas are defined as S H2 = I H2 / I AIR . Herein, selectivity is defined as the ratio of sensitivity to carbon monoxide and sensitivity to hydrogen, selectivity to carbon monoxide is defined as S CO / S H2 , and selectivity to hydrogen is defined as S H2 / S CO .
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
실시예 1Example 1
SnO2상용 분말과 CuO 상용 분말을 에탄올에 넣고 습식 볼밀을 통해 12 시간 동안 균일하게 혼합하여 1, 2, 5 및 10 몰%의 CuO를 포함하는 혼합 슬러리를 수득하였다. 혼합된 슬러리를 100 ℃에서 건조하고, 몰드(mould)를 이용하여 성형하고, 2 ton/cm2의 압력으로 정수압 성형한 후 800℃에서 다시 열처리함으로써, 동전 모양의 가스 감지용 CuO·SnO2소결체를 완성하였다.SnO 2 commercial powder and CuO commercial powder were placed in ethanol and mixed uniformly for 12 hours by a wet ball mill to obtain a mixed slurry containing 1, 2, 5 and 10 mol% CuO. The mixed slurry was dried at 100 ° C., molded using a mold, hydrostatically molded at a pressure of 2 ton / cm 2 , and then heat treated again at 800 ° C. to form a coin-shaped gas-sensing CuO · SnO 2 sintered body. To complete.
얻어진 가스 감지 재료의 가스 감응 특성을 측정하기 위하여, 동전 형태의 감지재료 양쪽 면에 백금 전극을 발라 600℃에서 다시 30분간 열처리한 다음, 양쪽 면에 은선을 연결하여, 전기로를 이용하여 온도를 올려 재료의 가스 감지능을 측정하였다.In order to measure the gas-sensing characteristics of the obtained gas-sensing material, platinum electrodes were applied to both sides of the coin-shaped sensing material and heat-treated again at 600 ° C. for 30 minutes. The gas detectability of the material was measured.
별도로 CuO가 혼합되지 않은 SnO2재료를 사용하여 상술한 바와 같이 가스센서를 제작하여 가스 감지능을 측정하였으며, 그 결과를 CuO가 1몰% 첨가된 감응재료를 사용하여 수득한 가스센서에서 얻어진 결과와 함께 각각 도 1a 및 도 1b에 나타내었다. 상기 센서의 감도는 상온에서 23%의 상대습도를 갖는 공기를 1시간 이상 주입하여 공기 중에서의 저항을 측정하고, CO나 H2가 200ppm으로 희석된 가스를 주입한 후 변화된 저항을 측정함으로써 결정된 값이다.Separately, a gas sensor was fabricated as described above using SnO 2 material without CuO mixing, and the gas sensing performance was measured. The result was obtained from a gas sensor obtained using a sensitive material containing 1 mol% of CuO. And are shown in FIGS. 1A and 1B, respectively. The sensitivity of the sensor is determined by measuring air resistance by injecting air having a relative humidity of 23% at room temperature for at least 1 hour and measuring a resistance changed after injecting a gas diluted with 200 ppm of CO or H 2. to be.
도 1로부터, 순수한 SnO2재료의 감도는 350 ℃ 부근에서 최대값을 보이며, 전체 측정온도에서 수소에 대한 감도가 일산화탄소에 비해 높으나, 1 몰% CuO를 첨가하면 최대감도를 보이는 온도가 낮아지면서, 저온에서는 일산화탄소에 대해, 고온에서는 수소에 대해 더 높은 감도를 가짐을 알 수 있다.From Fig. 1, the sensitivity of pure SnO 2 material shows the maximum value at around 350 ° C., and the sensitivity to hydrogen is higher than that of carbon monoxide at the entire measurement temperature, but when 1 mol% CuO is added, the maximum sensitivity is lowered. It can be seen that it has a higher sensitivity to carbon monoxide at low temperatures and to hydrogen at high temperatures.
본 발명에 따른 CuO 함유 가스감응재료를 이용할 때, CuO의 첨가량을 10 몰% 까지 첨가할 때의 160℃ 및 280℃에서의 일산화탄소와 수소가스에 대한 감도를 비교한 결과를 도 2a 및 도 2b에 각각 나타내었으며, 첨가된 CuO의 양 변화에 따른 160℃에서의 일산화탄소에 대한 선택성과 280℃에서의 수소에 대한 선택성을 계산하여 감도 결과와 함께 표 1에 나타내었다.When using the CuO-containing gas sensitive material according to the present invention, the results of comparing the sensitivity for carbon monoxide and hydrogen gas at 160 ℃ and 280 ℃ when the addition amount of CuO up to 10 mol% is compared to Figures 2a and 2b The selectivity for carbon monoxide at 160 ° C. and the selectivity for hydrogen at 280 ° C. were calculated according to the amount of added CuO, and are shown in Table 1 together with the sensitivity results.
도 2 및 표 1로부터 160℃에서는 일산화탄소에 대한 감도가 더 높고, 280℃에서는 수소에 대한 감도가 더 높음을 알 수 있다.It can be seen from FIG. 2 and Table 1 that the sensitivity to carbon monoxide is higher at 160 ° C. and higher at 280 ° C. for hydrogen.
실시예 2Example 2
SnO2상용분말에 1 몰% CuO와 3 몰%의 ZnO 분말을 혼합하고 열처리를 700 내지 900℃에서 수행하는 것을 제외하고는 실시예 1에서와 동일하게 수행하고, 수득된 센서의 감도를 측정하였다.The same procedure as in Example 1 was carried out except that 1 mol% CuO and 3 mol% ZnO powder were mixed in the SnO 2 commercial powder and heat treatment was performed at 700 to 900 ° C., and the sensitivity of the obtained sensor was measured. .
도 3a 및 b는 상기에서 제작한 가스센서의 감응층의 열처리 온도에 따른 일산화탄소(200ppm) 및 수소 가스(200ppm)에 대한 감도를 160℃와 280℃에서 비교한 그래프이다. 도 3에서 나타난 바와 같이, 본 발명에 따라 SnO2에 CuO와 ZnO를 동시에 첨가하여 얻은 재료를 감응층에 사용하게 되면, SnO2에 CuO만 첨가하였던 실시예 1의 결과보다도 훨씬 더 우수하게, 160℃에서의 일산화탄소에 대한 선택성 및 고온에서의 수소에 대한 선택성을 나타내었다. 특히 700℃의 낮은 온도에서 열처리를 할 때, 감도가 우수하고 특히 일산화탄소에 대한 감도가 수소에 비해 7배 이상 높게 나타난다. 상기 센서의 160℃와 280℃에서의 일산화탄소 및 수소에 대한 감응선택성을 계산하여 감도 결과와 함께 표 2에 나타내었다.3a and b are graphs comparing the sensitivity of carbon monoxide (200ppm) and hydrogen gas (200ppm) according to the heat treatment temperature of the sensitive layer of the gas sensor manufactured above at 160 ℃ and 280 ℃. As shown in FIG. 3, when a material obtained by simultaneously adding CuO and ZnO to SnO 2 according to the present invention was used in a sensitive layer, much better than the result of Example 1 in which only CuO was added to SnO 2 , 160. Selectivity to carbon monoxide at < RTI ID = 0.0 > C < / RTI > In particular, when the heat treatment at a low temperature of 700 ℃, the sensitivity is excellent, especially the sensitivity to carbon monoxide appears 7 times higher than hydrogen. The sensitivity of carbon monoxide and hydrogen at 160 ° C. and 280 ° C. of the sensor was calculated and shown in Table 2 together with the sensitivity results.
상기 센서 중 700℃에서 열처리한 것에 대해 160℃에서 일산화탄소와 수소의 농도를 1000ppm 까지 증가시키며 측정한 전류값의 변화를 도 4에 나타내었다. 도 4로부터, 수소가스의 농도를 1000ppm 까지 증가시켜도 전류변화가 매우 작은 반면에, 일산화탄소 가스에 의한 전류변화는 매우 큼을 알 수 있으며, 이로써 일산화탄소 가스 검출시 수소 가스에 의한 오동작을 막을 수 있다.The change in the measured current value is shown in FIG. 4 by increasing the concentrations of carbon monoxide and hydrogen up to 1000 ppm at 160 ° C for heat treatment at 700 ° C. From Fig. 4, even if the concentration of hydrogen gas is increased to 1000 ppm, the current change is very small, whereas the current change by the carbon monoxide gas is very large, thereby preventing the malfunction by the hydrogen gas when detecting the carbon monoxide gas.
실시예 3Example 3
SnO2상용분말과 ZnO 상용분말을 실시예 2와 같은 방법으로 혼합하여, (1-x)SnO2-xZnO (x = 0.03, 0.1, 0.3, 0.4, 0.6, 0.8 및 0.99) 조성의 성형체를 제조한 후, 800℃에서 열처리하여 동전형 가스감응 재료를 형성하였다.SnO 2 commercial powder and ZnO commercial powder were mixed in the same manner as in Example 2 to prepare a molded article having a composition of (1-x) SnO 2 -xZnO (x = 0.03, 0.1, 0.3, 0.4, 0.6, 0.8, and 0.99). After that, heat treatment was performed at 800 ° C. to form a coin gas sensitive material.
상기 소결체들 및 별도의 SnO2소결체를 미리 준비된 1중량% 의 CuO 용액에 1시간동안 담근 후, 750℃에서 다시 열처리하였다. 상기의 CuO 용액은 페치니(Pechini)법에 의해, Cu(NO3)·3H2O 금속 염을 증류수에 녹인 후 암모니아수(NH4OH)를 첨가하여 수산화 구리(Cu(OH)2) 침전물을 얻고, 이 침전물을 에틸렌글리콜(ethylene glycol)에 넣어 80 ℃로 가열한 다음 여기에 구연산(citric acid)을 조금씩 녹여 투명한 액상으로 제조하였다. 첨가된 CuO의 양은 기공 내에 채워진 CuO 용액의 양과 농도를 고려할 때, SnO2를 기준으로 약 0.05 몰% 이다.The sintered bodies and the separate SnO 2 sintered bodies were immersed in a 1 wt% CuO solution prepared in advance for 1 hour, and then heat-treated again at 750 ° C. The CuO solution was prepared by dissolving Cu (NO 3 ) .3H 2 O metal salt in distilled water by the Pechini method and then adding ammonia water (NH 4 OH) to precipitate the copper hydroxide (Cu (OH) 2 ) precipitate. The precipitate was added to ethylene glycol, heated to 80 ° C., and citric acid was dissolved therein to prepare a transparent liquid phase. The amount of added CuO is about 0.05 mol% based on SnO 2 , given the amount and concentration of CuO solution filled in the pores.
상기 감응층 재료를 이용하여 실시예 1에서와 같이 하여 센서를 제작하였으며, 제작된 센서의 일산화탄소 (200ppm) 및 수소 가스(200ppm)에 대한 감도는 실시예 1과 같은 방법으로 실시하여 그 결과를 도 5에 나타내었으며, 일산화탄소 및 수소가스에 대한 선택성을 계산하여 감도 결과와 함께 표 3 에 나타내었다.The sensor was fabricated in the same manner as in Example 1 using the sensitive layer material, and the sensitivity of carbon monoxide (200 ppm) and hydrogen gas (200 ppm) of the manufactured sensor was performed in the same manner as in Example 1. It is shown in 5, and the selectivity for carbon monoxide and hydrogen gas is calculated and shown in Table 3 with the sensitivity results.
도 5 및 표 3으로부터 알 수 있듯이, 실시예 2에서와 마찬가지로, SnO2에 CuO만 첨가된 것보다 ZnO가 함께 첨가될 때, 200℃에서는 일산화탄소에 대한 감도가 수소에 비해 더 높고, 350℃에서는 수소에 대한 감도가 더 높으며, 특히 ZnO가 3몰% 첨가되었을 때 가장 우수한 특성을 보였다.As can be seen from FIG. 5 and Table 3, as in Example 2, when ZnO is added together with SnO 2 rather than CuO alone, the sensitivity to carbon monoxide is higher at 200 ° C than at hydrogen, and at 350 ° C. The sensitivity to hydrogen is higher, especially when 3 mol% of ZnO is added.
본 발명에 따라 CuO 및 임의의 ZnO가 첨가된 SnO2재료를 가스감응층에 주 재료로 사용하면 CO 및 수소 가스에 대해 감지 선택성이 뛰어난 가스 센서를 얻을 수 있다.According to the present invention, when a SnO 2 material containing CuO and an optional ZnO is used as a main material in a gas sensitive layer, a gas sensor having excellent detection selectivity with respect to CO and hydrogen gas can be obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000067214A KR20020037185A (en) | 2000-11-13 | 2000-11-13 | Gas sensor having good sensitivity and selectivity and process for the preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000067214A KR20020037185A (en) | 2000-11-13 | 2000-11-13 | Gas sensor having good sensitivity and selectivity and process for the preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020037185A true KR20020037185A (en) | 2002-05-18 |
Family
ID=19698678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000067214A KR20020037185A (en) | 2000-11-13 | 2000-11-13 | Gas sensor having good sensitivity and selectivity and process for the preparation thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020037185A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100767347B1 (en) * | 2005-07-29 | 2007-10-17 | 최우성 | P-type Co3O4-SnO2 composite having superior selectivity to CO over H2, and thick film and gas sensor prepared therefrom |
KR100771526B1 (en) * | 2006-05-19 | 2007-10-30 | 전자부품연구원 | Gas sensor and manufactutring method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950352A (en) * | 1982-09-14 | 1984-03-23 | Nippon Denso Co Ltd | Detection element for nox |
JPS604849A (en) * | 1983-06-22 | 1985-01-11 | Nippon Denso Co Ltd | Nitrogen oxide detecting element |
KR20000055699A (en) * | 1999-02-09 | 2000-09-15 | 김희용 | Gas sensors for sulfur compound gas detection, and their fabrication method with CuO addition by dual lon beam sputtering |
-
2000
- 2000-11-13 KR KR1020000067214A patent/KR20020037185A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950352A (en) * | 1982-09-14 | 1984-03-23 | Nippon Denso Co Ltd | Detection element for nox |
JPS604849A (en) * | 1983-06-22 | 1985-01-11 | Nippon Denso Co Ltd | Nitrogen oxide detecting element |
KR20000055699A (en) * | 1999-02-09 | 2000-09-15 | 김희용 | Gas sensors for sulfur compound gas detection, and their fabrication method with CuO addition by dual lon beam sputtering |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100767347B1 (en) * | 2005-07-29 | 2007-10-17 | 최우성 | P-type Co3O4-SnO2 composite having superior selectivity to CO over H2, and thick film and gas sensor prepared therefrom |
KR100771526B1 (en) * | 2006-05-19 | 2007-10-30 | 전자부품연구원 | Gas sensor and manufactutring method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor | |
Ishihara et al. | Improved sensitivity of CuO BaTiO3 capacitive-type CO2 sensor by additives | |
Seiyama et al. | Ceramic humidity sensors | |
Dziubaniuk et al. | Application of bismuth ferrite protonic conductor for ammonia gas detection | |
RU2464554C1 (en) | Gas sensor for detecting nitrogen and carbon oxides | |
Conn et al. | A Polyaniline‐Based Selective Hydrogen Sensor | |
US4592967A (en) | Gas sensor of mixed oxides | |
WO1996024052A1 (en) | Electrochemical gas sensor | |
WO1996024052A9 (en) | Electrochemical gas sensor | |
JP3626485B2 (en) | Oxide semiconductor gas sensor and its substance | |
Chaudhary et al. | Comparative studies of doped and surface modified tin oxide towards hydrogen sensing: synergistic effects of Pd and Ru | |
JP2005504961A (en) | Solid potentiometric gas oxide sensor | |
Yoshioka et al. | La2O3-loaded SnO2 element as a CO2 gas sensor | |
US20130202489A1 (en) | Gas sensor with a highly porous structure constructed of catalyst-capped metal-oxide nanoclusters | |
KR20180015369A (en) | Highly reliable complex for detecting gas having independence againt humidity, method for preparing the complex, gas sensor comprising the complex, and method for preparing the gas sensor | |
Kim et al. | Sensitivity enhancement for CO gas detection using a SnO2–CeO2–PdOx system | |
Aroutiounian et al. | Study of hydrogen peroxide vapors sensor made of nanostructured co-doped SnO2 film | |
KR100480504B1 (en) | Process for selectively sensing carbon monoxide gas | |
CA1152415A (en) | Combustible gas sensor | |
KR20020037185A (en) | Gas sensor having good sensitivity and selectivity and process for the preparation thereof | |
Yamazoe | Chemical sensors R & D in Japan | |
Masa et al. | Chemiresistive sensors based on electrospun tin oxide nanofibers for detecting NO 2 at the sub-0.1 ppm level | |
EP0030112A1 (en) | Combustible gas detectors | |
Badwal et al. | Nernstian behaviour of zirconia oxygen sensors incorporating composite electrodes | |
KR20090090865A (en) | Formaldehyde gas sensing materials for formaldehyde gas sensors and theirs fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |