KR20020028432A - 표면감쇠파 미소공진기 레이저 - Google Patents

표면감쇠파 미소공진기 레이저 Download PDF

Info

Publication number
KR20020028432A
KR20020028432A KR1020000059431A KR20000059431A KR20020028432A KR 20020028432 A KR20020028432 A KR 20020028432A KR 1020000059431 A KR1020000059431 A KR 1020000059431A KR 20000059431 A KR20000059431 A KR 20000059431A KR 20020028432 A KR20020028432 A KR 20020028432A
Authority
KR
South Korea
Prior art keywords
gain medium
microresonator
attenuation wave
surface attenuation
laser
Prior art date
Application number
KR1020000059431A
Other languages
English (en)
Other versions
KR100355675B1 (ko
Inventor
안경원
문희종
조영탁
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1020000059431A priority Critical patent/KR100355675B1/ko
Priority to JP2001311823A priority patent/JP2002185064A/ja
Priority to EP01123380A priority patent/EP1198038A3/en
Priority to US09/975,596 priority patent/US20020080842A1/en
Publication of KR20020028432A publication Critical patent/KR20020028432A/ko
Application granted granted Critical
Publication of KR100355675B1 publication Critical patent/KR100355675B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • H01S5/1075Disk lasers with special modes, e.g. whispering gallery lasers

Abstract

수십∼수백 마이크론 정도 크기의 원형 대칭구조를 가지는 미소공진기 외부에 이득매질을 위치시키고 공진모드의 표면감쇠파에 존재하는 이득을 이용하여 레이저 발진을 발생시키는 표면감쇠파 미소공진기 레이저에 대해 개시하고 있다. 구체적으로, 본 발명에서는 미소 공진기 모드의 표면감쇠파가 존재하는 공진기 외부에 반도체, 원자, 분자, 또는 양자점과 같은 이득물질을 놓고, 전류나 외부 여기광을 사용하여 이득물질을 흥분시킨다. 이렇게 흥분된 이득물질이 내놓는 형광을 공진기 모드의 표면감쇠파와 결합하여 이득을 얻게 되고 공진기 모드에 해당하는 빛의 증폭이 일어난다. 증폭된 빛은 미소공진기 내부를 전반사과정을 통해 궤환하면서 표면감쇠파 영역의 흥분된 이득물질에서 다시 유도방출이 일어나게 하여 안정된 레이저 발진이 이루어진다. 특히, 본 발명에서는, 손실이 매우 적은 마이크로 스피어, 집적이 가능한 디스크형 또는 실린더형 미소공진기를 이용하는 레이저가 모두 포함된다.

Description

표면감쇠파 미소공진기 레이저 {Evanescent-wave coupled microcavity laser}
본 발명은 표면감쇠파 미소공진기 레이저에 관한 것이다.
표면 감쇠파(Evanescent-wave)는 굴절률이 큰 매질에서 작은 매질로 빛이 전반사각도 이상의 입사각으로 입사할 때 경계면으로부터 지수함수적으로 그 세기가 감소하는 전자기장을 일컫는다. 캐버티 링-다운 스펙트로스코피(Cavity ring-down spectroscopy) 방법으로 표면흡착과정을 연구하거나 프리즘 표면에 원자를 포획하는 실험 등에 표면감쇠파가 이용되고 있고, 레이저 공진기 내에 있는 프리즘을 전반사 각도로 위치시키고 프리즘 표면에 있는 액체의 흡수특성을 Q-스위칭(Q-switching) 동작에 이용하는 방법 등의 레이저 기술분야에 표면감쇠파가 활용되어 왔다. 표면감쇠파는 굴절률 차이가 존재하는 평면형 도파로(planar waveguide), 광섬유의 코어-클래드(core-clad) 경계면 등에 존재할 뿐 아니라, 크기가 10∼500㎛되는 원형 미소공진기에도 존재한다. 마이크로스피어(micro-sphere) 외부에 뾰족한 광섬유 팁(tip)을 근접시켰을 때 결합되어 나오는 신호를 측정함으로써 원형 미소공진기 외부에 표면감쇠파가 존재함를 실제 확인한 보고도 있다.
굴절률이 외부보다 큰 원통(cylinder), 디스크(disk) 혹은 구(sphere)에 존재하는 공진 모드는 편광에 따라 TM-모드(Transverse Magnetic Mode)와 TE-모드(Transverse Electric Mode)로 구분되고, 모드 수(mode number)n, 모드 순서(mode order)l에 의해 기술되며 "속삭이는 회랑 모드(whispering gallery mode; WGM)"라고도 불려진다. 색소가 첨가된 고체 구, 액체 방울, 액체 제트 등의 미소공진기에서 레이저 발진 실험이 최근 이루어졌고, 반도체 마이크로 디스크(micro disk) 구조에서 WGM 레이저, 폴리머 디스크 레이저(polymer disk laser) 등이 실용 가능성을 목표로 활발히 연구되고 있는 실정이다. 특히 반도체 마이크로 디스크 레이저는 소요전력이 매우 적고, 적은 공간에 고밀도의 집적이 가능하기 때문에 광전산기(optical computer), 광통신 등의 광정보처리 분야에서 그 수요가 급증할 것으로 예상된다. 그러나 상기의 미소공진기 레이저의 경우, WGM가 분포하는 원형공진기 내부에 이득물질이 존재하여 흥분된 이득물질의 열효과에 의해 Q값이 감소한다는 단점이 있었다.
표면감쇠파의 결합을 매개로 생성된 이득을 이용하여 신호광이 증폭될 수 있음은 70년대에 평면 도파로 구조에서 확인된 바 있고, 최근에는 광섬유의 클래딩에 이득물질을 도핑(doping)하여 광섬유 레이저를 발진시킨 보고가 발표되고 있으며 광통신 분야에서 광증폭기나 광원으로 각광받고 있다. 원형 미소공진기의 경우 Q값이 매우 큰 공진기 모드가 존재할 수 있음이 잘 알려져 왔다. 액체방울이나 액체제트와 같이 열적 섭동에 민감한 미소공진기의 경우에 이룰 수 있는 WGM의 유효 Q값은 108정도로 제약되나, 용융 실리카 마이크로 스피어와 같은 고체구에서 달성시킬 수 있는 유효 Q값은 약 1010정도로 매우 커질 수 있다. 따라서 이와 같은 고품위 미소공진기에서의 표면감쇠파 결합 특성을 이용한 레이저를 개발한다면 그 산업적 응용성이 지대할 것으로 예측되고 있다. 그럼에도 불구하고 미소공진기 외부에 있는 이득매질과 WGM의 감쇠파의 결합을 매개로 한 표면감쇠파 미소공진기 레이저에 대한 연구는 아직 초보단계에 지나지 않고 있다.
요약하자면 표면감쇠파의 결합을 이용한 광증폭 및 광섬유 레이저가 개발되었으나 이를 미소공진기에 적용한 발명은 없었다. 또 종래의 미소공진기 레이저는 이득매질을 미소공진기 내부에 놓아 Q값이 제한되고 흥분된 이득물질에 의한 Q값이 감소되어 고품위 미소공진기 레이저를 실현할 수 없었다.
따라서, 본 발명이 이루고자 하는 기술적 과제는, 종래의 미소공진기 레이저들과 개념적으로 상이한 표면감쇠파 미소공진기 레이저를 구현할 수 있음에 주목하여 이득물질을 미소공진기 외부에 위치시켜 흥분된 이득물질이 공진기에 미치는 영향을 최소화하여 최고 품위의 표면감쇠파 미소공진기를 이용한 레이저를 제공하는 것이다.
본 발명의 다른 기술적 과제는, 공진기의 Q값이 109~ 1010인 고품위의 미소공진기를 이용함으로서 이득물질을 흥분시키는 문턱에너지 값을 매우 크게 낮출 수 있고 이득물질의 농도나 공진기의 표면거칠기의 조절을 통해 발진 주파수의 조절과 단일 주파수 발진을 가능하게 하는 표면감쇠파 미소공진기 레이저를 제공하는 것이다.
본 발명의 또 다른 기술적 과제는 수십∼수백 마이크론 정도의 작은 공진기를 이용함으로서 고밀도 집적이 가능하고 최고품위의 공진기를 활용함으로서 단일 원자, 분자, 또는 양자점을 이득물질로 하여 양자적 성질을 갖는 미소공진기 레이저를 제공하는 것이다.
도 1은 본 발명의 일반적인 구현례인 표면감쇠파 미소공진기 레이저의 개략도;
도 2는 표면감쇠파 미소공진기 레이저에 사용된 크기 125 마이크론의 원통형 미소공진기에 존재하는 WGM(whispering gallery mode)의 표면감쇠파의 공간적 분포를 나타낸 그래프;
도 3은 본 발명의 일 실시예에 따른 표면감쇠파 실린더형 미소공진기 레이저의 개략도;
도 4는 실린더형 미소공진기 외부에 레이저 색소가 존재할 때, 표면감쇠파의 결합에 의한 발진되는 WGM들의 스펙트럼을 나타낸 그래프;
도 5는 본 발명의 다른 실시예에 따른 표면감쇠파 구형 미소공진기 레이저의 개략도;
도 6은 본 발명의 또 다른 실시예에 따른 표면감쇠파 디스크형 미소공진기 레이저의 개략도;
도 7은 고품위 마이크로 스피어의 표면감쇠파 영역에 단일 양자점, 원자, 또는 분자를 놓아 양자적 성질을 갖는 양자광 레이저를 구현하는 개략도이다.
* 도면의 주요부분에 대한 부호의 설명 *
110 : 원형 대칭구조의 미소공진기
120 : 이득매질부
122 : 표면감쇠파 영역
124 : 표면감쇠파가 존재하지 않는 이득영역
130 : 이득매질 외부영역
140 : 공진기 경계면에서 접선방향으로 출력되는 레이저 빛
150 : 여기광 또는 여기에너지
310 : 실린더형 미소공진기
320 : 이득매질부
325 : 이득매질부 보호영역
330 : 외부영역
510 : 구형 미소공진기
520 : 이득매질부
530 : 이득매질부의 외부영역
540 : 방출되는 WGM의 빛
545 : WGM 궤도
610 : 디스크형 미소공진기
620 : 이득매질
625 : 이득매질 보호층
630 : 외부영역
700 : 광섬유 줄기
710 : 고품위 실리카 마이크로 스피어
712 단일 원자, 분자, 또는 양자점
720 : 표면감쇠파의 세기 분포
740 : 방출되는 WGM 빛
745 : WGM
상기 기술적 과제들을 달성하기 위한 본 발명은, 원형 대칭 구조를 갖는 미소 공진기와; 상기 미소 공진기의 외부에 위치하되, 상기 미소 공진기의 굴절률보다 더 낮은 굴절률을 가지는 이득매질과; 상기 이득매질에 여기에너지를 인가하여 상기 이득매질을 흥분시키는 에너지 인가수단;을 구비함으로써 상기 공진기 모드의 표면감쇠파와의 결합을 통한 이득으로부터 발진되는 표면감쇠파 미소공진기 레이저를 제공하는 것을 특징으로 한다.
본 발명의 바람직한 실시예를 설명하기에 앞서 본 발명의 일반적인 구현례에 대해 설명하기로 한다.
도 1은 본 발명의 일반적인 구현례인 표면감쇠파 미소공진기 레이저의 개략도이다. 도 1을 참조하면, 표면감쇠파 미소공진기 레이저는 원형 미소공진기(110), 이득매질부(120), 이득매질 외부 영역(130), 발진되어 외부로 누출되는 WGM 레이저 빛(140), 및 외부에서 여기에너지를 인가하여 이득매질을 흥분시키는 부분(150)으로 구성되어 있다.
원형 미소공진기(110)는 직경이 수십∼수백 마이크론 정도의 크기로 표면이 매끄럽고 원형 형태를 갖고 있어 Q값이 매우 높은 WGM가 존재한다. 여기서, 원형 미소공진기라 함은, 공진기가 원형 대칭(circularly symmetrical) 구조를 가진 것으로서 이에는 실린더형, 디스크형, 구형, 또는 타원체(ellipsoid)형이 포함될 수 있다. 이득매질부(120)는 원형 미소공진기(110)보다 작은 굴절률을 가져야 하며, 이득을 낼 수 있는 형광 분자, 원자, 양자점(quantum dot) 또는 반도체 p-n 접합(junction)들이 분포되어 있는 부분으로 WGM의 표면감쇠파가 존재하는 부분(122)에서만이 이득을 얻을 수 있다. 설명되지 않은 참조번호 124는 표면감쇠파가 존재하지 않는 이득영역을 나타낸다. 표면감쇠파 영역(122)은 그 두께가 파장 크기보다 작아 0.5 마이크론 정도이다. 이득매질 외부 영역(130)은 이득매질부(120)보다 굴절률이 커 이득매질부(120)와 이득매질 외부 영역(130)의 경계면에 WGM가 존재하지 않도록 해야 한다. 따라서, 굴절률의 크기는이득매질부(120)보다 원형 미소공진기(110)가 크고 이득매질부(120)보다 이득매질 외부 영역(130)이 커야 하며 굴절률의 비는 Q값이 큰 WGM가 원형 미소공진기(110)와 이득매질부(120) 사이에 존재할 수 있는 조건을 만족시켜야 한다. 도 1에서 이득매질 외부 영역(130)의 굴절률이 이득매질부(120)보다 작거나 같은 경우에도 이득매질부(120)와 이득매질 외부 영역(130)의 경계면의 거칠기를 심하게 주어 이득매질부(120)와 이득매질 외부 영역(130)의 경계면에 존재할 수 있는 WGM의 유효 Q값을 크게 낮춰 레이징(lasing)이 발생하지 않도록 하여도 된다. WGM 레이저 빛(140)는 미소공진기(110)을 전반사하면서 돌다가 표면감쇠파의 누설 형태로 외부로 출력된다. 따라서 누설되는 지점의 경계면으로부터 경계면의 접선방향으로 방출되는 형태를 보인다. 미소공진기(110) 외부에 놓여있는 이득매질부(120)를 흥분시키기 위해 외부에서 에너지를 인가해 주어야 한다. 외부 에너지는 이득 매질이 형광 분자 혹은 원자일 경우, 광에너지 형태로 입력하고 양자점일 경우 전압을 인가하거나 광에너지를 입사할 수 있고, 반도체 p-n 접합 또는 양자우물(quantum well)일 경우에는 전류 형태로 에너지를 공급해주도록 한다. Q값이 매우 큰 원형 미소공진기에서는 문턱에너지가 매우 적을 수 있기 때문에 소비전력이 매우 적은 미소공진기 레이저를 구현할 수 있는 장점이 있다.
도 2는 표면감쇠파 미소공진기 레이저에 사용된 크기 125 마이크론의 원통형 미소공진기에 존재하는 WGM(whispering gallery mode)의 표면감쇠파의 공간적 분포를 나타낸 그래프이다. 즉, 도 2에 반경(a)이 125 마이크론인 광섬유(굴절률: 1.455)에 존재하는 여러 WGM의 방사방향(r)에 따른 공간적 분포를 나타내었다. 모드 순서가l인 WGM는 방사방향으로l개의 세기 피크(peak)를 가짐을 알 수 있고 실린더 미소공진기 외부에 지수함수적으로 감소하는 표면감쇠파가 존재함을 보여준다. WGM의 체적 중에서 표면감쇠파 영역이 차지하는 체적의 비를라 하면는 약 1/15∼1/30의 값을 가진다.가 1보다 매우 작다는 것은 발진된 대부분의 레이저 빛이 공진기 내부에 갇혀 있게 되어 표면감쇠파 영역의 이득매질에 미치는 영향을 최소화할 수 있다는 것을 의미한다. 표면감쇠파 미소공진기 레이저에서 WGM의 발진주파수 또는 발진파장은 수학식 1과 같이 표시된곡선의 최소점 근처에서 결정된다.
여기서,는 빛의 파장,,는 각각 파장에서의 이득매질의 흡수 및 방출 단면적,는 이득매질 분자, 원자, 또는 양자점의 단위부피당 개수, m은 이득매질에 대한 원형 미소공진기의 상대굴절률을 나타낸다. 이와 같이 주어진 파장을 중심으로 여러 WGM가 군(group) 형태로 발진하는 것이 미소공진기 레이저의 특징이다. 따라서 WGM의 Q값을 달리하면 발진파장이 이동되고 이득매질의 농도를 바꾸면 발진파장 또한 변화시킬 수 있다.
이하에서, 첨부도면들을 참조하여 본 발명의 바람직한 실시예를 더욱 상세히설명한다.
도 3은 본 발명의 일 실시예에 따른 표면감쇠파 실린더형 미소공진기 레이저의 개략도이다. 도 3을 참조하면, 실린더형 미소공진기(310)의 외부를 굴절률이 작은 이득매질부(320)가 둘러싸고 있고, 그 외부를 이득매질부(320)보다 큰 굴절률을 가지는 보호층(325)이 둘러싸고 있다. 보호층(325)의 두께는, 외부 영역(330)의 굴절률이 보호층(325)보다 큰 경우에는 상관이 없지만 보호층(325)의 굴절률보다 작은 경우에는, 보호층(325)과 외부 영역(330) 사이의 경계면에 존재하는 WGM가 이득매질부(320)까지 분포되지 않는 두께라야 한다. 구체적으로 외부 영역(330)에 대한 보호층(325)의 상대굴절률이m'이면, 보호층(325)의 두께는 약이상이어야 한다. 여기서은 보호층(325)의 반경이다. 만약 보호층(325)과 외부 영역(330)의 굴절률이 같도록 하면, 보호층(325)의 굴절률이 이득매질부(320)보다 크도록 해야하며 그 반대의 경우에는 이득매질부(320)와 보호층(325)의 경계면의 거칠기를 심하게 주어 이득매질부(320)과 보호층(325) 사이의 WGM의 발진을 억제해야 한다. 본 실시예에서 실린더형 미소공진기(310)로서 직경이 125 마이크론인 광섬유를 사용하였고 이득매질부(320)로서 레이저 색소 로다민(Rhodamine) 6G가 2mM/L의 농도로 용해된 에탄올 액체를 사용하였다. 이득매질부(320)의 외부보호층(325)은 굴절률이 1.458인 용융실리카 캐필러리(capillary)로서 이득매질부(320)보다 큰 굴절률을 갖는다. 이 경우, 에탄올의 굴절률은 1.361로서 광섬유 굴절률(1.455)보다 작아 에탄올-광섬유 경계면에 Q값이 큰 WGM가 존재한다. 이 때Q-스위칭 Nd:YAG 레이저(532㎚) 펄스(펄스폭 : 10㎱)를 여기광(勵起光)으로 사용하였다.
도 4는 실린더형 미소공진기 외부에 레이저 색소가 존재할 때, 표면감쇠파의 결합에 의한 발진되는 WGM들의 스펙트럼을 나타낸 그래프이다. 도 4를 참조하면, 발생된 신호광이 레이징(lasing) 과정에 의해 발진된 광섬유 WGM이라는 것을 확실하게 보여준다. 여기광의 세기가 0.2mJ 일 때에는 약 3개의 피크(peak)들만이 스펙트럼 상에 나타나지만, 여기광의 세기가 1mJ, 3mJ로 증가함에 따라 나타나는 피크들의 수가 증가한다. 이는 발생되는 신호광이 전형적인 다중모드발진 레이저의 출력광처럼 문턱특성이 있음을 보여 준다. 도 4에서 피크들 사이의 간격은 약 0.6㎚로 측정되었으며 이는 125 마이크론 직경의 실린더 공진기에서 계산된 모드 간격과 일치한다. 따라서 측정된 스펙트럼이 광섬유 경계면에서 방출된 표면감쇠파 레이저의 출력광의 스펙트럼임을 확인할 수 있다. 600㎚ 파장 근처에서 발진된 모드는 Q값이 약 3x107정도인 WGM임을 수학식 1을 사용하여 확인할 수 있다.
다시 도 4를 참조하면, 여기광의 세기가 적을 때는 거의 단일모드발진이 일어남을 알 수 있다. 특수한 광섬유 위치에서는 여기광의 세기가 증가해도 단일주파수발진이 일어남을 확인할 수 있다. 이러한 단일주파수발진은 광섬유 표면거칠기의 역할과 관련 있다. 표면거칠기를 적당히 조절하여 단일주파수발진을 일으키는 미소공진기 레이저를 실현하면 그 용도가 다양할 것이다. 광정보 통신용 광원은 대개 단일주파수 동작을 필요로 한다는 점을 고려하면 단일주파수 표면감쇠파 미소공진기 레이저의 필요성을 절감할 수 있다. 이를 실현하기 위해 본 발명에서는 미소공진기 표면거칠기를 주기적으로 조절하여 일종의 격자(grating)를 형성시켜 이를 달성한다. 발진시키고자 하는 WGM의 모드 수가n일 경우, 원형 공진기 주위로 수 십 ㎚ 정도의 표면거칠기를 주기적으로 2n회 인가해 준다. 그러면 WGM의 보강 및 소멸 간섭 효과에 의한 Q값의 변조가 일어나고 모드 수n의 WGM만이 보강간섭되어 레이징 과정에서 주도적으로 발진하게 되어 단일주파수발진을 이룩할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 표면감쇠파 구형 미소공진기 레이저의 개략도이다. 본 실시예에서는 Q 값이 매우 큰 구형 미소공진기가 이용된다. 도 5를 참조하면, 크기가 수 십∼수 백 마이크론 되는 구형 미소공진기(510)의 외부에 굴절률이 작은 이득매질부(520)를 놓고 구형 미소공진기(510)와 이득매질부(520) 근처의 WGM(545)를 레이저 발진에 이용한다. 이득 매질부 외부영역(530)은 상기한 바와 같이 이득매질부(520)보다 그 굴절률이 크게 하거나, 이득매질부(520)와 이득매질부 외부영역(530) 경계면의 거칠기가 심하도록 한다. 발진되는 WGM의 출력(540)은 경계면의 접선방향으로 방출된다. 구형 미소공진기의 경우 그 대칭성에 따라 어느 곳이 극이고 어느 지점이 적도인지 정해지지 않으므로 구의 반경a를 반지름으로 하는 어떤 원형궤도도 발진할 수 있어 방출되는 레이저 빛은 사방에서 측정된다. 이러한 점을 보완하기 위해 이득매질부를 특정영역에만 국한한다든가 구형 미소공진기를 타원형태로 찌그러뜨려 주도적으로 발진하는 원형궤도를 설정할 수 있다. 특히 전류를 인가하여 이득매질을 흥분시킬 경우에는 두 전극의 위치를 극지점으로 하여 적도 부근에서 주도적으로 레이저 발진이 일어나도록 하면 다양한 분야에 응용될 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 표면감쇠파 디스크형 미소공진기 레이저의 개략도이다. AlGaAs, InGaP 등의 반도체 양자우물 원형 미소공진기 레이저에서는 미소공진기 자체가 이득매질이 되는 특징이 있으나 본 발명에서는 Q값이 큰 디스크형 미소공진기가 제작된 다음 그 외부에 상기한 이득매질이 위치하는 특징이 있다. 일반적으로, 반도체 구조물에 도핑(doping) 농도를 달리하면 굴절률이 바뀐다. 도 6의 실시예에서는, 디스크형 미소공진기(610)와 이득매질(620)을 제작할 때 도핑 농도를 달리하여 디스크형 미소공진기(610)의 굴절률이 이득매질(620)의 굴절률보다 높게 만든다. 마찬가지로 이득매질 외부영역(630)의 도핑 농도를 조절하여 그 굴절률이 이득매질(620)의 굴절률보다 높게 설정하고 외부에서 전류나 광에너지를 인가하면 디스크형 미소공진기(610)와 이득매질(620)의 경계면 근처에 존재하는 WGM의 발진이 일어난다. 이득매질 보호층(625)이 이득매질 외부영역(630)과 같을 수도 있으며 이득매질 외부영역(630)의 굴절률이 이득매질 보호층(625)보다 작을 경우에는 이득매질 보호층(625)과 이득매질 외부영역(630) 경계면 상의 WGM 분포가 이득매질(620)에 침투하지 않도록 하여야 한다.
도 7은 고품위 마이크로 스피어의 표면감쇠파 영역에 단일 양자점, 원자, 또는 분자를 놓아 양자적 성질을 갖는 양자광 레이저를 구현하는 개략도이다. 도 7을 참조하면, Q값이 매우 큰 실리카 마이크로 스피어(silica micro-sphere; 710) 외부에 단일 원자, 분자, 또는 양자점(712)이 WGM(745)의 표면감쇠파 영역(720) 내에 있을 때 발진하여 레이저 빛(740)을 방출하는 단일 양자광 미소공진기 레이저의 개략도이다. 도 7에서는 표면감쇠파 영역(720)을 마이크로 스피어(710)의 반경방향 증가에 따라 강도가 감소하는 표면감쇠파로써 나타내었다. 대략 50∼500 마이크론 크기의 실리카 마이크로 스피어(710)는 광섬유(700)를 CO2레이저나 수소-산소 불꽃으로 녹여 제작한다. 광섬유의 길이방향을 중력방향과 나란하게 하고, 중력 하에서 광섬유의 일단을 녹여 제작한 실리카 마이크로 스피어는 적도의 반경이 극의 반경보다 작은 찌그러진 타원체가 된다. 따라서, 적도 부근을 중심으로 발진되는 WGM이 레이저 빛(740)의 방향과 같이 경계면의 접선방향으로 방출된다. 이 경우 용융 실리카의 흡수계수가 가시광 또는 적외선 영역에서 매우 적기 때문에 유효 Q값이 109∼1010정도로 매우 큰 고품위 미소공진기의 구현이 가능하다. 이와 같은 고품위 미소공진기는 손실이 매우 적기 때문에 아주 작은 이득만으로도 레이저 발진이 가능하고 극단적으로 이득이 큰 단일 원자, 분자, 또는 양자점 만으로도 레이저 발진이 일어날 수 있다. 이 경우 발진된 레이저 빛은 단일원자와 공진기의 상호작용으로 발생하기 때문에 빛의 양자적 성질이 반영된 새로운 형태의 빛을 만들 수 있다. 이러한 양자광 레이저는 양자광학, 근접장 광학 등의 분야에 적용될 수 있는 근원적인 광원을 제공할 수 있다.
상술한 바와 같은 본 발명에 의하면, 원형 미소공진기의 표면감쇠파의 결합을 통해 형성된 이득을 매개로 발진하는 미소공진기 레이저를 구현할 수 있다. 본발명에 의해 초저문턱 반도체 레이저가 실현되면 광정보처리에 필요한 에너지를 최소화할 수 있다. 그리고, 크기가 매우 작은 미소공진기의 특징을 이용하므로 광정보처리용 고집적 광원 열(array) 제작에도 응용할 수 있다. 또한 본 발명은 이득매질의 농도나 미소공진기 표면거칠기를 조절하여 발진파장을 조절할 수 있기 때문에 광원소자에 유연성을 부여하고 적용분야의 확대를 꾀할 수 있다. 본 발명은 또한 초고품위의 미소공진기를 이용할 수 있으므로 단일 원자, 분자, 또는 양자점을 이용한 양자광 레이저를 실현시킬 수 있어 양자광학, 근접광학 등의 분야에 유용한 광원소자의 개발을 가능하게 한다.
본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다. 따라서, 본 발명에 따른 표면감쇠파 미소공진기 레이저를 집적하여 어레이(array) 형태로 사용하여도 본 발명의 자명한 응용에 해당할 것이다.

Claims (15)

  1. 원형 대칭 구조를 갖는 미소 공진기와;
    상기 미소 공진기의 외부에 위치하되, 상기 미소 공진기의 굴절률보다 더 낮은 굴절률을 가지는 이득매질과;
    상기 이득매질에 여기에너지를 인가하여 상기 이득매질을 흥분시키는 에너지 인가수단;
    을 구비함으로써 상기 공진기 모드의 표면감쇠파와의 결합을 통한 이득으로부터 발진되는 표면감쇠파 미소공진기 레이저.
  2. 제1항에 있어서, 상기 미소 공진기가 실린더형, 디스크형, 구형, 또는 타원체형인 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  3. 제1항에 있어서, 상기 이득매질이 형광분자 또는 형광원자인 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  4. 제3항에 있어서, 상기 에너지 인가수단이 상기 이득매질에 대한 광에너지 인가수단임을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  5. 제1항에 있어서, 상기 이득매질이 양자점인 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  6. 제5항에 있어서, 상기 에너지 인가수단이 상기 이득매질에 대한 전압 또는 광에너지 인가수단임을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  7. 제1항에 있어서, 상기 이득매질이 반도체 p-n 접합 또는 반도체 양자우물인 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  8. 제7항에 있어서, 상기 에너지 인가수단이 상기 이득매질에 대한 전류 인가수단임을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  9. 제1항에 있어서, 상기 미소공진기가 실리카 용융과정을 거쳐 만들어진 것을특징으로 하는 표면감쇠파 미소공진기 레이저.
  10. 제1항에 있어서, 상기 미소공진기의 원형 대칭부분의 단면직경이 10∼200 마이크론 범위 내에 있는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  11. 제1항에 있어서, 상기 미소공진기의 Q값이 109∼1010범위 내에 있는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  12. 제1항에 있어서, 상기 미소공진기로부터 나오는 빛의 발진파장이 아래 식에 표시된곡선의 최소점 근처에서 결정되는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저,
    여기서,는 빛의 파장,는 WGM의 체적 중에서 표면감쇠파 영역이 차지하는 체적의 비,,는 각각 파장에서의 이득매질의 흡수 및 방출 단면적,는 이득매질 분자, 원자, 또는 양자점의 단위부피당 개수, m은 이득매질에 대한원형 미소공진기의 상대굴절률.
  13. 제12항에 있어서, 상기 이득매질과 그 외부 영역의 경계면이 거칠기를 갖는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  14. 제12항에 있어서, 원형 미소공진기의 표면 거칠기가 주기적으로 조절되어 격자역할을 함으로써 단일 주파수로 발진하는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
  15. 제3항, 제5항 및 제7항 중의 어느 한 항에 있어서, 상기 미소공진기 외부에 단일 원자, 분자 또는 양자점을 위치시켜 양자적 성질을 갖는 것을 특징으로 하는 표면감쇠파 미소공진기 레이저.
KR1020000059431A 2000-10-10 2000-10-10 표면감쇠파 미소공진기 레이저 KR100355675B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020000059431A KR100355675B1 (ko) 2000-10-10 2000-10-10 표면감쇠파 미소공진기 레이저
JP2001311823A JP2002185064A (ja) 2000-10-10 2001-10-09 エバネッセント波微小共振器レーザー
EP01123380A EP1198038A3 (en) 2000-10-10 2001-10-10 Evanescent-wave coupled microcavity laser
US09/975,596 US20020080842A1 (en) 2000-10-10 2001-10-10 Evanescent-wave coupled microcavity laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000059431A KR100355675B1 (ko) 2000-10-10 2000-10-10 표면감쇠파 미소공진기 레이저

Publications (2)

Publication Number Publication Date
KR20020028432A true KR20020028432A (ko) 2002-04-17
KR100355675B1 KR100355675B1 (ko) 2002-10-11

Family

ID=19692687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000059431A KR100355675B1 (ko) 2000-10-10 2000-10-10 표면감쇠파 미소공진기 레이저

Country Status (4)

Country Link
US (1) US20020080842A1 (ko)
EP (1) EP1198038A3 (ko)
JP (1) JP2002185064A (ko)
KR (1) KR100355675B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038853B1 (ko) * 2008-04-18 2011-06-02 삼성엘이디 주식회사 레이저 시스템
WO2017069438A1 (ko) * 2015-10-22 2017-04-27 재단법인대구경북과학기술원 극고품위 값을 가지는 한 방향 발진 마이크로 디스크 및 이를 이용하는 레이저
KR101896180B1 (ko) * 2017-04-11 2018-09-07 재단법인대구경북과학기술원 마이크로 디스크, 마이크로 디스크 레이저 및 이를 이용한 화학 센서
WO2018190577A1 (ko) * 2017-04-11 2018-10-18 재단법인대구경북과학기술원 마이크로 디스크, 마이크로 디스크 레이저 및 이를 이용한 센서

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978070B1 (en) * 2001-08-14 2005-12-20 The Programmable Matter Corporation Fiber incorporating quantum dots as programmable dopants
US7491491B2 (en) * 2002-03-12 2009-02-17 Polytechnic Institute Of New York University Detecting and/or measuring a substance based on a resonance shift of photons orbiting within a microsphere
DE60316334T2 (de) * 2002-10-02 2008-06-26 California Institute Of Technology, Pasadena Methode zur Herstellung eines Mikroresonators mit ultrahoher Güte aus Quarzglas auf Siliziumsubstrat
AU2003284319A1 (en) * 2002-10-22 2004-05-13 Polytechnic University Enhancing the sensitivity of a microsphere sensor
US7122384B2 (en) * 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
US20040196465A1 (en) * 2002-12-12 2004-10-07 Stephen Arnold Using a change in one or more properties of light in one or more microspheres for sensing chemicals such as explosives and poison gases
US20040238744A1 (en) * 2003-01-15 2004-12-02 Stephen Arnold Perturbation approach to resonance shift of whispering gallery modes in a dielectric microsphere as a probe of a surrounding medium
CN101065845A (zh) * 2004-06-04 2007-10-31 可编程物公司 包含作为可编程掺杂剂的量子点的层状复合薄膜
US8891575B2 (en) * 2004-11-30 2014-11-18 Massachusetts Institute Of Technology Optical feedback structures and methods of making
US7818350B2 (en) 2005-02-28 2010-10-19 Yahoo! Inc. System and method for creating a collaborative playlist
US7502405B2 (en) * 2005-08-22 2009-03-10 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Semiconductor system having a ring laser fabricated by expitaxial layer overgrowth
EP1924882B1 (en) 2005-09-16 2018-11-07 The Board Of Trustees Of The Leland Stanford Junior University Microresonator optical switch and method for manufacturing an optical switch
JP5189247B2 (ja) * 2005-09-27 2013-04-24 スタンレー電気株式会社 半導体光源装置の製造方法
AU2007238477A1 (en) * 2006-02-17 2007-10-25 Ravenbrick, Llc Quantum dot switching device
US7649677B2 (en) * 2006-04-04 2010-01-19 Hitachi Global Storage Technologies Netherlands B.V. Multi-ridged subwavelength aperture for optical transmission and thermally assisted magnetic recording
US7729085B2 (en) * 2006-04-04 2010-06-01 Hitachi Global Storage Technologies Netherlands B.V. Thermally assisted recording of magnetic media using an optical resonant cavity
US7627017B2 (en) * 2006-08-25 2009-12-01 Stc. Unm Laser amplifier and method of making the same
US7601946B2 (en) 2006-09-12 2009-10-13 Ravenbrick, Llc Electromagnetic sensor incorporating quantum confinement structures
WO2008092038A1 (en) 2007-01-24 2008-07-31 Ravenbrick, Llc Thermally switched optical downconverting filter
US8363307B2 (en) * 2007-02-28 2013-01-29 Ravenbrick, Llc Multicolor light emitting device incorporating tunable quantum confinement devices
US7936500B2 (en) * 2007-03-02 2011-05-03 Ravenbrick Llc Wavelength-specific optical switch
JP5116354B2 (ja) * 2007-04-27 2013-01-09 芝浦メカトロニクス株式会社 固体レーザ媒質および固体レーザ発振器
CN101796452A (zh) * 2007-06-13 2010-08-04 Oe电波公司 锁定至回音壁模式谐振腔的可调谐激光器
KR101265393B1 (ko) 2007-07-11 2013-05-20 라벤브릭 엘엘씨 열적 절환식 반사형 광학 셔터
CA2703010A1 (en) * 2007-09-19 2009-03-26 Ravenbrick, Llc Low-emissivity window films and coatings incorporating nanoscale wire grids
CA2700108C (en) * 2007-09-19 2015-10-13 Mitsubishi Cable Industries, Ltd. Optical fiber structure, system for fabricating the same, and block-like chip for use therein
US8092855B2 (en) * 2007-11-28 2012-01-10 California Institute Of Technology Click chemistry surface functionalization for resonant micro-cavity sensors
US8169685B2 (en) 2007-12-20 2012-05-01 Ravenbrick, Llc Thermally switched absorptive window shutter
WO2009137202A2 (en) * 2008-04-03 2009-11-12 California Institute Of Technology Optical sensing based on overlapping optical modes in optical resonator sensors and interferometric sensors
KR101302802B1 (ko) * 2008-04-23 2013-09-02 라벤브릭 엘엘씨 반사성 및 열반사성 표면의 광택 조절
US9116302B2 (en) * 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
AU2009282812B2 (en) * 2008-08-20 2013-02-21 Ravenbrick, Llc Methods for fabricating thermochromic filters
US8515227B2 (en) * 2009-03-13 2013-08-20 Ofs Fitel, Llc Microbubble optical resonator
EP2417481B1 (en) 2009-04-10 2016-11-16 Ravenbrick, LLC Thermally switched optical filter incorporating a guest-host architecture
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers
US8642111B2 (en) * 2009-05-19 2014-02-04 Polytechnic Institute Of New York University Functionalizing a sensing ribbon on a whispering gallery mode microresonator using light force to fabricate a whispering gallery mode sensor
WO2011053853A2 (en) * 2009-10-30 2011-05-05 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
WO2011062708A2 (en) 2009-11-17 2011-05-26 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
AU2011235265A1 (en) * 2010-03-29 2012-10-25 Ravenbrick Llc Polymer-stabilized thermotropic liquid crystal device
EP2576934A4 (en) 2010-06-01 2014-01-01 Ravenbrick Llc MULTIFUNCTIONAL CONSTRUCTION PART
US9246300B2 (en) * 2012-06-01 2016-01-26 Ronald LaComb Mode tailored spherical laser
US9318866B2 (en) * 2013-03-15 2016-04-19 Lawrence Livermore National Security, Llc Sub-wavelength plasmon laser
WO2015126517A2 (en) * 2013-12-19 2015-08-27 The Board Of Trustees Of The University Of Illinois Injection-seeded whispering gallery mode optical amplifier devices and networks
CN103811997A (zh) * 2014-02-28 2014-05-21 中国科学院半导体研究所 环形电极微腔激光器
US9403237B2 (en) 2014-03-12 2016-08-02 Oewaves, Inc. Systems and methods for removing mode families
WO2015137945A1 (en) * 2014-03-12 2015-09-17 Oewaves, Inc. Systems and methods for removing mode families
JP6831516B2 (ja) * 2017-02-28 2021-02-17 国立大学法人九州大学 無機マイクロディスク及びその製造方法
US11658453B2 (en) * 2018-01-29 2023-05-23 Ronald LaComb Concentric cylindrical circumferential laser
CN108321670B (zh) * 2018-03-22 2023-12-01 华南理工大学 一种级联泵浦的微腔激光器
US10571269B1 (en) * 2019-02-13 2020-02-25 Honeywell International Inc. Circular resonator evanescent-wave trapped atomic gyroscope
EP3930576A1 (en) * 2019-03-01 2022-01-05 Vidya Holdings Ltd Improvements in or relating to an optical element
US10958040B1 (en) * 2019-09-17 2021-03-23 International Business Machines Corporation Fabrication of ellipsoidal or semi-ellipsoidal semiconductor structures
KR102432685B1 (ko) 2021-03-25 2022-08-12 재단법인대구경북과학기술원 예외점을 발생시키는 거울 대칭 마이크로 공진기 및 거울 대칭 마이크로 공진기 레이저 장치와 마이크로 공진기의 제조 방법
CN114530748B (zh) * 2022-01-29 2023-11-21 闽都创新实验室 基于球冠镀膜球柄注光加热的可调谐微球激光器及方法
CN116661066B (zh) * 2023-05-30 2024-02-13 北京大学长三角光电科学研究院 一种自耦合的微盘腔及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751716A (en) * 1986-05-01 1988-06-14 Amada Engineering & Service Co., Inc. Hollow cylindrical solid state laser medium and a laser system using the medium
US4829537A (en) * 1986-12-01 1989-05-09 Spectra-Physics, Inc. Solid state lasers with spherical resonators
JPH0513844A (ja) * 1991-07-02 1993-01-22 Mitsubishi Electric Corp 固体レーザ発振方法
CA2068899C (en) * 1991-09-17 1997-06-17 Samuel Leverte Mccall Whispering mode micro-resonator
KR20000013451A (ko) * 1998-08-08 2000-03-06 이종수 레이저 펌핑장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038853B1 (ko) * 2008-04-18 2011-06-02 삼성엘이디 주식회사 레이저 시스템
WO2017069438A1 (ko) * 2015-10-22 2017-04-27 재단법인대구경북과학기술원 극고품위 값을 가지는 한 방향 발진 마이크로 디스크 및 이를 이용하는 레이저
US10381795B2 (en) 2015-10-22 2019-08-13 Daegu Gyeongbuk Institute Of Science And Technology Unidirectionally emitting microdisk having ultra-high quality factor and laser using the same
KR101896180B1 (ko) * 2017-04-11 2018-09-07 재단법인대구경북과학기술원 마이크로 디스크, 마이크로 디스크 레이저 및 이를 이용한 화학 센서
WO2018190577A1 (ko) * 2017-04-11 2018-10-18 재단법인대구경북과학기술원 마이크로 디스크, 마이크로 디스크 레이저 및 이를 이용한 센서

Also Published As

Publication number Publication date
KR100355675B1 (ko) 2002-10-11
US20020080842A1 (en) 2002-06-27
EP1198038A3 (en) 2005-01-05
EP1198038A2 (en) 2002-04-17
JP2002185064A (ja) 2002-06-28

Similar Documents

Publication Publication Date Title
KR100355675B1 (ko) 표면감쇠파 미소공진기 레이저
Levi et al. Directional light coupling from microdisk lasers
US8207002B2 (en) All-silicon raman amplifiers and laser based on micro ring resonators
US6891864B2 (en) Fiber-coupled microsphere Raman laser
US7535634B1 (en) Optical device, system, and method of generating high angular momentum beams
US6795481B2 (en) Non-spherical whispering-gallery-mode microcavity
US6259717B1 (en) Asymmetric resonant optical cavity apparatus
US20110267612A1 (en) Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and Its Applications
US5311525A (en) Nonlinear optical coupler using a doped optical waveguide
US20080310789A1 (en) Method of Changing the Birefringence of an Optical Waveguide by Laser Modification of the Cladding
JP2011114061A (ja) レーザ発振器、及び、モードフィルタ
Behzadi et al. Spectral and modal properties of a mid-IR spherical microlaser
Guo et al. Symmetric step-apodized distributed feedback fiber laser with improved efficiency
US20090316732A1 (en) Fiber optic power laser device
Prabhu et al. Whispering gallery modes at THz
US20230124384A1 (en) Optically pumped on-chip solid-state laser
US20110249689A1 (en) Devices, systems, and methods providing micro-ring and/or micro-racetrack resonator
Thual et al. Micro-lens on polarization maintaining fibre for coupling with 1.55 μm quantum dot devices
Li et al. A whispering-gallery mode microsphere resonator based on optical fiber with an open microcavity
CN112653514B (zh) 多波长光源生成器和生成多波长光源的方法
Roy et al. Active Optical Fibers: New design and alternative method of fabrication
JP2017010974A (ja) フォトニック結晶結合共振器
Bakhtiari Gorajoobi Theoretical and experimental investigation of novel passive and active optical microresonators
Wang et al. Power output correction model of narrow linewidth ring fiber laser filtered with whispering gallery mode resonator
Torchigin et al. One-dimensional inhomogeneous photonic bandgap structures based on tapered fibres

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080905

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee