KR20020026341A - ferromagnetic - semiconductor single crystal and their manufacturing method - Google Patents

ferromagnetic - semiconductor single crystal and their manufacturing method Download PDF

Info

Publication number
KR20020026341A
KR20020026341A KR1020020014593A KR20020014593A KR20020026341A KR 20020026341 A KR20020026341 A KR 20020026341A KR 1020020014593 A KR1020020014593 A KR 1020020014593A KR 20020014593 A KR20020014593 A KR 20020014593A KR 20020026341 A KR20020026341 A KR 20020026341A
Authority
KR
South Korea
Prior art keywords
crucible
single crystal
semiconductor single
growth crucible
heating
Prior art date
Application number
KR1020020014593A
Other languages
Korean (ko)
Other versions
KR100483318B1 (en
Inventor
정세영
조채룡
Original Assignee
정세영
조채룡
권용범
주식회사 컴텍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정세영, 조채룡, 권용범, 주식회사 컴텍스 filed Critical 정세영
Priority to KR10-2002-0014593A priority Critical patent/KR100483318B1/en
Publication of KR20020026341A publication Critical patent/KR20020026341A/en
Application granted granted Critical
Publication of KR100483318B1 publication Critical patent/KR100483318B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: A ferromagnetic semiconductor single crystal is provided which shows ferromagnetism around an ordinary temperature by growing the materials into a crystal by adding flux and transition metal to gallium, and a manufacturing method of the ferromagnetic semiconductor single crystal is provided. CONSTITUTION: The ferromagnetic semiconductor single crystal is formed by cooling the heated raw material reagent to an ordinary temperature in stages after preparing a raw material reagent by adding a flux selected from NaN3, Li3N, Ca3N2 and Mg3N2 to gallium and adding a transition metal to the flux added gallium, putting the prepared raw material reagent into a growing crucible, and sealing and heating the growing crucible. The manufacturing method of the ferromagnetic semiconductor single crystal comprises a mixing process of forming a mixture by mixing the weighed materials after weighing an initial reaction material of gallium(Ga), a flux selected from NaN3, Li3N, Ca3N2 and Mg3N2 and a transition metal to a certain mixing ratio; a sealing process of sealing the crucible from the outside after putting the mixture into a growing crucible; a heating process of heating the crucible so that a temperature gradient of 20 to 50 deg.C is formed after vertically positioning the sealed growing crucible at the central part of a vertical heat treatment furnace each zones of which are heated; a cooling process of cooling the growing crucible to an ordinary temperature by turning off a power supply of the vertical heat treatment furnace after the heating process; and a post-treatment process of washing and drying the cooled resulting material by opening the growing crucible passing through the cooling process.

Description

상온 강자성 반도체 단결정 및 그 제조방법{ferromagnetic - semiconductor single crystal and their manufacturing method}Ferromagnetic-semiconductor single crystal and their manufacturing method

본 발명은 강자성 반도체 단결정에 관한 것으로, 더욱 상세하게는, 갈륨에 플럭스(flux) 및 전이금속을 첨가하여 결정으로 성장시킴에 의해 상온근처에서 강자성 현상을 나타내는 상온 강자성 반도체 단결정 및 그 제조방법에 관한 것이다.The present invention relates to a ferromagnetic semiconductor single crystal, and more particularly, to a room temperature ferromagnetic semiconductor single crystal exhibiting a ferromagnetic phenomenon near room temperature by adding a flux and a transition metal to gallium to grow into a crystal, and a method of manufacturing the same. will be.

근래에 들어 강자성반도체에 대한 연구가 행해지고 있으며, 특히 갈륨과 비소에 자성체인 망간을 첨가하여 강자성반도체를 제조하여 비자성반도체와 접합시켜 발광다이오드를 만드는 등의 시도가 행해지고 있지만 그 성과는 미미한 실정이다.In recent years, research on ferromagnetic semiconductors has been conducted. In particular, attempts have been made to manufacture ferromagnetic semiconductors by adding manganese, which is made of gallium and arsenic, to form light emitting diodes by bonding them with nonmagnetic semiconductors, but the results are insignificant. .

Giant Magneto-Resistance(GMR) 과 Magnetic Tunnel Junctions(MTJ) 같은 현상들이 최첨단 자기기록 산업을 가지게 하였다면, 물질 제조에서의 발전은 강자성 반도체의 생산 장비인 Molecular Beam Epitaxy(이하 MBE) 성장장비로 인해 전자산업의 혁명이 일어나게 되었다. 반도체 운반자의 스핀들을 활용하기 위해 참신한 제조 장비와 다양한 물리적 현상이 제안되어져 왔으며 많은 연구자들에 의해 증명되어져 왔다.While phenomena such as Giant Magneto-Resistance (GMR) and Magnetic Tunnel Junctions (MTJ) have led to a state-of-the-art magnetic recording industry, advances in materials manufacturing have been driven by the growth of Molecular Beam Epitaxy (MBE) growth equipment, the production equipment for ferromagnetic semiconductors. The revolution of Novel manufacturing equipment and various physical phenomena have been proposed to utilize the spindles of semiconductor carriers and have been proven by many researchers.

최근 반도체에 스핀 주입의 증명은 ZnMnSe를 사용한 spin-LED로부터 편광된 발광을 관찰함으로써 증명되어졌다. 즉 자성반도체(강자성 정렬을 보이는 반도체)는 스핀트로닉스(spintronics) 장치를 실현화하는데 중요한 역할을 한다. 과거에는 트랜지스터 혁명이후 반도체 전기소자의 모든 관점이 전자전하의 개발에 기반을 두고 있었다. 그러나, 현재는 많은 연구 노력이 전자스핀의 성질을 개발하는 방법에 집중되어 있다. 전자 스핀의 파동함수의 양자적 성질을 활용하는 스핀트로닉스(spintronic) 장치는 일렉트로 옵틱(electro-optic) 스위치, 울트라 센시티브(ultra-sensitive) 자기장 센서, 특히 고속 계산기를 위한 양자를 기본으로 한 로직(logic)과 메모리(memory)의 개발에 큰 발전을 이룩하였다.Recent proof of spin injection in semiconductors has been demonstrated by observing polarized light emission from spin-LEDs using ZnMnSe. Magnetic semiconductors (semiconductors with ferromagnetic alignment) play an important role in the realization of spintronics devices. In the past, after the transistor revolution, all aspects of semiconductor electrical devices were based on the development of electronic charges. However, many research efforts are currently focused on how to develop the properties of electron spin. Spintronic devices that utilize the quantum nature of the wave function of electron spins are based on quantum-based logic for electro-optic switches, ultra-sensitive magnetic field sensors, especially high-speed calculators. Major advances have been made in the development of logic and memory.

그러나 스핀 물질(강자성 금속)과 전기물질(반도체)로 이루어진 합금은 물질의 결정 구조, 결합, 물질의 물리적, 화학적 성질에 있어서 응용소자에 불필요한 인터파샬(interfacial) 문제를 야기시킨다고 알려져 있다. 이에 대한 해결책이 DMS(dilute magnetic semiconductor)물질을 사용하는 것이다. DMS는 자성이온이 반도체의 한 원소와 일부 심하게 치환하여 도핑된 반도체로 구성되어져 있다. 또한 DMS 물질은 현재 대부분의 반도체와 관련된 장치를 직접적으로 통합 할 수 있다.However, alloys made of spin materials (ferromagnetic metals) and electrical materials (semiconductors) are known to cause unnecessary interfacial problems in applications in terms of the crystal structure, bonding, and physical and chemical properties of materials. The solution is to use a dilute magnetic semiconductor (DMS) material. DMS is composed of a semiconductor doped with magnetic ions partially substituted with one element of the semiconductor. In addition, DMS materials can now directly integrate the devices associated with most semiconductors.

현재까지 InMnAs, GaMnSb, GaMnAs에 대한 DMS 물질의 실험적인 상전이온도(이하 Tc)는 이론과 일치하지만 아직까지 상온 아래에 있다는 것이다. 아직까지 상업적 응용에 요구되어지는 DMS 물질 중에서 상온 Tc는 멀다고 볼 수 있다. 최근까지 전하 운반자와 국부적으로 존재하는 스핀과의 상호작용에 의해 유도되어지는 강자성의 모델들은 이론적인 계산에 의해, p-type 반도체에만 DMS 특성이 나타나며 이들 물질 중의 하나인 GaMnN의 Tc가 상온을 초과할 수 있다고 예언되어졌다. 그러나 최근 들어 p-type, n-type 반도체 관계없이 DMS 특성이 나타나는 실험 결과가 보고되어 지고 있다. 이것은 반도체 전자소자의 전망을 밝게 하는 것이다. 즉 이러한 DMS 물질은 전자의 전하와 스핀의 통합사용으로 알려져 있는스핀트로닉스(spintronics)를 만들 수 있는 반도체 소자이다.To date, the experimental phase transition temperature (Tc) of DMS materials for InMnAs, GaMnSb and GaMnAs is consistent with the theory, but is still below room temperature. Among the DMS materials that are still required for commercial applications, room temperature Tc can be regarded as far. Until recently, the ferromagnetic models induced by the interaction of charge carriers with locally existing spins showed theoretical calculations that DMS properties only exist in p-type semiconductors, and the Tc of one of these materials, GaMnN, exceeded room temperature. It was foretold. Recently, however, experimental results showing DMS characteristics regardless of p-type and n-type semiconductors have been reported. This brightens the prospect of semiconductor electronics. In other words, these DMS materials are semiconductor devices capable of making spintronics known as the integrated use of electron charge and spin.

하지만, 현재까지 상온 DMS 물질을 결정의 형태로 제조된 것은 없는 상태이다. 그리고, 기존의 DMS 물질 성장 장비는 주로 MBE 장비로 어렵게 육성되고 있으며, 고가의 제조 단가 때문에 다른 육성 방법이 제시되어야 할 것이다.However, up to now, no room temperature DMS material has been prepared in the form of crystals. In addition, the existing DMS material growth equipment is difficult to be mainly grown as MBE equipment, and due to the expensive manufacturing cost, another growth method should be presented.

따라서 본 고안은 상기한 문제점을 해결하기 위해 안출된 것으로, 갈륨에 플럭스(flux) 및 전이금속을 첨가하여 결정으로 성장시킴에 의해 상온근처에서 강자성 현상을 나타내는 상온 강자성 반도체 단결정 및 그 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems, and provides a room temperature ferromagnetic semiconductor single crystal exhibiting a ferromagnetic phenomenon near room temperature by growing flux into a crystal by adding flux and transition metal to gallium, and a method of manufacturing the same. It aims to do it.

도1 - 본 발명에 따른 DMS 물질을 제조하기 위해 필요한 내부 성장 도가니의 개략도.1-Schematic diagram of an internal growth crucible required for producing a DMS material according to the present invention.

도2 - 플럭스 법으로 물질을 제조하기 위해 압력유지가 필요한 외부 도가니를 나타낸 도.Figure 2 shows an external crucible in which pressure is required to produce the material by the flux method.

도3 - 반응물질이 수용된 성장 도가니와 외부도가니의 결합도.3-The degree of binding of the growth crucible and the external crucible containing the reactants.

도4 - 성장도가니가 수직열처리로에 설치된 형상을 나타낸 도.4 is a view showing a growth crucible installed in a vertical heat treatment furnace;

도5 - 세척과정을 나타낸 도.5 shows a washing process.

도6 - 플럭스 법으로 육성되어진 GaN : Cr의 DMS 단결정의 편광현미경 사진을 나타낸 도.Fig. 6 shows a polarization microscope picture of a DMS single crystal of GaN: Cr grown by the flux method.

도7 - 온도에 따른 자기모멘트의 변화를 나타낸 도.7 shows a change in magnetic moment with temperature.

도8 - M-H 히스테리시스 결과 자료를 나타낸 도.8-M-H hysteresis result data.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

100 : 성장도가니 200 : 외부도가니100: growth crucible 200: external crucible

300 : 수직열처리로 400 : 석영관300: vertical heat treatment 400: quartz tube

500 : 비이커500: Beaker

상기한 목적을 달성하기 위한 본 발명은, 갈륨에 NaN3, Li3N, Ca3N2, Mg3N2중에서 선택된 하나의 플럭스를 첨가하고, 여기에 전이금속을 첨가한 원료시약을 제작하여 성장도가니에 수용시켜 밀봉 가열 한 후 상온까지 단계적으로 냉각시킴에 의해 형성되는 상온 강자성 반도체 단결정을 기술적 요지로 한다.The present invention for achieving the above object, by adding one of the flux selected from NaN 3 , Li 3 N, Ca 3 N 2 , Mg 3 N 2 to gallium, to prepare a raw material reagent added to the transition metal The technical subject is a room temperature ferromagnetic semiconductor single crystal formed by accommodating a growth crucible, sealing heating, and cooling stepwise to room temperature.

여기서, 상기 가열온도는 750℃∼800℃가 되고, 성장도가니는 금속이 도금된 스테인레스강 도가니 또는 보론 도가니가 되는 것이 바람직하다.Here, the heating temperature is 750 ℃ to 800 ℃, the growth crucible is preferably a metal-plated stainless steel crucible or boron crucible.

그리고, 최초의 반응물질로 갈륨(Ga)과 플럭스로서 NaN3, Li3N, Ca3N2, Mg3N2중에서 선택된 하나의 물질과 전이금속을 일정량의 혼합비로 칭량하여 혼합물을 형성시키는 혼합과정과; 상기 혼합물을 성장도가니 내부에 수용시킨 후, 성장도가니를 외부로 부터 밀봉시키는 밀봉과정과; 상기 밀봉된 성장도가니를 구역별로 가열되는 수직 열처리로의 중앙부에 수직으로 위치시킨 후 가열시키는 가열과정과; 상기 가열과정 후 수직 열처리로의 전원을 오프시켜 성장도가니를 상온까지 냉각시키는 냉각과정; 그리고, 상기 냉각과정을 거친 성장도가니를 개봉하여 세척 및 건조시키는 후처리과정;을 포함하여 구성되는 상온 강자성 반도체 단결정 제조방법을 또한 기술적 요지로 한다.In addition, the first reactant was mixed with gallium (Ga) and one selected from NaN 3 , Li 3 N, Ca 3 N 2 , and Mg 3 N 2 as a flux and a transition metal in a predetermined amount to form a mixture. Process; Sealing the growth crucible from the outside after accommodating the mixture inside the growth crucible; A heating process of placing the sealed growth crucible vertically at the center of the vertical heat treatment furnace heated by zones and then heating the sealed growth crucible; A cooling process of cooling the growth crucible to room temperature by turning off the power of the vertical heat treatment furnace after the heating process; In addition, the method of manufacturing a room temperature ferromagnetic semiconductor single crystal comprising a; and the post-treatment process of opening, washing and drying the growth crucible after the cooling process is also a technical subject.

여기서, 상기 후처리 과정은, 성장도가니를 알코올에 2∼4시간 침지시키는 1차 세척과정과; 상기 1차 세척과정이 완료된 성장도가니를 증류수에 2시간 이상 침지시키는 2차세척과정; 그리고, 2차세척과정이 완료된 성장도가니를 오븐에서 건조시키는 건조과정;으로 구성되고 가열과정은 24시간 이상 진행되며, 최종가열온도가 750℃∼800℃가 되는 것이 바람직하다.Here, the post-treatment process, the first washing step of immersing the growth crucible in alcohol for 2 to 4 hours; A second washing process in which the growth crucible of which the first washing process is completed is immersed in distilled water for 2 hours or more; In addition, the drying process of drying the growth crucible after the secondary washing process is completed in an oven; the heating process is carried out for more than 24 hours, the final heating temperature is preferably 750 ℃ to 800 ℃.

이에 따라, 반도체의 전기적 광학적 기능을 가지며 자기적 성질을 가지는 사온 강자성 반도체가 제조되는 이점이 있다.Accordingly, there is an advantage that a four-ion ferromagnetic semiconductor having an electro-optical function and magnetic properties of the semiconductor is manufactured.

이하 첨부된 도면을 참조로 본 고안을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도1은 본 발명에 따른 DMS 물질을 제조하기 위해 필요한 내부 성장 도가니의 개략도이고, 도2는 플럭스 법으로 물질을 제조하기 위해 압력유지가 필요한 외부 도가니를 나타낸 도이고, 도3은 반응물질이 수용된 성장 도가니와 외부도가니의 결합도이고, 도4는 성장도가니가 수직열처리로에 설치된 형상을 나타낸 도이고, 도5는 세척과정을 나타낸 도이고, 도6은 플럭스 법으로 육성되어진 GaN : Cr의 DMS 단결정의 편광현미경 사진을 나타낸 도이고, 도7은 온도에 따른 자기모멘트의 변화를나타낸 도이며, 도8은 M-H 히스테리시스 결과 자료를 나타낸 도이다.1 is a schematic diagram of an internal growth crucible required for preparing a DMS material according to the present invention, FIG. 2 is a diagram illustrating an external crucible requiring pressure holding to prepare a material by flux method, and FIG. Fig. 4 is a diagram showing the growth crucible and the external crucible, and Fig. 4 shows the shape of the growth crucible installed in the vertical heat treatment furnace. Fig. 5 shows the washing process. Fig. 7 is a diagram showing a polarization micrograph of a single crystal, Fig. 7 is a diagram showing a change in magnetic moment with temperature, and Fig. 8 is a diagram showing MH hysteresis result data.

도시된 바와 같이, 본 고안에 따른 상온 강자성 반도체 단결정 제조방법은 크게 혼합과정과, 밀봉과정과, 가열과정과, 냉각과정 그리고 후처리과정으로 구성된다.As shown, the room temperature ferromagnetic semiconductor single crystal manufacturing method according to the present invention is largely composed of mixing, sealing, heating, cooling, and post-treatment.

먼저 혼합과정에 대해 설명한다.First, the mixing process is explained.

상기 혼합과정은 DMS물질을 형성시키기 위한 최초의 과정으로, 녹는점이 29.7℃이며, 액체금속성을 띤 갈륨(Ga)에 300℃부근에서 N2와 Na로 분해되는 화학적 특성을 가진 NaN3, 그리고 전이금속이 최초의 반응물질이 된다.The mixing process is the first process to form a DMS material, the melting point is 29.7 ℃, the liquid metallic gallium (Ga) NaN 3 , and the chemical properties decompose into N 2 and Na near 300 ℃ in the vicinity of 300 ℃ Metal is the first reactant.

여기서 플럭스로 사용되는 NaN3대신에 Li3N, Ca3N2, Mg3N2등이 사용되어도 무방하다. 그리고 상기 전이금속으로는 크롬(Cr)이 사용되었다.Li 3 N, Ca 3 N 2 , Mg 3 N 2, or the like may be used instead of NaN 3 used as the flux. In addition, chromium (Cr) was used as the transition metal.

상기의 원료물질을 DMS물질로 생성시키기 위해서는 적합한 일정량의 혼합비로 칭량한다.In order to produce the raw material as a DMS material, it is weighed in a suitable amount of mixing ratio.

본 발명에서는 갈륨(Ga) 47중량%에 NaN350중량%에 전이금속인 크롬(Cr) 3중량%를 상호간에 혼합시킨다.In the present invention, 47% by weight of gallium (Ga) is mixed with 50% by weight of NaN 3 and 3% by weight of chromium (Cr) which is a transition metal.

여기서 혼합되는 원료물질의 몰비의 변화에 의해 형성되는 DMS 단결정의 특성이 다르게 나타나므로 반도체 소자에 적합한 몰%비를 찾아내는 것이 중요하다.Since the characteristics of the DMS single crystal formed by the change in the molar ratio of the raw materials to be mixed appear differently, it is important to find a mole% ratio suitable for the semiconductor device.

예를 들어 전이금속인 크롬의 첨가량이 10중량% 이상이 되면 디펙트의 과다에 의해 DMS 단결정의 품질이 저하되는 등의 문제가 발생된다.For example, when the addition amount of chromium, which is a transition metal, is 10% by weight or more, problems such as deterioration of the quality of the DMS single crystal due to excessive defects occur.

원료 혼합물질이 형성되며 상기 원료혼합물질을 성장도가니(100)에 수용시킨후 성장도가니(100)를 외부로 부터 밀봉시키는 밀봉과정이 진행된다.After the raw material mixture is formed and the raw material mixture is accommodated in the growth crucible 100, a sealing process of sealing the growth crucible 100 from the outside is performed.

상기 성장도가니(100)는 니켈(Ni), 크롬(Cr), 철(Fe)등이 도금된 스테인레스강 또는 보론도가니가 사용된다.The growth crucible 100 may be a stainless steel or boron crucible plated with nickel (Ni), chromium (Cr), iron (Fe), or the like.

상기 성장도가니(100)에 원료물질이 수용되면 상기 성장도가니(100)를 외부와 차단시켜 밀봉시켜야 하는 바, 외부도가니(200)를 이용하여 상기 성장도가니(100)를 외부도가니(100) 내부에 수용시킨 후 외부도가니(200)를 용접함에 의해 상기 성장도가니(100)를 외부로 부터 밀봉시킨다.When the raw material is accommodated in the growth crucible 100, the growth crucible 100 must be sealed by blocking the outside from the outside, and the growth crucible 100 can be sealed inside the external crucible 100 using the external crucible 200. After accommodating, the growth crucible 100 is sealed from the outside by welding the external crucible 200.

다음은 상기 성장도가니(100)가 수용된 외부도가니(200)를 열처리함에 의해 DMS 단결정을 성장시키는 가열과정이 진행되는 바, 상기 외부도가니(200)를 구역별로 가열되는 도4의 수직열처리로(300)에 위치시킨다. 상기 외부도가니(200)의 설치는 상기 수직열처리로(300)의 중앙부에 위치되도록 매달아야 한다.Next, a heating process of growing a DMS single crystal is performed by heat-treating the external crucible 200 in which the growth crucible 100 is accommodated. The vertical heat treatment furnace 300 of FIG. ). Installation of the external crucible 200 should be suspended so as to be located at the center of the vertical heat treatment furnace (300).

여기서 상기 외부도가니(200)은 석영관(400)에 수용된 상태에서 수직열처리로(300)에 설치된다.Here, the external crucible 200 is installed in the vertical heat treatment furnace 300 in a state accommodated in the quartz tube 400.

다음은 상기 수직열처리로(300)를 가열하여야 하는 바, 수직열처리로(300)의 전원을 온시켜 상기 수직열처리로(300)의 온도가 750℃∼800℃가 되도록 가열시킨다.Next, the vertical heat treatment furnace 300 should be heated, and the power of the vertical heat treatment furnace 300 is turned on to heat the temperature of the vertical heat treatment furnace 300 to be 750 ° C to 800 ° C.

상기 수직열처리로(300)는 온도구배가 이루어지도록 가열시키며 가열시간은 24시간 이상이 되어야 한다. 그리고 온도구배 폭은 온도가 20 ∼ 50℃ 되도록 조절하여 가열시킨다.The vertical heat treatment furnace 300 is heated to achieve a temperature gradient and the heating time should be more than 24 hours. And the temperature gradient width is adjusted by heating so that the temperature is 20 ~ 50 ℃.

수직열처리로(300)의 가열시간이 종료되면 수직열처리로(300)의 전원을 차단하고 냉각과정이 진행되는 바, 상기 냉각과정은 자연냉각의 방법을 취한다.When the heating time of the vertical heat treatment furnace 300 ends, the power of the vertical heat treatment furnace 300 is cut off and the cooling process is performed. The cooling process takes a natural cooling method.

상기 수직열처리로(300)에 수용된 성장도가니(100)는 수직열처리로(300)의 내부에 수용된 상태에서 자연냉각에 의해 냉각되는 바, 상기 외부도가니(200)의 온도가 상온근처가 되면 상기 외부도가니(200)를 상기 수직열처리로(300)의 외부로 끄집어낸다.The growth crucible 100 accommodated in the vertical heat treatment furnace 300 is cooled by natural cooling in a state accommodated in the vertical heat treatment furnace 300, and when the temperature of the external crucible 200 approaches a room temperature, the external The crucible 200 is pulled out of the vertical heat treatment furnace 300.

그런 다음 상기 외부도가니(200)의 바닥으로 부터 일정높이에서 상기 외부도가니(200)를 절단시킨다.Then, the outer crucible 200 is cut at a predetermined height from the bottom of the outer crucible 200.

상기의 상태가 되면 상기 외부도가니(200)의 내부에 수용된 성장도가니(100)가 외부로 드러나게 된다.In the above state, the growth crucible 100 accommodated inside the external crucible 200 is exposed to the outside.

성장도가니(100)가 외부로 드러나면 내부에 수용된 단결정에 대해 후처리과정이 진행된다.When the growth crucible 100 is exposed to the outside, a post-treatment process is performed on the single crystal accommodated therein.

상기 후처리과정은 크게 1,2차 세척과정과, 건조과정으로 진행된다.The post-treatment process is largely carried out as a first and second washing process and a drying process.

상기 1차 세척과정은 에칠알콜을 이용하여 진행되는 바, 상기 냉각과정을 거친 성장도가니(100)를 에칠알콜용액이 포함된 비이커(500)에 일정시간(2시간∼4시간) 담구어 놓음에 의해 진행된다.The first washing process is performed using ethyl alcohol, soaking the growth crucible 100 after the cooling process in a beaker 500 containing the ethyl alcohol solution for a predetermined time (2 hours to 4 hours). Proceed by.

1차 세척과정에 의해 DMS 단결정의 성장시 플럭스로 사용된 나트륨(Na) 물질이 DMS 단결정으로 부터 분리된다.The primary washing process separates the sodium (Na) material used as the flux during the growth of the DMS single crystal from the DMS single crystal.

1차 세척과정후에는 2차 세척과정이 진행되는 바, 2차 세척과정은 DMS단결정이 수용된 성장도가니(100)를 증류수가 포함된 비이커(500)에 일정시간(2시간 이상) 침지시킴에 의해 진행된다. 상기 2차세척과정에 의해 DMS 단결정에 묻어있는불순물이 제거된다.After the first washing process, the second washing process is performed. The second washing process is by immersing the growth crucible 100 containing the DMS single crystal in a beaker 500 containing distilled water for a predetermined time (more than 2 hours). Proceed. The secondary washing process removes impurities contained in the DMS single crystal.

2차 세척과정을 마치면 건조과정이 진행되는 바, 상기 건조과정은 공기중 또는 드라이 오븐에서 진행되며, 건조과정에서 상기 DMS 단결정에 묻어있는 물기 및 알코올이 증발된다.After the second washing process, a drying process is performed. The drying process is performed in air or in a dry oven, and water and alcohol buried in the DMS single crystal are evaporated during the drying process.

상기의 과정이 완료되면 상기 성장도가니(100)에는 최종잔여 물질인 DMS 단결정만이 존재하게 된다.When the above process is completed, only the DMS single crystal, which is the final residual material, is present in the growth crucible 100.

상기의 성장도가니(100)에 잔류된 최종 잔류물질을 채취하여 편광현미경을 사용하여 결정구조를 나타낸 도면을 도6에 나타내었으며, 시료의 자기적 성질을 알아보기 위해 도7에 온도에 따른 자기모멘트의 변화를 나타내었다.The final residual material remaining in the growth crucible 100 is shown in FIG. 6 to show the crystal structure using a polarizing microscope. The magnetic moment according to the temperature in FIG. The change was shown.

즉, 시료의 자기적 성질을 측정하기 위해 SQUID(superconducting quantum interference device Quantum Design) 실험을 하였다.That is, a superconducting quantum interference device quantum design (SQUID) experiment was conducted to measure the magnetic properties of the sample.

도6에서 생성된 DMS 단결정의 결정형태는 결정구조에 의존해서 생성되었슴을 확인 할 수 있었다.It was confirmed that the crystal form of the DMS single crystal produced in FIG. 6 was generated depending on the crystal structure.

DMS 물질은 반도체 내의 운반자와 전이원소의 첨가 물질의 원자자기 모멘트가 서로 상호 작용하여 자기적 성질을 나타낸다. 물질이 자기모멘트를 가지는 것을 '자화(磁化)한다'고 하는데, 외부자기장의 작용이 없는 상태로 스스로 자화되어 있을 때, 그것이 지니고 있는 자화를 자발자화라 하고, 그 세기는 단위부피당 원자자기모멘트의 벡터의 총합계로 나타낸다. 자발자화는 온도가 절대영도일 때 최대값을 취한다. 온도가 올라가서 원자의 열운동이 활발해지면, 원자자석은 규칙적으로 정렬하기가 힘들어진다. 이 때문에 자발자화는 서서히 감소되고 어느 온도 이상에서 소멸된다. 이 온도를 퀴리온도라고 한다. 본 발명의 육성 방법에 의해 육성되어진 DMS 물질은 도7과 도8 에 도시된 바와 같이, 상온(절대온도 300K) 에서 퀴리온도을 가지는 상온 DMS 단결정 물질임을 확인하였다.The DMS material exhibits magnetic properties by interacting with the atomic magnetic moments of the carrier and the transition element addition material in the semiconductor. When a substance has a magnetic moment, it is called 'magnetization', and when it is self-magnetized without an external magnetic field, the magnetization of it is called spontaneous, and its intensity is the atomic magnetic moment per unit volume. Expressed as the grand total of the vector. Spontaneous magnetization takes maximum when the temperature is absolute. When the temperature rises and the thermal motion of the atom becomes active, the atomic magnets become difficult to align regularly. Because of this, spontaneous decay slowly decreases and disappears above a certain temperature. This temperature is called Curie temperature. As shown in FIGS. 7 and 8, the DMS material grown by the growing method of the present invention was confirmed to be a room temperature DMS single crystal material having a Curie temperature at room temperature (absolute temperature 300K).

상기의 구성에 의한 본 발명은, 이에 따라 기존의 박막과는 다르게 순수한 단결정 GaN에 전이 금속을 쉽게 첨가하여 상온 강자성 반도체 단결정을 제조 할 수 있다는 효과가 있다.According to the present invention, the transition metal is easily added to pure single crystal GaN, unlike the conventional thin film, thereby producing an room temperature ferromagnetic semiconductor single crystal.

그리고 저압하에서 판상구조 형태의 DMS 단결정을 얻을 수 있다는 효과가 또한 있다.In addition, there is an effect that the DMS single crystal in the form of plate structure can be obtained under low pressure.

Claims (7)

갈륨에 NaN3, Li3N, Ca3N2, Mg3N2중에서 선택된 하나의 플럭스를 첨가하고, 여기에 전이금속을 첨가한 원료시약을 제작하여 성장도가니(100)에 수용시켜 밀봉 가열 한 후 상온까지 단계적으로 냉각시킴에 의해 형성되는 상온 강자성 반도체 단결정.One flux selected from NaN 3 , Li 3 N, Ca 3 N 2 , and Mg 3 N 2 was added to gallium, a raw material reagent containing transition metal was added thereto, accommodated in a growth crucible (100), and sealed and heated. A room temperature ferromagnetic semiconductor single crystal formed by cooling stepwise to room temperature afterwards. 제1항에 있어서, 상기 가열온도는 750℃∼800℃가 됨을 특징을 하는 상온 강자성 반도체 단결정.The room temperature ferromagnetic semiconductor single crystal according to claim 1, wherein the heating temperature is 750 ° C to 800 ° C. 제1항에 있어서, 상기 성장도가니(100)는 금속이 도금된 스테인레스강 도가니 또는 보론 도가니가 됨을 특징으로 하는 상온 강자성 반도체 단결정.The room temperature ferromagnetic semiconductor single crystal according to claim 1, wherein the growth crucible (100) is a metal-plated stainless steel crucible or a boron crucible. 제1항에 있어서, 상기 밀봉은 성장도가니(100)를 외부도가니(200)에 수용시킨 후 외부도가니(200)를 용접시킴에 의해 형성됨을 특징으로 하는 상온 강자성 반도체 단결정.The room temperature ferromagnetic semiconductor single crystal according to claim 1, wherein the sealing is formed by accommodating the growth crucible (100) in the outer crucible (200) and welding the outer crucible (200). 최초의 반응물질로 갈륨(Ga)과 플럭스로서 NaN3, Li3N, Ca3N2, Mg3N2중에서 선택된 하나의 물질과 전이금속을 일정량의 혼합비로 칭량하여 혼합물을 형성시키는 혼합과정과;The first reaction material is gallium (Ga) and the mixing process to form a mixture by weighing a certain amount of the transition metal and a transition metal of NaN 3 , Li 3 N, Ca 3 N 2 , Mg 3 N 2 as a flux and ; 상기 혼합물을 성장도가니(100) 내부에 수용시킨 후, 성장도가니(100)를 외부로 부터 밀봉시키는 밀봉과정과;Sealing the growth crucible 100 from the outside after accommodating the mixture in the growth crucible 100; 상기 밀봉된 성장도가니(100)를 구역별로 가열되는 수직열처리로(300)의 중앙부에 수직으로 위치시킨 후 온도구배(20 ∼ 50℃)가 주어지도록 가열시키는 가열과정과;A heating process of placing the sealed growth crucible 100 vertically at a central portion of the vertical heat treatment furnace 300 heated by zones and then heating it to give a temperature gradient (20 to 50 ° C.); 상기 가열과정 후 수직열처리로(300)의 전원을 오프시켜 성장도가니(100)를 상온까지 냉각시키는 냉각과정; 그리고,A cooling process of cooling the growth crucible 100 to room temperature by turning off the power of the vertical heat treatment furnace 300 after the heating process; And, 상기 냉각과정을 거친 성장도가니(100)를 개봉하여 세척 및 건조시키는 후처리과정;을 포함하여 구성됨을 특징으로 하는 상온 강자성 반도체 단결정 제조방법.And a post-treatment process of opening, cleaning, and drying the growth crucible 100 after the cooling process. 제5항에 있어서, 상기 후처리 과정은,According to claim 5, The post-treatment process, 성장도가니를 알코올에 2∼4시간 침지시키는 1차 세척과정과;A first washing step of immersing the growth crucible in alcohol for 2 to 4 hours; 상기 1차 세척과정이 완료된 성장도가니를 증류수에 2시간 이상 침지시키는 2차세척과정; 그리고,A second washing process in which the growth crucible of which the first washing process is completed is immersed in distilled water for 2 hours or more; And, 2차세척과정이 완료된 성장도가니를 오븐에서 건조시키는 건조과정;으로 구성됨을 특징으로 하는 상온 강자성 반도체 단결정 제조방법.Room temperature ferromagnetic semiconductor single crystal manufacturing method characterized in that consisting of; drying process of drying the growth crucible after the secondary washing process is completed in an oven. 제5항 또는 제6항에 있어서, 상기 가열과정은 24시간 이상 진행되며, 최종가열온도가 750℃∼800℃가 되는 것을 특징으로 하는 강자성 반도체 단결정 제조방법.The method of manufacturing a ferromagnetic semiconductor single crystal according to claim 5 or 6, wherein the heating process is performed for 24 hours or more, and the final heating temperature is 750 ° C to 800 ° C.
KR10-2002-0014593A 2002-03-18 2002-03-18 ferromagnetic - semiconductor single crystal and their manufacturing method KR100483318B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014593A KR100483318B1 (en) 2002-03-18 2002-03-18 ferromagnetic - semiconductor single crystal and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014593A KR100483318B1 (en) 2002-03-18 2002-03-18 ferromagnetic - semiconductor single crystal and their manufacturing method

Publications (2)

Publication Number Publication Date
KR20020026341A true KR20020026341A (en) 2002-04-09
KR100483318B1 KR100483318B1 (en) 2005-04-15

Family

ID=19719879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0014593A KR100483318B1 (en) 2002-03-18 2002-03-18 ferromagnetic - semiconductor single crystal and their manufacturing method

Country Status (1)

Country Link
KR (1) KR100483318B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492482B1 (en) * 2002-09-04 2005-06-03 한국과학기술연구원 Room temperature ferromagnetic semiconductor grown by plasma enhanced molecular beam epitaxy and ferromagnetic semiconductor based device
KR100499180B1 (en) * 2002-12-14 2005-07-01 강태원 Method of manufacturing Ferromagnetic semiconductor having quantum dots
KR100524130B1 (en) * 2002-04-09 2005-10-26 정세영 single crystal of magnesium diboride and their manufacturing method
CN108505109A (en) * 2017-02-27 2018-09-07 中国科学院物理研究所 A kind of method for monocrystal growth of ferromagnetic semiconductor material
CN115418704A (en) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868837A (en) * 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
KR100327655B1 (en) * 1999-04-15 2002-03-09 홍세경 A apparatus for forming single crystal ingot of nitride compound semiconductor and forming method thereby
KR20010000827A (en) * 2000-10-21 2001-01-05 정세영 manufacturing method for GaN single crystal
KR100476321B1 (en) * 2002-01-24 2005-03-10 조성래 transition metal-doped ferromagnetic semiconductor single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524130B1 (en) * 2002-04-09 2005-10-26 정세영 single crystal of magnesium diboride and their manufacturing method
KR100492482B1 (en) * 2002-09-04 2005-06-03 한국과학기술연구원 Room temperature ferromagnetic semiconductor grown by plasma enhanced molecular beam epitaxy and ferromagnetic semiconductor based device
KR100499180B1 (en) * 2002-12-14 2005-07-01 강태원 Method of manufacturing Ferromagnetic semiconductor having quantum dots
CN108505109A (en) * 2017-02-27 2018-09-07 中国科学院物理研究所 A kind of method for monocrystal growth of ferromagnetic semiconductor material
CN115418704A (en) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet single crystal
CN115418704B (en) * 2022-08-30 2023-10-03 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet monocrystal

Also Published As

Publication number Publication date
KR100483318B1 (en) 2005-04-15

Similar Documents

Publication Publication Date Title
Ding et al. (La 1-x Ba x)(Zn 1-x Mn x) AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form
EP0400263B1 (en) New class of magnetic materials for solid state devices
Koroleva et al. Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 chalcopyrites: A new materials for spintronics
Steglich Experimental study of Ce-based heavy-fermion compounds
Spiesser et al. Thermal stability of epitaxial Mn5Ge3 and carbon-doped Mn5Ge3 films
Saeki et al. Transparent magnetic semiconductors based on ZnO
CN115354396B (en) Ga-based van der Waals room temperature ferromagnetic crystal material, preparation and application
Matsumoto et al. Preparation of Gd-doped EuO1− x thin films and the magnetic and magneto-transport properties
KR100483318B1 (en) ferromagnetic - semiconductor single crystal and their manufacturing method
Popovic et al. Electronic structure of the substitutional versus interstitial manganese in GaN
Gao et al. Magnetic properties and magnetic entropy change in Heusler alloys Ni 50 Mn 35− x Cu x Sn 15
Bierman et al. Ferromagnetic semiconducting EuO nanorods
Kamilla et al. New semiconductor materials for magnetoelectronics at room temperature
Rai et al. Influence of rare earth Ho3+ doping on structural, microstructure and magnetic properties of ZnO bulk and thin film systems
Heiss et al. Giant tunability of exciton photoluminescence emission in antiferromagnetic EuTe
Yamada et al. Growth of ferromagnetic semiconductor:(Ga, Cr) As
Slabon et al. Field-Induced Inversion of the Magnetoresistive Effect in the Zintl Phase Eu 5+ x Mg 18− x Si 13 (x= 2.2).
Epstein New phenomena and opportunities in molecule-based magnets
Kırat Exchange Bias Effect in NiMnSbB ferromagnetic shape memory alloys depending on Mn content
KR100476321B1 (en) transition metal-doped ferromagnetic semiconductor single crystal
JP4647131B2 (en) Method for forming thin film crystals
CN109576530B (en) Giant exchange bias Mn-based alloy and preparation method and application thereof
Khludkov et al. Fabrication and Investigation of Indium Nitride Possessing Ferromagnetic Properties.
Novotortsev et al. Ferromagnetic semiconductor ZnGeAs 2 {Mn} with a curie point of 367 K
CN102676994B (en) ZnO base diluted magnetic semiconductor film with intrinsic ferromagnetism and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee