KR20020023983A - Submerged optical fiber detection sensor using a side-polished fiber optic coupler - Google Patents

Submerged optical fiber detection sensor using a side-polished fiber optic coupler Download PDF

Info

Publication number
KR20020023983A
KR20020023983A KR1020020000139A KR20020000139A KR20020023983A KR 20020023983 A KR20020023983 A KR 20020023983A KR 1020020000139 A KR1020020000139 A KR 1020020000139A KR 20020000139 A KR20020000139 A KR 20020000139A KR 20020023983 A KR20020023983 A KR 20020023983A
Authority
KR
South Korea
Prior art keywords
optical fiber
sensor
optical
polished
fiber
Prior art date
Application number
KR1020020000139A
Other languages
Korean (ko)
Other versions
KR100441344B1 (en
Inventor
손경락
송재원
Original Assignee
손경락
송재원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손경락, 송재원 filed Critical 손경락
Priority to KR10-2002-0000139A priority Critical patent/KR100441344B1/en
Publication of KR20020023983A publication Critical patent/KR20020023983A/en
Application granted granted Critical
Publication of KR100441344B1 publication Critical patent/KR100441344B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE: A submersion sensor using a fiber optic coupler is provided to accurately detect the submerged position by checking the loss of optical power due to the transit of wavelength, to improve the reliability of a sensor by increasing the optical power when water invades, and to detect multiple points. CONSTITUTION: A slit(1) is formed on a rectangular parallelepiped quartz block to sustain a slight radius of curvature of an optical fiber(3). The optical fiber is fixed in the slit. After the optical fiber is completely adhered, the cladding layer of the optical fiber is polished by using polishing powder and sandpaper. The cladding layer is properly polished not to expose the core layer to the atmosphere. Glass pane is attached to the polished portion. Then, an upper planar waveguide(2) is prepared. Upon inputting a white light source to the optical fiber, the optical power of the optical fiber is transmitted to the upper waveguide. Then, the optical fiber is filtered at a specific wavelength range. The loss of optical power due to water invasion is measured by an optical time domain reflectometer. Since the optical time domain reflectometer indicates multiple positions on the optical fiber. Therefore, the submerged position is detected accurately.

Description

측면 연마된 광섬유형 결합기를 이용한 침수감지 센서{Submerged optical fiber detection sensor using a side-polished fiber optic coupler}Submerged optical fiber detection sensor using a side-polished fiber optic coupler}

광 케이블은 통상 지하 관로를 통하거나 지상의 구조물을 이용하여 설치하고 있는데 지하 관로를 이용하는 것이 일반적이다. 여기서 광 케이블의 길이의 제한으로 이를 연장하려고 할 때 피복을 벗기고 광섬유끼리 융착하여 접속하게 된다. 그러나 융착된 부위는 완전 방수가 되지 못하므로 광섬유가 매설된 관로가 침수될 시 융착 부위에 물이 침투하여 광섬유 전송 특성을 현저히 떨어뜨릴 우려가 있고 장기간 방치할 시 광섬유의 기계적인 강도 저하로 수명을 단축시킨다. 따라서 침수 위치를 실시간으로 파악하여 침수된 곳을 복구하는 것은 매우 중요하다. 현재 보고된 광섬유형 침수감지 센서는 마이크로벤딩을 이용한 구조 [1,2]와 광섬유 격자를 이용한 구조[3]가 대표적이다. 마이크로밴딩을 이용한 광섬유 침수 센서는 광섬유를 두 개의 톱니형 격자 사이에 설치하고 그 주위에 물에 대한 팽창계수가 큰 물질을 감싼 구조이다. 따라서 침수 시 물을 흡수하여 서서히 팽창하면서 격자간격이 좁아지고 광섬유에 굽힘 손실이 발생하게 하는 원리다. 이 구조는 침수여부를 완전히 파악하는데 최소 1시간 이상 소요되어 실시간으로 침수위치를 파악하기 어렵고, 재활용이 어려워 심각한 유지/보수의 문제가 생길 수 있으며 이로 인하여 추가적인 비용이 발생할 수 있다. 또한 매설된 광섬유의 자연적 또는 인위적인 요인에 의해 발생되는 손실이 항상 존재하므로 결과에 대한 신뢰성이 떨어진다. 광섬유 격자를 이용한 광섬유 침수 센서는 브래그 격자를 광섬유에 형성시키고 그 위에 흡수 팽창계수를 가진 물질을 도포한 구조로 브래그 파장을 변화시켜서 침수 위치를 파악하는 원리를 이용한 것이다. 이 구조 역시 응답시간이 느리고 정확한 침수 위치 정보를 알기 위해서는 이동된 브래그 파장을 정확히 검출해야하는 단점이 있다. 또한 침수 후 센서를 재사용할 수 없으므로 경제적이지 못하다. 따라서 본 발명에서는 편광의존성이 없으며, 실시간으로 침수위치를 파악할 수 있고, 반영구적으로 사용할 수 있는 특징을 가지며, 신뢰성을 확보한 간단한 구조의 광섬유 침수감지 센서를 제안한다.Optical cables are usually installed through underground pipelines or by using ground structures. It is common to use underground pipelines. In this case, when the length of the optical cable is to be extended, the coating is peeled off and the optical fibers are fused and connected. However, because the welded part is not completely waterproof, water may infiltrate the welded part when the pipe embedded with the fiber is flooded, which may significantly degrade the fiber transmission characteristics. Shorten. Therefore, it is very important to know the location of flooding in real time and to recover the flooded location. Currently reported fiber-optic immersion sensors are typical of microbending structures [1,2] and optical fiber gratings [3]. The optical fiber immersion sensor using micro banding is a structure in which an optical fiber is installed between two toothed gratings and a material having a large coefficient of expansion for water is wrapped around it. Therefore, it is a principle that absorbs water during immersion and expands gradually, narrowing the lattice spacing and causing bending loss in the optical fiber. This structure requires at least one hour to fully determine whether the water is inundated, so it is difficult to determine the location of water in real time, and it is difficult to recycle, which may cause serious maintenance and repair problems, which may incur additional costs. In addition, there is always a loss caused by natural or artificial factors of the buried optical fiber, so the reliability of the result is inferior. The optical fiber immersion sensor using an optical fiber grating is a structure in which a Bragg grating is formed on an optical fiber and a material having an absorption expansion coefficient is coated on the optical fiber grating to determine the location of the immersion by changing the Bragg wavelength. This structure also has a disadvantage in that the response time is slow and the shifted Bragg wavelength must be accurately detected in order to know the accurate submerged position information. It is also not economical because the sensor cannot be reused after flooding. Therefore, the present invention proposes an optical fiber immersion detection sensor having a simple structure, which has no polarization dependency, can grasp a immersion position in real time, can be used semi-permanently, and secures reliability.

측면 연마된 광섬유형 결합기는 광통신용 소자를 위한 다양한 응용으로 연구되어지고 있다. 또한 광섬유형 센서로도 많은 연구 결과가 보고되었다.Side polished fiber optic couplers have been studied for various applications for optical communication devices. Many studies have also been reported with fiber-optic sensors.

본 발명은 이러한 구조의 기본원리를 이용하여 새로운 형태의 침수감지 센서를 제안한다. 침수된 위치를 실시간으로 관측할 수 있어야 하며, 여러 지점의 침수 위치를 동시에 파악할 수 있어야 한다. 편광 의존성이 없는 소자구조이고 센서가 침수되었을 때 광 전력이 감소하는 것이 아니라 증폭되는 효과를 가지게 함으로서 뒷단의 센서에 영향을 미치지 않고록 설계되어야 한다.The present invention proposes a new type of immersion detection sensor using the basic principle of such a structure. It should be possible to observe the location of flooding in real time, and be able to identify the location of flooding at several points simultaneously. It is a device structure without polarization dependency and should be designed without affecting the sensor at the rear end by having an amplification effect when the sensor is submerged, rather than reducing the optical power.

이와 같은 목적을 달성하기 위하여 측면 연마된 광섬유 위에 편광 의존성이 없는 평판 유리 도파로를 형성하여 소자를 제작하는 단계, 광섬유 접속함에 제작된 소자를 설치하는 단계, 광시간 영역 반사 측정기를 이용하여 다중지점에 설치된 센서의 광 출력 변화를 측정함으로서 정확한 침수 위치를 실시간으로 검출하는 단계로 이루어진 것에 특징이 있다.In order to achieve this purpose, a device is fabricated by forming a flat glass waveguide having no polarization dependence on a side polished optical fiber, installing a device fabricated in an optical fiber junction box, and using a optical time domain reflectometer. By measuring the light output change of the sensor installed, it is characterized in that the step consisting in detecting the exact position of immersion in real time.

도 1은 본 발명에서 제안된 측면 연마된 광섬유 결합기를 이용한 광섬유 침수감지 센서의 개략도1 is a schematic view of an optical fiber immersion detection sensor using a side polished optical fiber coupler proposed in the present invention

도 2는 침수감지 센서의 TE와 TM 편광에 대한 광 투과 스펙트럼2 is a light transmission spectrum for TE and TM polarization of the immersion sensor

도 3은 침수되지 않았을 때와 침수되었을 때의 파장 이동 스펙트럼Figure 3 shows the wavelength shift spectrum when not immersed and when immersed

도 4는 제작된 침수감지 센서를 광섬유 접속함체에 설치한 도면4 is a view of installing the fabricated immersion detection sensor in the optical fiber splice enclosure

도 5는 광시간 영역 반사 측정기를 이용하여 다중 위치에 설치된 광섬유 침수감지 센서의 동작을 측정하는 실험도5 is an experimental diagram for measuring the operation of the optical fiber immersion detection sensor installed in multiple locations using the optical time domain reflectometer

도 6은 침수여부에 따른 광전력 변화를 광시간 영역 반사 측정기(Optical Time Domain Reflectometer: OTDR)로 측정한 결과도6 is a result of measuring the optical power change according to the immersion or not with an optical time domain reflectometer (OTDR)

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : 광섬유 휨 유지 V-홈 2 : 평판 유리로 된 평면 도파로1 Optical fiber warpage maintenance V-groove 2 Flat waveguide made of flat glass

3 : 광섬유 4 : 광섬유의 융착부3: optical fiber 4: fusion part of optical fiber

5 : 융착된 광섬유 접속함체 6 : 제작된 광섬유 침수감지 센서5: fused optical fiber splice enclosure 6: fabricated optical fiber immersion detection sensor

7 : 통신용 광 케이블 8 : 광 시간 영역 반사 측정기7 communication cable 8 optical time domain reflectometer

9 : 광섬유 침수감지 센서 1 10: 광섬유 침수감지 센서 29: optical fiber immersion detection sensor 1 10: optical fiber immersion detection sensor 2

이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows.

도 1은 측면 연마된 광섬유의 상부에 평판 유리로 된 평면 도파로를 형성하여 침수감지 센서의 특성을 얻기 위한 소자의 개략도이다. 먼저, 직육면체의 석영 블럭에 광섬유가 약간의 곡률 반경을 유지할 수 있는 홈을 형성시키고 이 홈에 광섬유를 고정시킨다. 광섬유가 완전히 접착되면 연마분말과 사포를 이용하여 광섬유의 클래딩 층을 적당히 연마하되 코어층이 공기 중에 노출되지 않을 정도로 연마한다. 보통 잔여 클래딩의 두께는 2㎛ 정도이다. 이 부위에 적당한 두께의 평판 유리를 압착하여 상부 평면 도파로를 형성시키면 소자가 완성된다. 제작된 소자의 광섬유에 백색광원을 입사시키면 광섬유 모드와 상부 도파로 모드가 위상 정합조건을 만족하는 조건에서 광섬유의 광 전력이 상부 도파로로 전달이 된다. 이것을 광섬유의 출력단 측에서 보면 특정 파장 영역에서 광 전력이 여과(필터)되는 것으로 관측이 된다. 본 발명에서 사용한 평판 유리의 조건에 의해서 결합 파장은 19nm의 주기를 가지는 빗살필터의 특성을 보인다.1 is a schematic diagram of an element for forming a planar waveguide made of flat glass on top of a side polished optical fiber to obtain characteristics of an immersion sensor. First, a groove is formed in the rectangular parallelepiped quartz block so that the optical fiber can maintain a slight radius of curvature and the optical fiber is fixed in this groove. When the optical fiber is completely bonded, the cladding layer of the optical fiber is appropriately polished using abrasive powder and sandpaper, but the core layer is polished so that the core layer is not exposed to air. Usually the thickness of the remaining cladding is on the order of 2 μm. The device is completed by pressing a flat glass of appropriate thickness to form the upper planar waveguide. When a white light source is incident on an optical fiber of the fabricated device, optical power of the optical fiber is transferred to the upper waveguide under the condition that the optical fiber mode and the upper waveguide mode satisfy the phase matching condition. When viewed from the output end side of the optical fiber, it is observed that optical power is filtered (filtered) in a specific wavelength region. Depending on the conditions of the flat glass used in the present invention, the bonding wavelength exhibits the characteristics of the comb filter having a period of 19 nm.

도 2는 제작된 소자의 편광 의존성을 측정한 투과 스펙트럼이다. TE 편광과 TM 편광에 대해서 약간의 차이를 보이지만 센서로서 이용하기 위해 편광의존성은 무시할 만한 결과이며 침수감지 센서로서 동작하기 위한 매우 중요한 장점이다. 도 3은 침수시의 센서의 투과 스펙트럼을 보여준다. 먼저 소자가 공기중에 노출되었을 경우를 실선으로 표시하였다. 이 소자를 물에 담갔을 때는 굴절률 증가에 의하여 투과 스펙트럼이 장파장 쪽으로 이동하게 되며 점선으로 표시하였다. 도 3의 결과로부터 이 소자가 광섬유가 매설된 지하 관로의 침수 여부를 감지할 수 있음을 알 수 있다. 도 4는 융착된 광섬유 접속함내에 센서가 설치된 그림이다. 암 광섬유(dark fiber; 광섬유 중 통신용으로 이용하지 않는 여분의 광섬유)를 이용하여 침수여부를 계측할 수 있도록 하고 있다. 도 3의 투과 스펙트럼에서 가로축(거리)에 대해 양의 기울기를 이용하게 되면 센서가 물을 감지했을 때 출력 광전력은 감쇠되고, 음의 기울기를 이용하면 출력 광 전력은 증가하게 된다. 본 발명에서는 광원의 파장을 1550nm에 고정하여 둠으로서 음의 기울기 곡선을 이용하고 있는데 그 이유는 센서의 신뢰성을 높이기 위해서이다. 광섬유에서 발생할 수 있는 손실 요인은 많지만 출력광 전력을 증가시키는 것은 외부에서 의도적으로 광을 증폭시켜주지 않는 한은 발생하지 않기 때문이다. 따라서 출력광 전력이 기준치 보다 높게 측정될 시 광 케이블이 침수되었다는 정보를 기존의 방식보다 훨씬 더 신뢰할 수 있다. 본 발명에서 제안한 두 개의 광섬유 침수감지 센서를 그림 5와 같이 입력단에서 2km와 8.5km 두 지점의 광섬유에 연결하여 침수여부에 따른 광 전력의 손실정도를 광 시간 영역 반사 측정기로 측정하였다. 광 시간 영역 측정기는 광섬유상의 다중 위치 정보를 알려주므로 침수 위치를 정확히 알 수 있다. 도 6은 그 결과를 보여준다. 센서1과 센서 2가 침수되지 않았다면 주어진 파장에서의 손실만 나타나게 된다. 센서1이 침수되지 않고 센서2가 침수되었다면 센서1은 광전력의 변화가 없지만 센서2는 공기중에 노출되었을 때 보다 광 손실이 줄어들게 되어 그래프가 위로 올라간다. 도 6에서 점선은 공기중에서, 실선은 침수상태에서 측정한 결과를 보여준다. 센서2가 공기중에 노출되었다가 침수되면서 출력광의 전력은 1dB 정도높아진다. 이로부터 침수된 센서의 설치된 위치를 알 수 있다. 일반적으로 광시간 영역 반사 측정기의 손실 측정값에 대한 정확도는 1dB 스텝에 대해서 ±0.05dB이므로 측정된 데이터의 값은 신뢰할 수 있다. 또한 침수 여부에 대한 결과는 실시간으로 판단 할 수 있으므로 기존의 기술과 비교하여 시간과 비용을 절감할 수 있다.2 is a transmission spectrum of measuring the polarization dependence of the fabricated device. Although there is a slight difference between TE polarization and TM polarization, polarization dependence is a negligible result for use as a sensor and is a very important advantage to operate as an immersion detection sensor. 3 shows the transmission spectrum of the sensor during immersion. First, the case where the element is exposed to air is indicated by a solid line. When the device was immersed in water, the transmission spectrum shifted toward the longer wavelength by increasing the refractive index, which is indicated by a dotted line. From the results of FIG. 3, it can be seen that the device can detect whether or not the underground pipe in which the optical fiber is embedded is flooded. 4 is a diagram in which a sensor is installed in a fused optical fiber splice box. Dark fiber (extra optical fiber, which is not used for communication, among other optical fibers) can be used to measure inundation. Using a positive slope with respect to the horizontal axis (distance) in the transmission spectrum of FIG. 3 causes the output optical power to be attenuated when the sensor detects water, and using the negative slope increases the output optical power. In the present invention, the negative slope curve is used by fixing the wavelength of the light source at 1550 nm, in order to increase the reliability of the sensor. Although there are many loss factors that can occur in an optical fiber, increasing the output light power does not occur unless it intentionally amplifies the light from the outside. Thus, when the output light power is measured above the reference value, the information that the optical cable is submerged is much more reliable than conventional methods. The two optical fiber immersion detection sensors proposed in the present invention were connected to two optical fibers of 2km and 8.5km at the input terminal as shown in Fig. 5, and the optical power loss was measured by the optical time domain reflectometer. The optical time domain meter tells you the multi-position information on the fiber, so you know exactly where the submersion is. 6 shows the result. If sensor 1 and sensor 2 are not submerged, only the loss at a given wavelength will appear. If sensor 1 is not submerged and sensor 2 is submerged, sensor 1 has no change in optical power, but sensor 2 has less light loss than when exposed to air, so the graph goes up. In FIG. 6, the dotted line shows the result of measurement in the air and the solid line in the submerged state. As the sensor 2 is exposed to air and submerged, the power of the output light is increased by about 1 dB. From this, the installed position of the submerged sensor can be known. In general, the accuracy of the loss measurement of the wide-time domain reflectometer is ± 0.05dB for 1dB steps, so the value of the measured data is reliable. In addition, the result of flooding can be determined in real time, which saves time and money compared to existing technologies.

이상에서 상술한 바와 같이 본 발명은, 측면 연마된 광섬유의 연마된 부위에 얇은 평판 유리를 평면 도파로로 이용함으로서 광섬유가 매설된 지하관로의 침수여부를 실시간으로 관측할 수 있는 센서를 제안하고 있다. 유리의 특성상 물에 대하여 물리적, 화학적인 내구성이 뛰어나므로 반영구적으로 사용할 수 있고 재활용할 수 있는 장점이 있다. 기존의 침수 센서에 대하여 구조가 간단하고 응답성이 뛰어나며 광섬유형의 소형 센서로서의 특징을 가지고 있다. 물을 감지했을 때 출력광 전력이 증가할 수 있는 센서 구조를 제안함으로서, 침수 시 추가적인 광 손실이 발생하는 양을 측정하고 있는 기존의 방식에 비해 우수한 신뢰성을 가진다.As described above, the present invention proposes a sensor capable of observing inundation of an underground pipe route in which an optical fiber is embedded in real time by using a thin plate glass as a planar waveguide at a polished portion of a side polished optical fiber. Due to the nature of glass, it has excellent physical and chemical durability against water, so it can be used semi-permanently and can be recycled. The structure is simple and responsive to the existing submersion sensor, and has the characteristics of a small optical fiber type sensor. By proposing a sensor structure that can increase the output light power when water is detected, it has superior reliability compared to the conventional method of measuring the amount of additional light loss when flooding.

Claims (4)

측면 연마된 광섬유와 평판유리 평면 도파로 결합기를 이용하여 광섬유의 침수를 감지하는 센서의 제작과 침수 센서로 활용하는 방법.A method of fabricating a sensor that detects the inundation of an optical fiber by using a side polished optical fiber and a flat glass waveguide coupler and using it as a submersion sensor. 광섬유의 침수를 검출했을 때 센서의 동작이 광 손실이 아닌 증폭효과를 보이게 하는 단계와When the sensor detects the inundation of the optical fiber, the operation of the sensor shows the amplification effect rather than the optical loss. 이로 인하여 다중점 침수를 동시에 감지했을 때 먼 곳에 설치된 센서가 마스킹 되지 않게 하는 방법.This prevents the remotely installed sensor from masking when multiple point floods are detected simultaneously. 센서의 응답이 즉각적이어서 (1초 이내) 신속한 침수위치를 파악하게 하는 단계와The response of the sensor is instantaneous (within 1 second) to quickly identify the location 초기 검출된 출력 특성이 시간에 따라 변하지 않게 함으로서 시간의존성을 없게 한 방법Method to make time-independent by preventing the initial detected output characteristic from changing with time 본 발명에서 제안한 광섬유 침수 센서는 유리를 기본 재질로 이용함에 따라 침수 후 복구된 뒤에도 초기 상태의 기능을 회복하므로 이를 재활용하는 방법.The optical fiber immersion sensor proposed in the present invention uses glass as a base material, and thus recovers the function of the initial state even after recovery after immersion. [참고문헌][references] 1. S. Tomita, H. Tachino, and N. Kasahara, "Water sensor with optical fiber," J. Lightwave Technol. Lett., vol. 8, no. 12, pp. 1829-1832, 1990.1. S. Tomita, H. Tachino, and N. Kasahara, "Water sensor with optical fiber," J. Lightwave Technol. Lett., Vol. 8, no. 12, pp. 1829-1832, 1990. 2. W. C. Michie, B. Culshaw, M. Konstantaki, S. Kelly, N. B. Graham, and C. Moran, "Distributed pH and water detection using fiber-optic sensors and hydrogels," J. Lightwave Technol., vol. 13, no. 7, pp. 1415-1420, 1995.2. W. C. Michie, B. Culshaw, M. Konstantaki, S. Kelly, N. B. Graham, and C. Moran, "Distributed pH and water detection using fiber-optic sensors and hydrogels," J. Lightwave Technol., Vol. 13, no. 7, pp. 1415-1420, 1995. 3. 최영복, 박태상, 박수진, 정기태, "광섬유 격자 소자를 이용한 물의 침투 감지 센서," Photonics conference 2001, pp. 465-466, 2001.3. Young-Bok Choi, Tae-Sang Park, Soo-Jin Park, Ki-Tae Jung, "Water Penetration Sensor Using Optical Fiber Grating Device," Photonics conference 2001, pp. 465-466, 2001.
KR10-2002-0000139A 2001-12-29 2001-12-29 Submerged optical fiber detection sensor using a side-polished fiber optic coupler KR100441344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0000139A KR100441344B1 (en) 2001-12-29 2001-12-29 Submerged optical fiber detection sensor using a side-polished fiber optic coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0000139A KR100441344B1 (en) 2001-12-29 2001-12-29 Submerged optical fiber detection sensor using a side-polished fiber optic coupler

Publications (2)

Publication Number Publication Date
KR20020023983A true KR20020023983A (en) 2002-03-29
KR100441344B1 KR100441344B1 (en) 2004-07-23

Family

ID=19718107

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0000139A KR100441344B1 (en) 2001-12-29 2001-12-29 Submerged optical fiber detection sensor using a side-polished fiber optic coupler

Country Status (1)

Country Link
KR (1) KR100441344B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831343B1 (en) * 2007-01-31 2008-05-22 에이앤피테크놀로지 주식회사 Electric wire clamp for preventing submersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831343B1 (en) * 2007-01-31 2008-05-22 에이앤피테크놀로지 주식회사 Electric wire clamp for preventing submersion

Also Published As

Publication number Publication date
KR100441344B1 (en) 2004-07-23

Similar Documents

Publication Publication Date Title
AU747525B2 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
Westbrook et al. Kilometer length, low loss enhanced back scattering fiber for distributed sensing
US20070098323A1 (en) Reflection-mode fiber sensing devices
US20110292965A1 (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
Hongo et al. Applications of fiber Bragg grating sensors and high‐speed interrogation techniques
CN100367016C (en) Fibre-optical temperature measuring device and measurement thereof
CN101258379A (en) Optical fiber sensor connected with optical communication line
US20220412834A1 (en) Fiber optics sensor for hydrocabon and chemical detection
JP2000502438A (en) Sensor device
Sohn Liquid sensors using refractive intensity at the end-face of a glass fiber connected to fiber-Bragg grating
Liu et al. Fiber ring laser-based displacement sensor
US7068868B1 (en) Sensing devices based on evanescent optical coupling
Chen et al. Differential sensitivity characteristics of tilted fiber Bragg grating sensors
KR100441344B1 (en) Submerged optical fiber detection sensor using a side-polished fiber optic coupler
CN216385762U (en) Sensor and sensing experimental device based on resonant reflection waveguide and Mach-Zehnder
CN108279079B (en) Point type temperature sensing device based on radial large dislocation structure coating polydimethylsiloxane of coreless optical fiber
KR102036260B1 (en) Submergence detection sensor using optical fiber grating
Zhou et al. Refractive index sensing by using mechanically induced long-period grating
Matsui et al. Fiber identification technique based on mechanically-induced long-period grating for bending-loss insensitive fibers
US20200182717A1 (en) Linear cavity ring down device
KR102137255B1 (en) Optical Fiber Sensor for Submersion and Leakage Detection and Sensing System Using Thereof
Kumar et al. High sensitivity temperature sensor based on a polymer filled hollow core optical fibre interferometer
Pagnoux et al. Azimuthal far-field analysis for the measurement of the effective cutoff wavelength in single-mode fibers/spl minus/effects of curvature, length, and index profile
Li Design and test of multimode interference based optical fiber temperature sensors
Lin et al. Microfiber Bragg grating for liquid-level variation sensing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
N231 Notification of change of applicant
FPAY Annual fee payment

Payment date: 20111130

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee