KR20020016674A - Advanced Piggery Wastewater Treatment System - Google Patents

Advanced Piggery Wastewater Treatment System Download PDF

Info

Publication number
KR20020016674A
KR20020016674A KR1020000049842A KR20000049842A KR20020016674A KR 20020016674 A KR20020016674 A KR 20020016674A KR 1020000049842 A KR1020000049842 A KR 1020000049842A KR 20000049842 A KR20000049842 A KR 20000049842A KR 20020016674 A KR20020016674 A KR 20020016674A
Authority
KR
South Korea
Prior art keywords
tank
nitrogen
denitrification
reactor
phosphorus
Prior art date
Application number
KR1020000049842A
Other languages
Korean (ko)
Other versions
KR100386224B1 (en
Inventor
정윤철
정진영
이상민
손대희
신정훈
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR10-2000-0049842A priority Critical patent/KR100386224B1/en
Publication of KR20020016674A publication Critical patent/KR20020016674A/en
Application granted granted Critical
Publication of KR100386224B1 publication Critical patent/KR100386224B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: Provided is an advanced wastewater treatment system for livestock wastewater which contains the organic matter of high concentration, suspended solids, nitrogen, phosphorus and colors. CONSTITUTION: The advanced wastewater treatment system comprises a pre-treatment tank(2) to remove selectively ammonium and phosphorus in livestock wastewater; an anaerobic reactor(3) for denitrification of the wastewater passed from the former part by oxidative fermentation in the upper denitrification zone; a nitrification reactor(4); a post-treatment tank(6) to remove the residual nitrate of the anaerobic reactor and the nitrification reactor; and a fenton-oxidation reactor(8) to eliminate phosphorus, organic matters and colors in the wastewater treated from the former post-treatment tank and disinfect. The pre-treatment tank comprises a mixing tank and a settling tank, which enhance the denitrification efficiency by maintaining the ratio of organic matters : nitrogen of 6 : 1 by the MAP(magnesium ammonium phosphate) settling method.

Description

축산폐수 고도처리 시스템{Advanced Piggery Wastewater Treatment System}Advanced Piggery Wastewater Treatment System

본 발명은 고농도의 유기물, 부유성 고형물, 질소, 인 및 색도를 함유하는축산폐수를 처리하기 위해 전처리조(2), 혐기성 반응조(3-1, 3-2), 질산화조(4), 후처리 반응조(6)와 펜톤산화조(8)로 구성된 고도처리 시스템에 관한 것으로서 축산폐수내에 존재하는 각종 오염물질을 경제적이고 효율적으로 제거할 수 있는 공정이다.The present invention is a pretreatment tank (2), anaerobic reaction tanks (3-1, 3-2), nitrification tank (4), to treat livestock wastewater containing a high concentration of organic matter, suspended solids, nitrogen, phosphorus and color The present invention relates to an advanced treatment system composed of a treatment reaction tank (6) and a fenton oxidation tank (8), and is a process capable of economically and efficiently removing various contaminants present in livestock wastewater.

일반적으로 축산폐수는 고농도의 부유성 고형물질 뿐만아니라 유기물, 질소, 인과 색도를 함유하고 있기 때문에 종래의 기술로서는 효율적으로 이들 오염물질을 제거하기 어려울뿐 아니라 여러 기술의 단순조합에 따라 안정적인 유지관리가 어려운 실정이다. 또한 종래의 기술들은 질소와 인 등의 영양물질의 제거인자에 대한 정확한 기술적 평가가 부족하여 질소 제거공정에 있어서 과량의 메탄올을 사용하여 운전비용을 증가시켰고, 생물학적 처리공정 이후에 남아있는 인을 제거하기 위해 철염과 고분자응집제를 투여한 응집침전조를 두어서 공정의 복잡성을 초래할 뿐만 아니라 응집제의 최적주입량 선정에의 어려움 등이 있는 실정이다. 또한 종래의 기술은 생물학적 처리후의 추가적인 유기물 제거가 어려워서 화학적 산소요구량의 경우 법적규제치내로 처리하기 어려운 실정이다.In general, livestock wastewater contains not only high concentrations of suspended solids but also organic matter, nitrogen, phosphorus, and chromaticity. It is difficult. In addition, the conventional techniques lack the accurate technical evaluation of the removal factors of nutrients such as nitrogen and phosphorus to increase the operating cost by using excess methanol in the nitrogen removal process, and remove the phosphorus remaining after the biological treatment process In order to provide a coagulation sedimentation tank in which iron salt and a polymer coagulant are administered, not only the complexity of the process is caused but also the difficulty in selecting an optimal injection amount of the coagulant. In addition, the conventional technology is difficult to remove the additional organic matter after biological treatment, it is difficult to treat the chemical oxygen demand within the legal regulations.

종래의 기술중 단일반응조에서의 생물학적 3상 소화공정을 이용한 폐수처리 방법(대한민국특허등록번호 202066)은 종래의 혐기/호기(A/O)공정과 혐기/준혐기/호기(A2/O) 공정의 문제점을 해결하기 위해 전단의 혐기성 단일반응조에서 질소와 인을 제거하고 후단의 고정상 질산화 반응조에서 암모니아성 질소를 질산화시켜 전단의 반응조로 재순환 시키는 형태로 개발되었지만 이 시스템으로서는 규제치 이내로 질소와 인을 제거하기 어려울 뿐 아니라 질산화에 필요한 알칼리도의 조절과 탈질소화에 필요한 추가의 외부탄소원 공급 등을 수행하여야만 80%내외의 총 질소를 제거할 수 있다. 그리고 미생물 조정조를 이용한 고효율 생활 오수 합병 처리 장치(대한민국특허등록번호 233565)는 미생물배양조에서 활성미생물을 배양시켜 혐기-호기 공정으로 가정하수, 분뇨 및 축산폐수를 처리하는 기술이지만 고농도의 암모니아성 질소유입시 효율적인 질소 제거가 용이하지 않고 색도 및 잔류 화학적 산소 요구량 등을 법적 규제치 이내로 처리하기 힘든 단점이 있기 때문에 소규모 합병정화조 이상의 처리공정에서는 많은 문제점을 야기할 수 있다. 또한 생물학적 고효율의 질소·인 동시 제거 시스템(대한민국특허등록번호 232360)도 재래식 혐기-무산소-호기 공정과 유사한 공정으로서 폐수중의 질소·인의 제거효율은 양호한 편이지만 고농도의 암모니아성 질소유입에 따른 미생물의 저해와 유기물부족으로 인한 추가의 외부탄소원 공급의 증가 및 색도, 잔류 화학적 산소 요구량 등을 제거하기에는 어려운 점이 있다.Wastewater treatment method using a biological three-phase digestion process in a single reactor of the prior art (Korean Patent Registration No. 202066) is a conventional anaerobic / aerobic (A / O) process and anaerobic / quasi-anaerobic / aerobic (A2 / O) process. In order to solve the problem of nitrogen, phosphorus was removed from the anaerobic single reactor at the front end, and ammonia nitrogen was nitrified at the rear stationary stationary nitrification tank and recycled to the reactor at the front end. Not only is it difficult to do this, but it is necessary to control the alkalinity required for nitrification and to supply additional external carbon sources for denitrification. High efficiency living sewage treatment system (Korea Patent Registration No. 233565) using microbial control tank is a technology to treat home sewage, manure and livestock wastewater by anaerobic-aerobic process by culturing active microorganisms in microbial culture tank, but with high concentration of ammonia nitrogen Since it is not easy to remove nitrogen efficiently during inflow, and it is difficult to process chromaticity and residual chemical oxygen demand within legal limits, it may cause a lot of problems in the treatment process beyond the small scale purification tank. In addition, the biologically high efficiency nitrogen and phosphorus simultaneous removal system (Korean Patent Registration No. 232360) is similar to the conventional anaerobic-oxygen-aerobic process, and the removal efficiency of nitrogen and phosphorus in the wastewater is good, but microorganisms due to the high concentration of ammonia nitrogen are introduced. It is difficult to eliminate the increase of additional external carbon source, chromaticity and residual chemical oxygen demand due to inhibition of organic matter and lack of organic matter.

생물학적 처리의 한계를 극복하기 위해 전기분해를 이용한 폐수처리방법(대한민국특허등록번호 231331: 전기분해를 이용한 폐수 처리방법 및 폐수 처리 시스템, 대한민국특허등록번호 188231: 산업 폐수 연속 전해 정화 처리 방법 및 그 장치) 등이 개발되었으나 고분자 응집제와 철염 등의 화학물질 첨가에 따른 이차오염의 우려뿐만 아니라 주기적인 전극극교환 등의 유지관리가 어려운 단점을 지니고 있다.Wastewater treatment method using electrolysis to overcome the limitation of biological treatment (Korea Patent Registration No. 231331: Wastewater treatment method and wastewater treatment system using electrolysis, Korea Patent Registration No. 188231: Industrial wastewater continuous electrolytic purification treatment method and apparatus thereof Has been developed, but it is difficult to maintain and maintain periodic electrode pole exchange as well as the possibility of secondary pollution due to the addition of chemicals such as polymer flocculant and iron salt.

상술한 바와 같이 종래의 기술들은 축산폐수내의 질소를 효율적으로 제거하기 위한 미생물 저해농도 이하의 농도유입방법에 대한 이해가 부족하고 질산화에필요한 알칼리도의 첨가와 탈질소화에 필요한 유기탄소원의 증가 등 생물학적 처리기술의 한계를 극복할 수 있는 방안에 대한 연구가 부족할 뿐 아니라 단순한 각종 공정조합에 따른 유지관리의 어려움 등이 상존함에 따라 현장에서 효율적으로 사용되지 못하고 있는 실정이다.As described above, the conventional techniques lack the understanding of the concentration inflow method below the microbial inhibitory concentration to efficiently remove nitrogen in the livestock wastewater, and the biological treatment such as the addition of alkalinity required for nitrification and the increase of the organic carbon source required for denitrification. Not only is there a lack of research on ways to overcome the limitations of technology, but also difficult to maintain due to various process combinations.

본 발명의 목적은 상기 설명한 종래 기술의 문제점을 해결하면서 기존의 처리 공법에 비하여 오염물질 처리효율이 우수하고, 운전시 유지관리가 안정적이고, 운전경비가 저렴한 축산폐수 고도처리 시스템을 제공하는 것이다. 상기 목적은 전처리를 통해 생물학적으로 처리가 어려운 인과 질소를 일부 제거하고 유기물/질소의 비를 크게 상승시켜 후속의 탈질소화-질산화반응을 유도함으로써 달성된다. 또한, 탈질소화-질산화반응 후 남아있는 산화된 질소는 메탄올 등을 유기물원과 함께 탈질소화 반응기로 공급하여 질소가스로 환원시키고 상기의 처리공정 후에도 남아있는 인, 색도 및 유기물은 펜톤산화시킴으로써 법적 규제치 이하로 처리수를 생산할 수 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a high level livestock wastewater treatment system, which is excellent in pollutant treatment efficiency, stable in operation, and low in operation cost, while solving the problems of the prior art described above. This object is achieved by pretreatment to remove some of the biologically difficult phosphorus and nitrogen and to significantly increase the organic / nitrogen ratio to induce subsequent denitrification-nitrification reactions. In addition, the oxidized nitrogen remaining after the denitrification-nitriding reaction is fed to methanol denitrification reactor along with the organic material source to reduce the nitrogen gas, and phosphorus, color and organic matter remaining after the above treatment process are fentonized. Treated water can be produced as follows.

도 1은 본 발명에 따른 일실시예로서 전처리조(2), 혐기성 반응조(3-1, 3-2), 질산화조(4), 후처리 반응조(6)와 펜톤산화조(8)를 포함하는 축산폐수 고도처리 시스템의 개략도.1 includes a pretreatment tank 2, an anaerobic reactor 3-1, 3-2, a nitrification tank 4, a post treatment reactor 6, and a fenton oxidation tank 1 according to the present invention. Schematic diagram of a livestock wastewater advanced treatment system.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

1: 고액분리조 2: 전처리조1: solid-liquid separation tank 2: pretreatment tank

3-1: 혐기성 반응조 중 산형성 구역3-1: acid formation zone in anaerobic reactor

3-2: 혐기성 반응조 중 탈질소 구역3-2: Denitrogen Zone in Anaerobic Reactor

4: 질산화 반응조 5: 침전조4: nitrification tank 5: precipitation tank

6: 후처리 반응조6: post treatment reactor

7: 탈질소 반응에 필요한 외부탄소원 공급조7: External carbon source supply tank for denitrification

8: 펜톤산화조8: Fenton Oxidation Tank

본 발명에 따른 축산폐수 고도처리 시스템은 크게 전처리조(2), 생물학적 탈질소화-질산화조(3-1, 3-2, 4), 후처리 반응조(6)조와 펜톤산화조(8)로 이루어진다.Advanced livestock wastewater treatment system according to the present invention consists of pretreatment tank (2), biological denitrification-nitridation tank (3-1, 3-2, 4), post-treatment reaction tank (6) and fenton oxidation tank (8). .

본 발명에 따른 전처리를 통해 선택적으로 축산페수내의 암모니아성 질소와 인이 제거되며 이는 후속의 산발효 및 탈질소화조에서의 효율적인 질산화-탈질소화연속반응을 유발시킬 수 있다. 후처리 반응조(6)에서는 용적이 작으면서도 유지관리가 용이한 여재(media) 충진형 탈질소 반응기를 통해 전단에서 남아있는 질산화된 질소를 질소가스로 쉽게 환원시킨 후 펜톤산화조에서 인, 색도 및 추가의 유기물제거를 이룰 수 있는 공정으로서 현행 법적 규제치에 만족하는 수질을 달성할 수 있다.The pretreatment according to the invention optionally removes ammonia nitrogen and phosphorus in the livestock waste water, which can lead to subsequent nitrification and denitrification continuous reactions in the acid fermentation and denitrification tanks. In the after-treatment reactor (6), the nitric oxide remaining in the front end is easily reduced to nitrogen gas through a media-filled denitrification reactor that is small in volume and easy to maintain, and then phosphorus, color and As a process that can achieve additional organic removal, water quality that satisfies the current legal regulations can be achieved.

하기에서, 도 1을 참고로 하여 본 발명을 더욱 자세히 설명한다.In the following, the present invention is described in more detail with reference to FIG. 1.

본 발명에 따른 축산폐수 고도처리 시스템은 유입되는 축산폐수를 고액분리(1)하여 전처리조(2)로 유입시키며 전처리조(2)에서는 마그네슘염과 무기인성분을 첨가하여 혼화하는 혼화조와 침전조로 구성되며 축산폐수의 특성에 따라 약 40-60% 정도의 암모니아성 질소를 제거할 수 있도록 약품량을 조절해 준다. 이와 같은 MAP(Magnesium Ammonium Phosphate) 침전법은 축산폐수내의 암모니아성 질소만을 선택적으로 제거함으로써 고농도 암모니아성 질소의 저해를 감소시키기 위해서 MgCl2를 마그네슘원으로 사용하여 스트루바이트(struvite) 형성을 유도한 방법이다. 일반적으로 MAP법에서는 pH 10 이상의 높은 값에서 30분 이내에 빠르게 스트루바이트 형태의 침전이 일어나지만 축산폐수의 경우 pH 8.0-8.5 정도의 높은 값을 나타내기 때문에 소량의 NaOH로도 pH를 조절할 수 있다. 또한, 발생된 침전물은 완효성 비료로서 가치가 높은 성분을 가지고 있어 비료로 재활용함으로써 슬러지의 처리비용을 절감할 수 있다. 종래기술은 대부분 고액분리외에는 전처리를 하지 않고 생물학적인 질소 제거공정으로 유입시키기 때문에 유기물/질소비가 3:1 이하로 나타나 후속의 탈질소화공정에서 공정악화의 요인을 제공할 뿐만 아니라 탈질소화에 다량의 유기물원을 필요로 한다. 그러나 본 발명의 경우는 유기물/질소를 최소한 6:1 이상으로 유지할 수 있기 때문에 후속의 질소 제거 공정에서 추가로 75% 이상의 높은 질소 제거율을 달성할 수 있다. 후속의 혐기성 반응조(3-1, 3-2)와 질산화조(4)로 구성된 생물학적 질소 제거 공정중 혐기성 반응조(3)는 10-40 ℃ 범위에서 운전되며 산형성 구역(3-1)에서는 안정적인 가수분해 반응과 산발효 반응을 유도할 수 있고 반응기 상단부인 탈질소 구역(3-2)은 탈질소화반응을 나타내는 여재충진형 복합 반응기이다. 질산화 반응조(4)는 활성슬러지 공정으로 구성되며 효율적인 질산화를 위해서 3단 이상의 다단으로 구성된다. 상술한 반응특성을 유지시킬 경우 완전한 질산화 이후 탈질소화에 소모되는 유기물 양을 전처리가 없을 때와 비교하여 약 50% 이상을 절감할 수 있기 때문에 탈질소화에 필요한 유기물의 만성적인 부족에 따른 축산폐수의 유지관리비를 크게 감소시킬 수 있을 것으로 판단된다. 일반적으로 질산화된 처리수를 유입유량의 3-5배 범위에서 탈질소조(3-2)로 재순환시킬 때 전처리 처리수를 기준으로 75-80%의 총 질소 제거율을 추가로 달성할 수 있다. 또한 전술한 전처리를 통해서 축산폐수내의 암모니아성 질소의 질산화에 필요한 추가의 알칼리도 유발물질의 첨가를 배제할 수 있는 큰 장점이 있다. 일반적으로 축산폐수의 경우 타폐수에 비해 높은 알칼리도를 함유하고 있지만 유입수내의 높은 암모니아성 질소농도에 기인하여 이론적인 알칼리도 요구량의 50-60% 정도를 나타내고 있다. 전술한 처리공정이 효율적으로 운전될 경우에도 고농도 축산폐수내의 유입농도 2,000 ㎎/ℓ기준에서 약 200-250 ㎎/ℓ의 질산성 질소가유출되어 추가의 탈질소화조 도입이 불가피하기 때문에 본 발명에서는 설치가 간단하고 부지면적을 최소화할 수 있는 세라믹 충진형 후처리 반응조(6)를 설치하였으며 이 탈질소화조(6)는 유기탄소원과 반송되는 상징수를 함께 반응기의 하단부로 유입시켜 종속영양미생물에 의한 탈질소화반응이 일어나서 질산화된 질소를 무해한 질소가스로 환원시킨다. 상술한 처리공정을 통해 대부분의 오염물질은 법적규제치 이내로 처리가능하지만 인, 미량의 화학적 산소 요구량 (COD)과 심미적으로 불감을 줄 수 있는 색도의 경우에는 후속처리가 반드시 필요하며 이 문제의 해결을 위해 본 발명에서는 펜톤산화조(8)를 도입하였다.The advanced livestock wastewater treatment system according to the present invention separates the incoming livestock wastewater into solid-liquid separation (1) and enters the pretreatment tank (2). In the pretreatment tank (2), a mixing tank and a precipitation tank are mixed by adding magnesium salt and inorganic phosphorus components. It adjusts the amount of chemicals to remove about 40-60% of ammonia nitrogen depending on the characteristics of livestock wastewater. This MAP (Magnesium Ammonium Phosphate) precipitation method removes only ammonia nitrogen from the livestock wastewater and induces struvite formation by using MgCl 2 as a magnesium source to reduce the inhibition of high concentration ammonia nitrogen. Way. In general, in the MAP method, the struvite form precipitates rapidly within 30 minutes at a high value of pH 10 or more, but in the case of livestock wastewater, the pH value is about 8.0-8.5 so that a small amount of NaOH can control the pH. In addition, the generated sediment has a high value as a slow-acting fertilizer can be recycled as a fertilizer can reduce the treatment cost of the sludge. In the prior art, since most of the conventional technology is introduced into the biological nitrogen removal process without any pretreatment except solid-liquid separation, the organic matter / nitrogen ratio is less than 3: 1, which not only provides a factor of process deterioration in the subsequent denitrification process but also a large amount of denitrification. It needs an organic source. However, in the case of the present invention, organic matter / nitrogen can be maintained at least 6: 1 or higher, and further nitrogen removal rate of 75% or more can be achieved in a subsequent nitrogen removal process. During the biological nitrogen removal process consisting of the subsequent anaerobic reactors (3-1, 3-2) and nitrification tank (4), the anaerobic reactor (3) was operated in the range of 10-40 ° C. and stable in the acid formation zone (3-1). The denitrification zone (3-2) at the top of the reactor, which can induce hydrolysis and acid fermentation reactions, is a medium-filled composite reactor exhibiting denitrification. The nitrification reactor 4 is composed of an activated sludge process and is composed of three or more stages for efficient nitrification. If the above reaction characteristics are maintained, the amount of organic matter consumed for denitrogenation after complete nitrification can be reduced by about 50% compared with the case of no pretreatment. Maintenance costs can be greatly reduced. In general, when the nitrified treated water is recycled to the denitrification tank (3-2) in the range of 3-5 times the inflow flow, it is possible to further achieve a total nitrogen removal rate of 75-80% based on the pretreated water. In addition, through the above-described pretreatment, there is a big advantage that it is possible to exclude the addition of additional alkalinity causing material required for the nitrification of ammonia nitrogen in the livestock wastewater. In general, livestock wastewater contains higher alkalinity than wastewater, but shows about 50-60% of theoretical alkalinity due to high ammonia nitrogen concentration in the influent. In the present invention, even when the above-mentioned treatment process is operated efficiently, about 200-250 mg / l of nitrate nitrogen is discharged at the 2,000 mg / l inflow concentration in the high concentration livestock wastewater, so that an additional denitrification tank is inevitable. Ceramic-filled post-treatment reactor (6) was installed to minimize the land area, and the denitrification tank (6) introduced organic carbon source and returned symbol water together into the lower part of the reactor for denitrification by heterotrophic microorganisms. Digestion occurs to reduce nitrified nitrogen to harmless nitrogen gas. Through the above treatment process, most pollutants can be treated within the legal limit, but in the case of phosphorus and trace chemical oxygen demand (COD) and chromatic color which can be aesthetically indispensable, follow-up treatment is necessary. In the present invention, the Fenton oxidation tank (8) was introduced.

이하, 본 발명의 실시예를 기재한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 본 발명의 바람직한 예일 뿐 본 발명이 이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the Example of this invention is described. However, the following examples are only preferred examples of the present invention to aid in understanding the present invention, and the present invention is not limited by these examples.

<실시예><Example>

본 발명에 따른 폐수 처리 시스템을 평가하기 위하여, 먼저 고형물을 비교적 적게 함유한 분뇨분리형 돈사폐수를 적용하였다. 축산폐수는 축사형태에 따라 분뇨 분리식인 스크렙퍼형 축사와 분뇨합류식인 슬러리형 축사로 구분되지만, 상대적으로 고농도인 슬러리형 축산폐수의 경우에는 기존에 상용화된 고액분리기를 통해 쉽게 분뇨분리형 돈사의 수질을 달성할 수 있기 때문에 대상폐수로 분뇨분리식인 스크렙퍼형 돈사를 선정하였다. 발명의 전처리 시험에는 축산폐수내의 질소농도를 초기에 감소시키기 위해 암모니아 탈기, MAP 침전 시험, 제올라이트 흡착 등을 수행할 수 있으나 암모니아 탈기의 경우 냄새유발 및 이차오염을 유발할 수 있고 제올라이트의 경우 암모니움이온 흡착능을 제한하므로 안정적인 처리효율뿐만 아니라 부산물을 완효성 비료로 사용할 수 있는 MAP 침전법을 선정하였다.In order to evaluate the wastewater treatment system according to the present invention, first, manure-separated pig wastewater containing relatively little solids was applied. The livestock wastewater is divided into the scrape type barn which is a manure separation type and the slurry type barn which is the manure consolidation type according to the type of barn, but in the case of the slurry type livestock wastewater with a relatively high concentration, the water quality of the sewage type piglet can be easily As the target wastewater can be achieved, a manure separation type scraper-type piglet was selected. In the pretreatment test of the present invention, ammonia degassing, MAP precipitation test, zeolite adsorption, etc. may be performed to initially reduce the nitrogen concentration in the livestock wastewater, but in the case of ammonia degassing, it may cause odor and secondary pollution, and in the case of zeolite, ammonium ion As the adsorption capacity was limited, the MAP precipitation method was selected, which can use by-products as slow fertilizer as well as stable treatment efficiency.

또한, 하기 실시예에 대해서는 다음의 분석 방법을 사용하였다.In addition, the following analysis method was used about the following example.

·pH: pH 미터 (유리전극법, Coring 120, TOA HM71)PH: pH meter (glass electrode method, Coring 120, TOA HM71)

·알칼리도: CaCO3적정법Alkalinity: CaCO 3 titration method

·SS (현탁 고형분): GF/C 필터를 사용하여 103 내지 105 ℃의 건조 오븐에서 2 시간 동안 건조시킨 현탁 고형분의 총량SS (suspended solids): Total amount of suspended solids dried for 2 hours in a drying oven at 103-105 캜 using a GF / C filter.

·BOD5: 5 일 경과후의 BOD 측정법BOD 5 : BOD measurement after 5 days

·CODcr: 적정법, K2Cr2O7폐쇄 환류(Closed Reflux)CODcr: Titration, K 2 Cr 2 O 7 Closed Reflux

·TKN: 유기질소 및 암모니아 질소 측정(Micro Kjeldahl Method)TKN: Determination of Organic Nitrogen and Ammonia Nitrogen (Micro Kjeldahl Method)

·NH4 +-N: 증류 및 적정법(Nonorganic Kjeldahl Method)NH 4 + -N: distillation and titration (Nonorganic Kjeldahl Method)

·NO2 --N: 발색측정법(Colorimatric Method ,λ= 543nm)NO 2 -- N: Colorimetric Method (λ = 543 nm)

·NO3 --N: 브루신-황산염 방법(Brucine-sulfate Method, λ= 410nm)NO 3 -- N: Brucine-sulfate Method (λ = 410 nm)

·TP (총 인성분 함량) : 염화제1주석법(Stannous Chloride Method, λ= 690nm)TP (Total Phosphorus Content): Stannous Chloride Method (λ = 690 nm)

·PO4 3--P: 염화제1주석법(Stannous Chloride Method, λ= 690nm)PO 4 3- -P: Stannous Chloride Method (λ = 690 nm)

<실시예 1><Example 1>

화학적 산소 요구량 5,000-6,000 ㎎/ℓ, 생물학적 산소 요구량 3,000-3,500 ㎎/ℓ, 암모니아성 질소 1,500-2,200 ㎎/ℓ, 알칼리도 6,000-8,000, 고형물함량 851 ㎎/ℓ, pH 8.5의 전형적인 스크렙퍼형 돈사폐수를 아크릴 제작된 20ℓ 전처리조에서 실온에서 2시간 동안 반응시켰으며, 이 때 마그네슘 1714 ㎎/ℓ 및 인 2213 ㎎/ℓ를 투여하여 암모니아 1000 ㎎/ℓ를 제거하였다 (몰랄농도를 기준으로, 제거하려는 암모니아 농도와 같은 몰랄농도, 즉 Mg2+: NH3-N : PO4 3-P = 1 : 1 : 1). 자동 온도조절 장치가 장착되고 유효용적이 5.4 ℓ인 아크릴 혐기성 반응기로서 하부가 UASB(Upflow anaerobic sludge blanket)형이고 상부가 AF(anaerobic filter)형인 복합형 혐기성 반응기를 제작하고, 여기에 상기 전처리조를 거친 폐수를 도입시켜 20-25 ℃에서 0.5-1.0 kg COD/m3·일의 유기물 용적부하 범위로 운전하였다. 이어서, 자동 온도조절 장치가 장착된 질산화조(아크릴재질로 제작, 유효용적 10L)에 도입시켜 약 25 ℃에서 0.2-0.4 kg N/m3·일의 질소 용적부하로 운전한 후, 2.5ℓ의 아크릴 후처리 반응조에 세라믹 담체((주)삼환기연제)를 충진하고, 후처리 반응조에 질산화조 유출수 1 ℓ 당 탄소원으로서의 메탄올 0.79 g을 가하여 실온에서 반응시켰으며, 유입시킨 폐수의 질소부하는 0.5-1.0 kg/Nm3·일의 질소 용적부하 범위에서 운전하였다. 최종적으로, 아크릴 재질의 1ℓ 펜톤 산화조에는 철염 500 ㎎/ℓ 및 과산화수소 750 ㎎/ℓ를 주입하여 2시간 이하로 운전하였으며, 이 때의 COD농도는 500 ㎎/ℓ이었다. 그 결과 COD 35 ㎎/ℓ(제거율 80%), TP 0.15 ㎎/ℓ(제거율 99%)의 최종 생성물을 수득하였다.Typical scraper-type pig wastewater with chemical oxygen demand 5,000-6,000 mg / l, biological oxygen demand 3,000-3,500 mg / l, ammonia nitrogen 1,500-2,200 mg / l, alkalinity 6,000-8,000, solids content 851 mg / l, pH 8.5 Was reacted for 2 hours at room temperature in an acrylic 20 L pretreatment tank, at which time 1714 mg / l magnesium and 2213 mg / l phosphorus were administered to remove 1000 mg / l of ammonia (based on molar concentration. Molar concentration equal to ammonia concentration, ie Mg 2+ : NH 3 -N: PO 4 3 -P = 1: 1: 1). An acrylic anaerobic reactor equipped with a thermostat and an effective volume of 5.4 ℓ, a composite anaerobic reactor having a UASB (upflow anaerobic sludge blanket) type and an anaerobic filter (AF) type at the bottom, wherein the pretreatment tank is Coarse wastewater was introduced and operated at 20-25 ° C. in an organic volume load range of 0.5-1.0 kg COD / m 3 · day. Subsequently, it was introduced into a nitrification tank equipped with a thermostat (made of acrylic material, effective volume of 10L) and operated at a nitrogen volume load of 0.2-0.4 kg N / m 3 · day at about 25 ° C., followed by 2.5L of An acrylic aftertreatment reactor was filled with a ceramic carrier (Tricycle Vaporizer Co., Ltd.), and 0.79 g of methanol as a carbon source per liter of nitrate tank effluent was added to the aftertreatment reactor and allowed to react at room temperature. It was operated in the nitrogen volume load range of -1.0 kg / Nm 3 · day. Finally, 500 mg / l of iron salt and 750 mg / l of hydrogen peroxide were injected into the 1-liter Fenton oxidizing tank made of acrylic and operated for 2 hours or less, and the COD concentration at this time was 500 mg / l. As a result, a final product of 35 mg / l COD (80% removal) and 0.15 mg / l TP (99% removal) was obtained.

<비교예 1>Comparative Example 1

전처리 공정을 배제시키고, 후처리 반응조에 질산화조 유출수 1 ℓ 당 탄소원으로서의 메탄올 2.37 g을 가한 것을 제외하고는 상기 실시예 1과 동일한 공정으로 실험을 수행하였다.The experiment was carried out in the same manner as in Example 1 except that the pretreatment step was excluded and 2.37 g of methanol as carbon source per liter of nitrate tank effluent was added to the aftertreatment reactor.

상기 실시예 1과 같이 전처리 공정이 있는 실험 및 비교예 1과 같이 전처리 공정이 없는 실험을 여러차례 수행하였으며, 각각 후처리 반응조에 유입되기 전의 생성물을 취하여 총 질소량에 대해 비교한 결과를 하기 표 1에 나타내었다.Experiments with a pretreatment process as in Example 1 and experiments without a pretreatment process as in Comparative Example 1 were performed several times, taking the products before entering the aftertreatment reactor and comparing the total nitrogen amounts in Table 1 below. Indicated.

질산화조 유출수의 총 질소량 (㎎/ℓ)Total Nitrogen Content in Nitrifier Effluent (mg / ℓ) 전처리 공정 있는 경우If there is pretreatment process 전처리 공정 없는 경우Without pretreatment 최대maximum 905905 1,6051,605 평균Average 352352 989989 최소at least 135135 789789

본 발명에 따르면, 축산폐수내의 생물학적 처리가 어려운 인과 질소를 MAP 전처리를 통해 일부 제거하고 유기물/질소의 비를 크게 상승시켜 후속의 탈질소화-질산화반응을 유도함으로써 안정적이고 우수한 총 질소 제거율을 달성할 수 있다. 또한, 탈질소화-질산화반응 후 남아있는 산화된 질소는 메탄올 등을 유기물원과 함께 탈질소화 반응기로 공급하여 질소가스로 환원시키고 상기의 처리공정 후에도 남아있는 인, 색도 및 유기물은 펜톤산화시킴으로써 법적 규제치 이하로 처리수를 생산할 수 있다.According to the present invention, it is possible to achieve stable and excellent total nitrogen removal rate by removing some of phosphorus and nitrogen which are difficult to treat biologically in livestock waste through MAP pretreatment and greatly increasing organic / nitrogen ratio to induce subsequent denitrification-nitrification reaction. Can be. In addition, the oxidized nitrogen remaining after the denitrification-nitriding reaction is fed to methanol denitrification reactor along with the organic material source to reduce the nitrogen gas, and phosphorus, color and organic matter remaining after the above treatment process are fentonized. Treated water can be produced as follows.

Claims (3)

a) 축산폐수내의 암모니아성 질소와 인을 선택적으로 제거하는 전처리조;a) pretreatment tank for selectively removing ammonia nitrogen and phosphorus in livestock wastewater; b) 상기 전처리조를 통과한 피처리물을 산발효시켜 상부의 탈질소 구역에서 탈질소화시키는 혐기성 반응조;b) an anaerobic reactor for acidifying the object to be passed through the pretreatment tank to denitrify in the upper denitrification zone; c) 상기 혐기성 반응조를 통과한 처리수를 질산화시키는 질산화 반응조;c) a nitrification reaction tank for nitrifying the treated water passing through the anaerobic reactor; d) 상기 혐기성 반응조 및 질산화 반응조를 통과하여 잔류하는 산화된 질소를 질소가스로 제거하기 위한 탈질소화 반응을 유도하는 후처리 반응조; 및d) a post-treatment reaction tank for inducing a denitrification reaction for removing the oxidized nitrogen remaining through the anaerobic reactor and the nitrification reactor with nitrogen gas; And e) 상기 후처리 반응조를 통과한 처리수로부터 인, 유기물 및 색도를 제거하고 소독효과를 내는 펜톤산화를 수행하는 펜톤산화조e) Fenton oxidation tank which removes phosphorus, organic matter and chromaticity from the treated water passed through the after-treatment reaction tank and performs the phenton oxidation which produces disinfection effect. 를 포함하는 축산폐수 고도처리 시스템.Livestock wastewater advanced treatment system comprising a. 제1항에 있어서, 상기 전처리조가, 마그네슘염과 무기 인성분을 첨가하여 혼화하는 혼화조 및 침전조로 구성되며 MAP(Magnesium Ammonium Phosphate) 침전법을 사용하여 유기물/질소 비율을 6:1 이상으로 유지함으로써 탈질소 효율을 개선시킨 것인 축산폐수 고도처리 시스템.The method according to claim 1, wherein the pretreatment tank is composed of a mixing tank and a precipitation tank mixed with magnesium salts and inorganic phosphorus components, and the organic matter / nitrogen ratio is maintained at 6: 1 or more using MAP (Magnesium Ammonium Phosphate) precipitation method. By improving the denitrification efficiency livestock wastewater advanced treatment system. 제1항에 있어서, 상기 혐기성 반응조가, 10 내지 40 ℃의 운전 온도에서 가수분해 반응 및 산발효 반응을 유도하는 하단의 산형성 구역, 및 유기물 양을 50% 이상 절감하면서 질소 제거율이 75% 이상인 상단의 탈질소 구역으로 이루어진 것인축산폐수 고도처리 시스템.The method of claim 1, wherein the anaerobic reactor has a nitrogen removal rate of 75% or more, while reducing the amount of organic matter by 50% or more at the bottom of the acid formation zone at which the hydrolysis reaction and the acid fermentation reaction are induced at an operating temperature of 10 to 40 ° C. Livestock wastewater advanced treatment system consisting of a denitrification zone at the top.
KR10-2000-0049842A 2000-08-26 2000-08-26 Advanced Piggery Wastewater Treatment System KR100386224B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0049842A KR100386224B1 (en) 2000-08-26 2000-08-26 Advanced Piggery Wastewater Treatment System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0049842A KR100386224B1 (en) 2000-08-26 2000-08-26 Advanced Piggery Wastewater Treatment System

Publications (2)

Publication Number Publication Date
KR20020016674A true KR20020016674A (en) 2002-03-06
KR100386224B1 KR100386224B1 (en) 2003-06-02

Family

ID=19685394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0049842A KR100386224B1 (en) 2000-08-26 2000-08-26 Advanced Piggery Wastewater Treatment System

Country Status (1)

Country Link
KR (1) KR100386224B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503461C (en) * 2006-07-21 2009-06-24 中山大学 sterilizing method for waste water of fowl and livestock breeding
CN102101740A (en) * 2010-12-19 2011-06-22 惠州市奥美特环境科技有限公司 Treatment method of high-concentration organic wastewater in electronic industry
CN103739156A (en) * 2013-12-18 2014-04-23 杭州智水水务科技有限公司 Method for performing biological denitrification of wastewater by using residual sludge and biological denitrification system for implementing same
CN104478175A (en) * 2014-12-24 2015-04-01 北京桑德环境工程有限公司 Treatment system and method for biogas slurry produced from anaerobic fermentation of kitchen waste
CN106336081A (en) * 2016-10-09 2017-01-18 天津大学 Method for treating wastewater in cellulose fuel ethanol production
CN107226560A (en) * 2017-08-01 2017-10-03 东北大学 A kind of method and apparatus for handling Pig raising wastewater
CN108249689A (en) * 2016-12-28 2018-07-06 帕克环保技术(上海)有限公司 Waste water treatment system
CN108358294A (en) * 2018-05-04 2018-08-03 谢晓进 Livestock and poultry cultivation sewage extracts the equipment and its application method of phosphate fertilizer
CN109354348A (en) * 2018-12-27 2019-02-19 河南君和环保科技有限公司 The integrated processing method of vitamin B12 production waste water
CN109534613A (en) * 2018-12-26 2019-03-29 河北旭杰环境工程有限公司 The circulative reuse treatment method of high ammonia-nitrogen wastewater
CN111253013A (en) * 2020-03-13 2020-06-09 桂润环境科技股份有限公司 Method and device for treating landfill leachate membrane concentrated solution
RU2821571C1 (en) * 2023-09-20 2024-06-25 Общество с ограниченной ответственностью "Инновационные Технологии в Машиностроении" Method of producing organo-mineral fertilizer from waste water of pig farm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449677B (en) * 2013-09-12 2014-12-17 安徽省绿巨人环境技术有限公司 Treatment process for wastewater produced in production of PU (Poly Urethane) synthetic leather
KR102615704B1 (en) * 2022-12-29 2023-12-20 주식회사 피앤아이휴먼코리아 Sonochemical method for regenerating spent granular activated carbon
KR102660374B1 (en) 2023-12-21 2024-04-25 주식회사 대일화학 Method of preparing a treatment agent of eco-friendly animal manure and fermentation method using the agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235698A (en) * 1984-05-08 1985-11-22 Shoji Takeuchi Method and apparatus for treating sewage
JP3239306B2 (en) * 1995-05-23 2001-12-17 株式会社荏原製作所 Wastewater treatment method
KR100202066B1 (en) * 1997-02-21 1999-06-15 임재명 Wastewater treatment method using biological 3 step digestion process in one reactor
KR100254701B1 (en) * 1997-11-20 2000-05-01 장병주 Treatment device for leachate containing high organic and ammonia nitrogen
KR100271942B1 (en) * 1998-09-26 2000-11-15 박호군 Method for treating high density waste water and apparatus therefore using soil microbe with do controlling aeration tank
KR100314746B1 (en) * 1998-11-19 2002-02-28 한상배 MAP recycling method for nitrogenous wastewater treatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503461C (en) * 2006-07-21 2009-06-24 中山大学 sterilizing method for waste water of fowl and livestock breeding
CN102101740A (en) * 2010-12-19 2011-06-22 惠州市奥美特环境科技有限公司 Treatment method of high-concentration organic wastewater in electronic industry
CN103739156A (en) * 2013-12-18 2014-04-23 杭州智水水务科技有限公司 Method for performing biological denitrification of wastewater by using residual sludge and biological denitrification system for implementing same
CN104478175A (en) * 2014-12-24 2015-04-01 北京桑德环境工程有限公司 Treatment system and method for biogas slurry produced from anaerobic fermentation of kitchen waste
CN106336081A (en) * 2016-10-09 2017-01-18 天津大学 Method for treating wastewater in cellulose fuel ethanol production
CN108249689A (en) * 2016-12-28 2018-07-06 帕克环保技术(上海)有限公司 Waste water treatment system
CN107226560A (en) * 2017-08-01 2017-10-03 东北大学 A kind of method and apparatus for handling Pig raising wastewater
CN108358294A (en) * 2018-05-04 2018-08-03 谢晓进 Livestock and poultry cultivation sewage extracts the equipment and its application method of phosphate fertilizer
CN109534613A (en) * 2018-12-26 2019-03-29 河北旭杰环境工程有限公司 The circulative reuse treatment method of high ammonia-nitrogen wastewater
CN109354348A (en) * 2018-12-27 2019-02-19 河南君和环保科技有限公司 The integrated processing method of vitamin B12 production waste water
CN109354348B (en) * 2018-12-27 2021-07-30 河南君和环保科技有限公司 Integrated treatment method of vitamin B12 production wastewater
CN111253013A (en) * 2020-03-13 2020-06-09 桂润环境科技股份有限公司 Method and device for treating landfill leachate membrane concentrated solution
RU2821571C1 (en) * 2023-09-20 2024-06-25 Общество с ограниченной ответственностью "Инновационные Технологии в Машиностроении" Method of producing organo-mineral fertilizer from waste water of pig farm

Also Published As

Publication number Publication date
KR100386224B1 (en) 2003-06-02

Similar Documents

Publication Publication Date Title
AU731280B2 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CN108946944A (en) The method that short-cut denitrification promotes the removal of waste water total nitrogen
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
CN109205954A (en) Light electrolysis catalysis oxidation, biochemical treatment high-concentration waste hydraulic art
CN101654314A (en) Dye waste water treatment method
CN104944676A (en) Method for treating coking nanofiltration concentrated water
CN109607792A (en) The anaerobic- anoxic- oxic biological denitrification phosphorous removal technique improved using electron beam irradiation
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
KR20010028550A (en) Treatment method for livestock waste water including highly concentrated organic, nitrogen and phosphate
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
DE69729249D1 (en) wastewater treatment processes
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
KR100336483B1 (en) Method for removing nitrogen from waste water through sulfur-utilizing denitrification
KR20010094836A (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR19980043482A (en) Waste Landfill Leachate Treatment Method
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
CN112919728A (en) Blue algae mud pressure filtrate treatment method
KR100192144B1 (en) Solid waste made land leachate treatment process
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR950000212B1 (en) Waste water clarifier
CN110040848A (en) It is a kind of that the processing method containing ammonia nitrogen and sulfate inorganic wastewater is realized based on sulfur cycle
KR20010084760A (en) Wastewater treatment method using settling tank

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090424

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee