KR20020011511A - Hydrophilic Photo-catalytical Coating and Method for Forming the Coating - Google Patents

Hydrophilic Photo-catalytical Coating and Method for Forming the Coating Download PDF

Info

Publication number
KR20020011511A
KR20020011511A KR1020000044824A KR20000044824A KR20020011511A KR 20020011511 A KR20020011511 A KR 20020011511A KR 1020000044824 A KR1020000044824 A KR 1020000044824A KR 20000044824 A KR20000044824 A KR 20000044824A KR 20020011511 A KR20020011511 A KR 20020011511A
Authority
KR
South Korea
Prior art keywords
oxide
film
hydrophilic
photocatalyst film
hydrophilic photocatalyst
Prior art date
Application number
KR1020000044824A
Other languages
Korean (ko)
Other versions
KR100406814B1 (en
Inventor
고경현
Original Assignee
김일명
(주)메이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김일명, (주)메이 filed Critical 김일명
Priority to KR10-2000-0044824A priority Critical patent/KR100406814B1/en
Publication of KR20020011511A publication Critical patent/KR20020011511A/en
Application granted granted Critical
Publication of KR100406814B1 publication Critical patent/KR100406814B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided are a hydrophilic photocatalyst membrane formed on the existing materials and its preparation method. The hydrophilic photocatalyst membrane is coated on the above materials to prevent them from condensation of moisture. The membrane is characterized in that it contains 0.1mol% to 10mol% of aluminum oxides and tungsten oxides to the main component, titanium oxides. The catalyst recovers hydrophilic character at low light intensity and maintains high hydrophilicity even when blocked from the light for a long time. CONSTITUTION: The preparation method includes: making each liquid precursors of titanium oxide, aluminum oxide and tungsten oxide wherein the oxides of aluminum and tungsten are organic or inorganic oxides and are in a sol form; mixing the above precursors with a solution containing anhydrous ethanol and nitric acid, whereas aluminum oxide and tungsten oxide as additives are in a ratio of 0.1mol% to 10mol% to the main component of titanium oxide while the ratio of aluminum oxide and tungsten oxide themselves is 1:1-1:2 and the sum of both oxides is not more than 5mol%; coating the above solution mixtures on a surface of the existing materials in the thickness of not more than 2μm; and baking and heat treating the materials coated with mixed solutions at 300-600deg.C.

Description

친수성 광촉매막과 그 제조방법 {Hydrophilic Photo-catalytical Coating and Method for Forming the Coating}Hydrophilic Photocatalyst Film and Manufacturing Method {Hydrophilic Photo-catalytical Coating and Method for Forming the Coating}

본 발명은, 친수성 광촉매막에 관한 것이다.The present invention relates to a hydrophilic photocatalyst film.

유리나 도기 및 자기는 대부분 소수성 재료이기 때문에 수분에 의해서 침해가 쉬운 장소나 청결함을 유지하기 위해 물청소를 자주 하는 장소에서 많이 사용한다. 화장실 변기, 개수대 등 물이 직접 사용되는 제품에서부터 자동차용 앞유리, 유리창, 자동차용 후시경 및 광학용 현미경 등 눈을 이용하여 관찰하는 모든 종류의 제품이 이에 해당한다. 이들 제품에 필수요소인 렌즈나 유리는 대부분 소수성을 가지고 있어, 쉽게 수분이 안착하지 못하므로 물방울이 맺힐 정도의 습도에 도달하지 않는 한 김서림이나 물방울에 의해서 방해를 받지 않는다. 그러나, 주변의 습도가 일정 한계를 넘거나 주변의 온도 차이에 의해서 상대습도가 높아져 습한 상태에 방치하게 되면, 이들 소재의 표면에 수분들이 수없이 결집되어 물방울이 맺히거나 김이 서리게 된다. 그러면, 광학용 렌즈나 유리 같은 투명성이 요구되는 재료의 경우, 시계가 불명해지고 관찰이 불명확해져 심각한 불편과 위험을 초래하게 된다. 또한, 대기 중에 존재하는 공해성 불순물들이 표면에 쉽게 흡착되어 잘 떨어지지 않는 얼룩을 형성하게 된다.Glass, pottery, and porcelain are mostly hydrophobic materials, so they are often used in places where water is easily invaded or water is frequently cleaned to keep them clean. This includes all types of products that are observed using the eyes, such as toilets and sinks, such as bathrooms, windshields, windshields, automotive rearview mirrors, and optical microscopes. Lenses and glasses, which are essential for these products, are mostly hydrophobic, and they are not easily settled by moisture, so they are not disturbed by steaming or water droplets unless the humidity reaches the moisture level. However, when the ambient humidity exceeds a certain limit or the relative humidity increases due to the ambient temperature difference and is left in a humid state, water is concentrated on the surface of these materials to form water droplets or frost. Then, in the case of a material requiring transparency such as an optical lens or glass, the field of view becomes unclear and the observation becomes unclear, which causes serious inconvenience and danger. In addition, pollutant impurities present in the atmosphere are easily adsorbed on the surface to form stains that do not fall well.

따라서, 상기와 같은 단점을 해소하고자 기지재료 표면에 김서림 방지처리 나 수분제거를 위한 많은 기술들이 제시되고 있다. 그 중에 가장 널리 알려진 기술로는, 소재의 소수성을 지양하고 역으로 표면에 친수성막을 형성하는 기법이 있다. 이 기법은 습도가 높거나 수분이 많은 조건하에서 물분자를 기지재료 표면에 넓고 얇게 분산시킴으로서 균일한 수막이 형성되도록 하여, 투과성 재료에서는 선명도를 잃지 않고 시계를 보호 할 수 있으며, 일반 도기재료 및 유리재료는 표면에 불순물 입자들이 흡착되지 않게 함으로써, 얼룩과 같은 물때가 발생하지 않도록 억제하고 청소시 제거가 쉽도록 하였다.Therefore, in order to solve the above disadvantages, many techniques for preventing antifogging or removing moisture on the surface of the base material have been proposed. The most widely known technique is a technique of avoiding hydrophobicity of a material and conversely forming a hydrophilic film on its surface. This technique disperses water molecules on the surface of the base material in high humidity or moisture conditions so that a uniform water film can be formed, so that the watch can be protected without loss of clarity in transparent materials. The material prevents impurities from adsorbing on the surface, thereby suppressing stains such as stains and making it easy to remove during cleaning.

현재까지 알려진 친수성 재료로는, 폴리머를 소재로 한 친수성막이 많이 사용되고 있었고, 최근에는 반도체 물질을 주성분으로 하는 친수성 광촉매막에 대해서 많은 개발이 진행되고 있다. 특히, 광촉매성 재료로서 산화티타늄은, 친수성부여에 있어서, 폴리머 도장보다 효과적으로 개선된 친수성막으로서 제시되고 있다.As hydrophilic materials known to date, many hydrophilic films made of polymers have been used. Recently, many developments have been made on hydrophilic photocatalyst films mainly composed of semiconductor materials. In particular, titanium oxide as a photocatalytic material has been proposed as a hydrophilic film that is more effectively improved than polymer coating in hydrophilicity imparting.

이와 같은 친수성 광촉매막은, 친수성부여를 위하여, 기지 재료 표면에 단일층으로서 산화티타늄막을 형성할 뿐만 아니라, 용도에 따라서 일부 금속산화물을 첨가하거나, 여러 가지 조합의 복수 혼합막층을 채용하기도 한다. 즉, 기지재료 표면에 산화티타늄에 산화알루미늄이 첨가된 단일의 혼합광촉매막층과(TiO2+Al2O3)이나, 산화텅스텐이 포함된 산화티타늄막층 위에 전자흡인체막을 포함하고 있는 이중막층(TiO2+WO3/ 전자흡인체), 및 기지재료 표면에 침투억제막을 형성하고 그 위에 광촉매막층을 형성한 복합막층(침투억제막/TiO2+Al2O3) 등이 있다.In order to impart hydrophilicity, such a hydrophilic photocatalyst film not only forms a titanium oxide film as a single layer on the surface of a known material, but also adds some metal oxides or uses a plurality of mixed film layers in various combinations depending on the application. That is, a single mixed photocatalyst film layer in which aluminum oxide is added to titanium oxide on the surface of the base material (TiO 2 + Al 2 O 3 ), or a double film layer containing an electron-withdrawing film on the titanium oxide film layer containing tungsten oxide ( TiO 2 + WO 3 / electron attractor), and a composite membrane layer (penetration inhibitor / TiO 2 + Al 2 O 3 ) having a penetration inhibitory film formed on the surface of a matrix and a photocatalytic film layer formed thereon.

상기와 같은, 광촉매막층들은, 다음과 같은 과정을 거쳐서 기지재료 표면에 형성된다. 먼저, 기지재료의 표면을 막질이 잘 형성될 수 있도록 세정공정을 포함한 전처리를 한다. 그런 다음, 침지(Dipping)나 도장(Painting) 등의 물리흡착법 및 무전해도금과 같은 화학흡착법 등을 이용하여, 기지재료의 표면에 침투억제막 (필요에 따라 생략할 수도 있음)과 광촉매막을 형성한다. 그런 다음, 광촉매막 위에 니트로산기(NO3 -), 황산기(SO4 2-), 초산기(COOH-) 등의 전자흡인체막을 형성한다. 상기 광촉매막층 형성이 완료된 후, 광촉매층을 완성하고 필요한 기계적성질을 부여하기 위해서는, 450 ℃ ~ 800 ℃의 온도에서 열처리를 해야한다. 그런 다음, 일정시간 동안 빛에 노출시켜 친수성을 부여함으로써, 친수성 광촉매막을 완성한다.As described above, the photocatalytic film layers are formed on the surface of the base material through the following process. First, pretreatment including a cleaning process is performed so that the surface of the base material can be well formed. Then, by using a physical adsorption method such as dipping or painting and a chemical adsorption method such as electroless plating, a penetration inhibiting film (which may be omitted if necessary) and a photocatalyst film are formed on the surface of the base material. do. Then, an electron-withdrawing film such as nitro acid group (NO 3 ), sulfuric acid group (SO 4 2- ), acetic acid group (COOH ) is formed on the photocatalyst film. After the formation of the photocatalytic film layer, in order to complete the photocatalyst layer and impart the necessary mechanical properties, heat treatment should be performed at a temperature of 450 ° C to 800 ° C. Then, the hydrophilic photocatalyst film is completed by imparting hydrophilicity by exposing to light for a predetermined time.

여기서, 침투억제막을 형성하는 이유는, 기지재료가 알칼리금속이온을 포함하고 있는 소듐라임(sodium lime)유리나 도자기의 유약층 표면 위에 코팅시에는, 고온 열처리를 하면서 알칼리금속이 광촉매층으로 침투하여 친수성을 크게 감소시키기 때문에 이를 방지하기 위해서이다.Here, the reason for forming the penetration inhibitory film is that when the base material is coated on the surface of the sodium lime glass or porcelain glaze layer containing alkali metal ions, the alkali metal penetrates into the photocatalyst layer and undergoes hydrophilicity while performing high temperature heat treatment. This is to prevent this because it greatly reduces the.

상기와 같은 종래의 기술은, 광촉매막층의 표면에 친수성을 부여하기 위해서 산성기의 보조막을 필요로 하거나, 알칼리금속을 포함하고 있는 기지재료에 친수성 광촉매막을 형성하기 위해서 기지재료와 광촉매막 사이에 침투억제막을 형성해야만 하기때문에, 친수성 광촉매막 외의 추가적인 보조막층 형성이 필요하다는 단점이 있다. 또한, 광촉매막을 형성한 후, 초기 친수성을 부여하기 위해서는 강한 자외선이나 기타 광원에 장시간 노출시켜야만 하기 때문에, 공정단계와 공정시간이 길어진다는 단점을 가지고 있다.The conventional technique as described above requires an auxiliary film of an acidic group to impart hydrophilicity to the surface of the photocatalytic film layer, or penetrates between the base material and the photocatalyst film to form a hydrophilic photocatalyst film on a base material containing alkali metal. Since the suppressive film must be formed, there is a disadvantage that additional auxiliary film layer formation other than the hydrophilic photocatalyst film is required. In addition, after forming the photocatalytic film, in order to impart initial hydrophilicity, it has to be exposed to strong ultraviolet rays or other light sources for a long time.

따라서, 상기와 같은 단점을 극복하여, 단시간 내에 친수성을 부여할 수 있고, 저광도의 광에서도 쉽게 우수한 친수성을 가지면서, 기존의 친수성막과 비교하여 장시간 차광상태에서도 우수한 친수성을 유지하는 새로운 친수성 광촉매막을 요구하고 있다.Therefore, the new hydrophilic photocatalyst which overcomes the above drawbacks, can impart hydrophilicity within a short time, has excellent hydrophilicity even in low-light light, and maintains excellent hydrophilicity even in a light-shielding state for a long time compared with the existing hydrophilic film. It is asking for a stop.

따라서, 본 발명의 목적은, 상기의 문제를 해결하고자, 광촉매막층을 구성하는 산화티타늄에 친수성을 강화할 수 있는 물질을 첨가하여, 저광도에서도 우수한친수성을 가지며, 장시간 차광상태에서도 우수한 친수성을 유지하는 친수성 광촉매막을 제공하고자 한다.Accordingly, an object of the present invention is to solve the above problems, by adding a substance capable of enhancing hydrophilicity to titanium oxide constituting the photocatalytic film layer, to have excellent hydrophilicity even at low light intensity and to maintain excellent hydrophilicity even in a long shading state. It is intended to provide a hydrophilic photocatalyst film.

도 1은 본 발명에 따른 친수성 광촉매막을 도시한 단면도,1 is a cross-sectional view showing a hydrophilic photocatalyst film according to the present invention,

도 2는 본 발명에 따른 친수성 광촉매막 형성 공정을 도시한 공정흐름도,2 is a process flow diagram illustrating a process of forming a hydrophilic photocatalyst film according to the present invention;

도 3은 반도체광촉매층에서의 광촉매 반응을 에너지 밴드모델로 나타낸 개략도,3 is a schematic diagram showing an energy band model of a photocatalytic reaction in a semiconductor photocatalyst layer;

도 4는 본 발명에 따른 친수성막의 수분흡착 메카니즘을 나타낸 상세도이다.Figure 4 is a detailed view showing the water adsorption mechanism of the hydrophilic membrane according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 - 기지재료 3 - 친수성 광촉매막1-matrix material 3-hydrophilic photocatalyst film

5 - 계면 7 - 수막5-interface 7-water film

9 - 가전대 11 - 전도대9-Home Appliance 11-Evangelist

13 - 밴드갭에너지 15 - 물분자13-bandgap energy 15-water molecules

상기 목적은, 본 발명에 따라, 주재료로서 산화티타늄과, 상기 산화티타늄에 대해서 0.1 몰% 내지 10 몰%로 함유하고 있는 알루미늄산화물과 텅스텐산화물을 포함하고 있는 친수성 광촉매막에 의해서 달성된다.According to the present invention, the above object is achieved by a hydrophilic photocatalyst film containing titanium oxide as a main material, and aluminum oxide and tungsten oxide contained at 0.1 mol% to 10 mol% with respect to the titanium oxide.

여기서, 상기 알루미늄산화물과 텅스텐산화물의 상호 몰비율이 1:1 내지 1:2 인 것이 친수성을 극대화하기 위해서 바람직하다.Here, the mutual molar ratio of the aluminum oxide and tungsten oxide is preferably 1: 1 to 1: 2 in order to maximize hydrophilicity.

상기 알루미늄산화물과 텅스텐산화물의 합계가 5 mol% 이하인 것이 광촉매성과 친수성을 강화시키기 위해서 바람직하다.The total of the aluminum oxide and tungsten oxide is preferably 5 mol% or less in order to enhance the photocatalyst and hydrophilicity.

또한, 상기의 목적은, 본 발명에 따라, 주재료로서 산화티타늄과 첨가물로서 알루미늄산화물 및 텅스텐산화물의 액상 전구체를 마련하는 단계와, 상기 전구체들을 용매와 함께 혼합하여 혼합용액을 마련하는 용액혼합단계와, 상기 혼합용액을 기지재료 표면에 피막형태로 도포하는 도포단계와, 상기 혼합용액이 도포된 기지재료를 열처리하는 베이킹단계를 포함하는 것을 특징으로 하는 친수성 광촉매막 형성방법에 의해서도 달성된다.In addition, the above object, according to the present invention, preparing a liquid precursor of aluminum oxide and tungsten oxide as a main material and titanium oxide as an additive, and a solution mixing step of preparing a mixed solution by mixing the precursor with a solvent; It is also achieved by the method of forming a hydrophilic photocatalyst film, characterized in that it comprises a coating step of applying the mixed solution in the form of a coating on the surface of the base material, and a baking step of heat-treating the base material on which the mixed solution is applied.

여기서, 상기 알루미늄산화물과 텅스텐산화물의 전구체는 졸(Sol) 상태의 유기 또는 무기 산화물 인 것은 산화물들을 균일하게 혼합하는데 용이하기 때문이다.Here, the precursor of the aluminum oxide and tungsten oxide is an organic or inorganic oxide in a sol state because it is easy to uniformly mix the oxides.

상기 용매는 무수에탄올과 질산을 포함함으로써 표면에서 발생하는 막질형성반응 속도를 균일하게 조절하는데 효과적이다.The solvent is effective to uniformly control the rate of film formation reaction occurring on the surface by including ethanol anhydride and nitric acid.

상기 용액혼합단계에서 산화티타늄에 대해서 알루미늄산화물과 텅스텐산화물의 합계가 5 mol% 이하로 유지하는 것은 친수성 광촉매막의 결정성을 침해하지 않고 광촉매 친수성을 강화하는데 바람직하다.Maintaining a total of aluminum oxide and tungsten oxide at 5 mol% or less with respect to titanium oxide in the solution mixing step is preferable to enhance the photocatalytic hydrophilicity without compromising the crystallinity of the hydrophilic photocatalyst film.

상기 혼합용액은 알루미늄산화물과 텅스텐산화물의 상호 비율이 1 : 1 내지 1 : 2 인 것은 효과적인 친수성 광촉매막을 형성하기 위해서 바람직하다.It is preferable that the mixed solution has an mutual ratio of 1: 1 to 1: 2 of aluminum oxide and tungsten oxide in order to form an effective hydrophilic photocatalyst film.

상기 용액혼합단계에서 혼합용액을 교반하는 단계를 더 포함하면 용액을 균일하게 혼합할 수 있는 효과가 있다.Further comprising the step of stirring the mixed solution in the solution mixing step has the effect of uniformly mixing the solution.

상기 도포단계에서 혼합용액을 분사(Spraying)나 침지(Dipping) 중 어느 하나를 이용하면 기지재료에 피막을 용이하게 도포 할 수 있다.In the coating step, by using either the spraying (Spraying) or dipping (Dipping) the coating solution can be easily applied to the base material.

상기 도포단계에서 기지재료에 형성된 피막의 두께가 2 ㎛ 이하 일 경우에 효과적인 친수성 광촉매막을 형성한다.An effective hydrophilic photocatalyst film is formed when the thickness of the film formed on the base material in the coating step is 2 μm or less.

상기 베이킹 단계에서 300 ℃~ 600 ℃의 온도에서 열처리하면, 기지재료 표면에 도포된 도막을 광촉매 친수성을 가진 결정성 산화티타늄으로 변환시키는 효과가 있다.When the heat treatment at a temperature of 300 ℃ to 600 ℃ in the baking step, there is an effect of converting the coating film coated on the surface of the matrix material to crystalline titanium oxide having a photocatalytic hydrophilicity.

이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 친수성 광촉매막의 수직구조를 나타내는 단면도이다. 도 1a에 도시된 바와 같이, 기지재료(1)가 있고 그 표면에 친수성 광촉매막(3)이 박막형태로 형성되어 있다. 이와 같은 기지재료(1)는 광학용 렌즈, 자동차용 유리, 화장실에서 사용하는 변기 및 기타 수분이나 습기가 높은 장소에서 청결을 유지해야 하는 모든 제품을 지칭한다. 이러한 친수성 광촉매막(3)이 형성된 기지재료가습한 상태에 노출되면, 도 1b에 도시된 바와 같이, 공기 중에 상존하는 수 많은 물분자들이 표면에 흡인되어 접촉각(θ)이 매우 작고 얇은 수막(7)이 형성된다.1 is a cross-sectional view showing a vertical structure of a hydrophilic photocatalyst film according to the present invention. As shown in Fig. 1A, there is a base material 1, and a hydrophilic photocatalyst film 3 is formed in the form of a thin film on the surface thereof. This base material 1 refers to all lenses that need to be kept clean in optical lenses, automotive glass, toilets used in bathrooms, and other places with high moisture or moisture. When the base material on which the hydrophilic photocatalyst film 3 is formed is exposed to a wet state, as shown in FIG. 1B, a large number of water molecules existing in the air are attracted to the surface, so that the contact angle θ is very small and the thin film 7 ) Is formed.

상기와 같은 친수성 광촉매막(3)은, 도 2에 도시된 바와 같이, 본 발명에 따른 친수성 광촉매막 제조공정을 거쳐 형성된다. 도시된 바와 같이, 기지재료(1)의 표면을 세정공정 등을 포함한 표면전처리공정을 거쳐 준비한다. 그런 다음, 결정질 산화티타늄의 전구체인 용해성 무기 타이탄 화합물이나 수산화타이탄 및 비정질 산화타이탄 등을 포함한 액상의 졸(Sol)과, 알루미늄산화물(Al2O3)과 텅스텐산화물(WO3)을 포함한 전구체로서 액상의 유기산화물이나 무기산화물과, 무수에탄올과 질산을 혼합하여 섞은 용매를 마련한다. 그리하여, 상기 전구체 용액들과 용매용액을 교반하면서 균일하게 섞어 혼합용액을 만든다. 이때, 액상의 알루미늄산화물 전구체와 텅스텐산화물 전구체의 비율은 산화티타늄에 대하여 몰비로 1 : 1000 내지 1 : 10 의 비율로 혼합하게 된다. 그런 다음, 혼합용액을 침지조에 담아 기지재료를 침지하거나, 혹은 도료형태로 기지재료에 분사 및 도장을 하여 기지재료 표면에 액상의 박막층을 형성한다. 그런 다음, 혼합용액이 도포된 기지재료를 300 ℃ ~ 600 ℃ 사이의 온도에서 열처리를 함으로써, 비정질 상태의 혼합된 액상 전구체로 흡착되어 있는 산화티타늄을 결정질의 산화티타늄막으로 변환시킨다. 상기 열처리 도중에, 기지재료와 친수성 광촉매막의 계면에서 결합이 강화되어 결합력이 강해지고, 산화티타늄 내에 알루미늄산화물과 텅스텐산화물이 균일하게 분산 석출된다. 그런 다음, 마지막 공정으로, 친수성 광촉매막(3)이 형성된 기지재료 표면에 적절한 광을 조사하여 기지재료 표면에 친수성을 부여한다.As described above, the hydrophilic photocatalyst film 3 is formed through the hydrophilic photocatalyst film manufacturing process according to the present invention. As shown, the surface of the base material 1 is prepared through a surface pretreatment process including a cleaning process and the like. Then, as a precursor containing a soluble inorganic titanium compound that is a precursor of crystalline titanium oxide, a liquid sol (Sol) containing titanium hydroxide and amorphous titanium oxide, and the like, aluminum oxide (Al 2 O 3 ) and tungsten oxide (WO 3 ) A solvent in which a liquid organic oxide or an inorganic oxide, ethanol anhydride, and nitric acid are mixed and mixed is prepared. Thus, the precursor solutions and the solvent solution are uniformly mixed with stirring to form a mixed solution. At this time, the ratio of the liquid aluminum oxide precursor and tungsten oxide precursor is mixed in a molar ratio of 1: 1000 to 1:10 with respect to titanium oxide. Then, the mixed solution is immersed in an immersion tank to immerse the base material, or spray and coat the base material in the form of a paint to form a liquid thin film layer on the surface of the base material. Thereafter, the matrix material coated with the mixed solution is heat-treated at a temperature between 300 ° C. and 600 ° C. to convert titanium oxide adsorbed into the mixed liquid precursor in an amorphous state into a crystalline titanium oxide film. During the heat treatment, the bond is strengthened at the interface between the base material and the hydrophilic photocatalyst film, thereby increasing the bonding strength, and uniformly dispersing and depositing aluminum oxide and tungsten oxide in titanium oxide. Then, as a final step, appropriate light is irradiated to the surface of the base material on which the hydrophilic photocatalyst film 3 is formed to impart hydrophilicity to the surface of the base material.

상기와 같은 방법에 의해서 완성된 친수성 광촉매막(3)은, 주성분인 산화티타늄막에 소량의 알루미늄산화물과 텅스텐산화물이 균일하게 분산 석출되어 있는 광촉매 반도체막이다. 즉, 일정한 격자를 갖는 결정질의 산화티타늄 매트릭스에 불순물로서 소량의 알루미늄산화물(Al2O3)과 텅스텐산화물(WO3)를 포함한 결정질의 산화티타늄(TiO2)막층으로서 주요 구성성분이 반도체 물성을 가진 산화티타늄으로 형성되어 있어, 적당한 광에너지를 받으면 광촉매 반응을 일으키는 광촉매성 막질이다.The hydrophilic photocatalyst film 3 completed by the above method is a photocatalytic semiconductor film in which a small amount of aluminum oxide and tungsten oxide are uniformly dispersed and precipitated in a titanium oxide film as a main component. That is, as a crystalline titanium oxide (TiO 2 ) film layer containing a small amount of aluminum oxide (Al 2 O 3 ) and tungsten oxide (WO 3 ) as impurities in a crystalline titanium oxide matrix having a constant lattice, the main component is semiconductor properties. It is formed of a titanium oxide having excitation, and is a photocatalytic film quality that causes a photocatalytic reaction upon receiving appropriate light energy.

도 3은 본 발명에 따른 광촉매막의 광촉매현상을 에너지 밴드로 나타낸 개략도이다. 도시된 바와 같이, 광촉매막 친수성막(3)은 반도체 물성을 가지고 있는 막질로서, 반도체에너지밴드는 밴드갭에너지(13, Band Gap Energy)에 의해서 가전대(9, Valance Band)와 전도대(11, Conduction Band)로 분리된 불연속에너지 준위를 가진다. 가전대(9)는 전자로 충만되어 있는 에너지 대역이고, 전도대(11)는 전자가 존재할 수 있으나 비어 있는 에너지 대역이다. 여기서, 밴드갭에너지(13)는 3.0eV 이고, 가전대(9)에 있는 전자가 이 밴드갭에너지(13) 이상의 에너지를 얻으면 전도대(11)로 이동할 수 있다. 그러면, 가전대는 양(+)극의 정공이 생기고, 전도대는 음(-)극의 전자가 발생한다. 이와 같은, 가전대(9)에서 전도대(11)로의 전자 전이현상은 광에너지에 의해서도 발생한다. 특히, 자외선과 같이 파장이 짧고 고 에너지의 파장에는 쉽게 전자가 여기되어 전도대(11)로 이동한다. 이러한 자외선은 자연광이나 일반 가정에서 사용하는 삼파장 전등에서도 소량 방출되는 파장을 가진 빛이다.Figure 3 is a schematic diagram showing the photocatalytic phenomenon of the photocatalyst film according to the present invention as an energy band. As shown, the photocatalytic film hydrophilic film 3 is a film having semiconductor properties, and the semiconductor energy band is a band band energy and a conduction band 11 by band gap energy 13. It has discrete energy levels separated by conduction bands. The home appliance 9 is an energy band filled with electrons, and the conduction band 11 is an empty energy band although electrons may exist. Here, the bandgap energy 13 is 3.0 eV, and the electrons in the home appliance 9 can move to the conduction band 11 when the bandgap energy 13 or more energy is obtained. Then, the home appliance band generates positive holes, and the conduction band generates negative electrons. As described above, the electron transition phenomenon from the home appliance 9 to the conduction band 11 is also generated by the light energy. In particular, electrons are easily excited at the wavelength of short energy and high energy, such as ultraviolet rays, and move to the conduction band 11. These ultraviolet rays are light with a wavelength emitted even in the natural light or a three-wavelength lamp used in ordinary homes.

도 4는 본 발명에 따른 친수성 광촉매막의 친수성에 의한 수분흡착 메카니즘을 확대하여 도식적으로 나타낸 상세도이다. 도시된 바와 같이, 기지재료(1) 표면에 형성된 친수성 광촉매막(3)의 계면에는 물분자(15)들이 흡인되어 있고 주변의 물분자(15)들이 극성화 된 친수성 광촉매막(3)의 표면 쪽으로 이동하고 있는 메카니즘이다. 친수성 광촉매막(3)인 산화티타늄막 표면에 자연광이나 전등에서 조명되는 광을 조사하면, 표면의 친수성 광촉매막(3)은 조사된 광에 의해서 여기된 가전대(9)의 전자가 높은 에너지의 전도대(11)로 이동(jump)하게 된다. 이리하여, 전도대(11)에 전자가 발생하고, 가전대(9)에는 정공이 발생하여, 표면이 여기된 상태가 된다. 이렇게 여기된 상태의 친수성 광촉매막(3)은 전자가 여기 된 곳(site)은 음(-)극으로 정공이 여기 된 곳(site)은 양(+)극으로 강한 극성을 가지게 됨으로써, 기지재료와 접한 분위기 중에 있는 H+와 O2-의 쌍극자를 가진 물분자(15, H2O)를 흡인하고, 다른 사이트에서는 OH-기를 발생시킴과 동시에 H+와 재결합하여 물분자를 형성시킨다. 즉, 이렇게 정공이 형성된 표면은 강한 (+)극성을 나타내므로 쌍극자를 가진 물분자(15)들이 쉽게 흡착될 수 있는 조건이 되고, 강한 친수성을 갖게 되어 쉽게 접촉각이(10 °정도) 매우 작은 균일한 수막(7)을 기지재료(1) 표면에 형성하게 된다. 특히, 알루미늄산화물이 형성된 사이트나 텅스텐산화물이 형성된 사이트는 다른 부분보다 더 큰 극성을 가지는 사이트를 제공한다. 일반 막질에서도표면에는 끊어진 결합(Broken Bond)이 존재하여 국부적으로 극성을 띠므로 수분(H2O)이나 수산기(OH-)가 쉽게 흡착될 수 있는데, 광촉매에 의해서 여기된 표면을 갖는 친수성 광촉매막(3)은 더욱 강하게 물분자들이 모인 수분을 흡착시킬 수 있어 매우 높은 친수성을 갖는다.Figure 4 is a detailed view schematically showing an enlarged hydrophilic mechanism of water adsorption of the hydrophilic photocatalyst film according to the present invention. As shown, the surface of the hydrophilic photocatalyst film 3 in which water molecules 15 are attracted and the surrounding water molecules 15 are polarized at the interface of the hydrophilic photocatalyst film 3 formed on the surface of the base material 1. It is a mechanism that is moving towards. When the surface of the titanium oxide film, which is the hydrophilic photocatalytic film 3, is irradiated with natural light or light illuminated by electric light, the surface of the hydrophilic photocatalyst film 3 has high energy of the electrons of the home appliance 9 excited by the irradiated light. It jumps to the conduction band 11. Thus, electrons are generated in the conduction band 11, holes are generated in the home appliance 9, and the surface is excited. The hydrophilic photocatalyst film 3 in this excited state has a strong polarity where the electrons are excited to the negative pole and the positive holes are positive to the known material. Water molecules (15, H 2 O) having dipoles of H + and O 2 in the atmosphere in contact with the aspiration are aspirated, and other sites generate OH groups and recombine with H + to form water molecules. That is, the surface in which the holes are formed shows strong (+) polarity, so that water molecules 15 having dipoles can be easily adsorbed and have strong hydrophilicity, so that the contact angle is very small (about 10 °). One water film 7 is formed on the surface of the base material 1. In particular, the site where the aluminum oxide is formed or the site where the tungsten oxide is formed provides a site having a greater polarity than other portions. Since the combine is broken surfaces in general film quality (Broken Bond) are present strip-polarity locally water (H 2 O) and hydroxyl (OH -) there can be easily adsorbed, a hydrophilic photocatalytic film having the surface excited by the photocatalytic (3) has a very high hydrophilicity because it can more strongly adsorb water collected by the water molecules.

또한, 산화티타늄에 소량 함유되어 있는 알루미늄산화물은 상기 반도체 물성을 가진 산화티타늄의 대체 원소(Substitutional element)로 첨가된다. 그리하여, 원자가 전자가 3가인 알루미늄이 4가인 티타늄과의 전자 결합수 차이로 인하여 상기의 반도체 에너지 밴드갭 내에 새로운 전자에너지 준위를 형성함으로써, 보다 낮은 상태의 광에너지에서도, 전도대로 전자가 쉽게 이동하여 여기 되면서, 광촉매 현상을 발생시킬 수 있다. 따라서, 산화티타늄막 보다 낮은 조도의 광에서도 전자의 여기현상이 쉽게 진행되어 강한 광촉매 친수성을 갖는 경향이 있다.In addition, aluminum oxide contained in a small amount of titanium oxide is added as a substitution element of titanium oxide having the semiconductor properties. Thus, by forming a new electron energy level in the semiconductor energy bandgap due to the difference in the number of electron bonds with the tetravalent aluminum tetravalent titanium, the electrons move easily in the conduction band even at the lower energy state. While being excited, a photocatalyst phenomenon can be generated. Therefore, even in light having a lower illuminance than that of the titanium oxide film, the electron excitation phenomenon easily proceeds, and it tends to have strong photocatalytic hydrophilicity.

따라서, 친수성 면에 있어서 기존의 산화티타늄의 단일 구성보다는 탁월한 광촉매성을 기대 할 수 있고, 이에 따라, 실제 실험에서도 탁월한 광촉매 친수성을 보여 주고 있다.Therefore, in terms of hydrophilicity, it is possible to expect excellent photocatalytic properties rather than a single configuration of the conventional titanium oxide, and thus shows excellent photocatalytic hydrophilicity in actual experiments.

한편, 상기 친수성 광촉매막(3)은 소량의 텅스텐산화물을 포함하고 있다. 이 텅스텐산화물은 밴드갭이 2.5eV인 반도체이며 산화티타늄과 같이 표준수소전극을 기준으로 할 때 O2/H2O의 산화↔환원 전위가 밴드갭 사이에 걸쳐 있어서 물분자와의 전자 교환 능력을 가지고 있으므로 작은 에너지(긴 파장)의 빛으로 광여기되어 역시 친수성 광촉매 특성을 가지고 있는 소재이다. 또한 매우 경한 물질로서 소량이분산 석출되어 분포되어 있음으로써, 산화티타늄의 물성을 변화시키지 않는 범위에서 분산 및 석출 경화효과를 보인다. 이들 산화물은 분자의 크기가 상대적으로 산화티타늄보다 크므로 주변에 있는 산화티타늄에 항상 일정한 응력(Stress)을 주고 있기 때문에, 전기적 및 기계적 성질에 중요한 영향을 주게된다. 즉, 결함(defect)을 최소화시키는 범위에서 주변의 산화티타늄에 응력을 주고 있기 때문에 기지재료의 경도나 강도에 큰 영향을 준다. 그리하여, 막질이 경화되어 단단한 구조를 갖게 되므로, 기지재료가 알칼리 금속을 포함하고 있는 경우에도, 기지재료에 포함되어 있는 알칼리 금속이 친수성 광촉매막(3)으로 침투하는 것을 방지할 수 있다.On the other hand, the hydrophilic photocatalyst film 3 contains a small amount of tungsten oxide. This tungsten oxide is a semiconductor with a bandgap of 2.5 eV, and the oxidation-reduction potential of O 2 / H 2 O extends between the band gaps based on a standard hydrogen electrode, such as titanium oxide, to exchange electrons with water molecules. It is light-excited with light of small energy (long wavelength) and thus has hydrophilic photocatalyst. In addition, since a small amount of dispersed precipitates are distributed as a very hard material, dispersion and precipitation hardening effects are exhibited in a range that does not change the physical properties of titanium oxide. Since these oxides are relatively larger in size than titanium oxide, they always give a constant stress to the surrounding titanium oxide, which has an important effect on electrical and mechanical properties. That is, since stress is applied to the surrounding titanium oxide in a range that minimizes defects, it has a great influence on the hardness and strength of the base material. Thus, since the film quality is cured to have a hard structure, it is possible to prevent the alkali metal contained in the base material from penetrating into the hydrophilic photocatalyst film 3 even when the base material contains alkali metal.

이와 같이, 상기와 같은 본 발명의 친수성 광촉매막(3)은, 산화티타늄막에 소량의 알루미늄산화물과 텅스텐산화물을 혼합 첨가하여 균일하게 분산 석출시킴으로써, 낮은 조도의 광원으로도 신속하게 우수한 친수성을 나타내며, 차광 중에도 장시간 우수한 친수성을 유지하는 친수성 광촉매막을 제공할 수 있다. 그리고, 상기의 친수성광촉매막에 은(Ag) 이나 구리(Cu) 등을 첨가하여, 빛을 조사하면 막질의 표면에서 살균반응을 일으키는 살균성 막질을 형성할 수 도 있다.As described above, the hydrophilic photocatalyst film 3 of the present invention as described above exhibits excellent hydrophilicity quickly even with a low light source by uniformly dispersing and depositing a small amount of aluminum oxide and tungsten oxide to the titanium oxide film. It is possible to provide a hydrophilic photocatalyst film which maintains excellent hydrophilicity for a long time even during shading. In addition, silver (Ag), copper (Cu), or the like may be added to the hydrophilic photocatalyst film to form a bactericidal film that causes a sterilization reaction on the surface of the film.

한편, 상기의 친수성 광촉매막은 너무 두껍게 형성하면, 도막의 응력(stress)에 의한 영향에 의하여 산화티타늄이 광촉매 특성을 상실할 수 있기 때문에, 적당한 두께, 즉, 2 ㎛ 이하로 형성하는 것이 바람직하다.On the other hand, if the hydrophilic photocatalyst film is formed too thick, titanium oxide may lose photocatalytic properties under the influence of stress of the coating film. Therefore, it is preferable to form the hydrophilic photocatalyst film at an appropriate thickness, that is, 2 m or less.

이상 설명한 바와 같이, 본 발명에 따르면, 광촉매층인 산화티타늄에 알루미늄산화물과 텅스텐산화물을 첨가함으로써, 낮은 조도의 광에서도 우수한 친수성 회복을 보이고, 차광 중에도 장시간 우수한 친수성을 유지하는 친수성 광촉매막과 그 제조방법을 제공할 수 있다.As described above, according to the present invention, by adding aluminum oxide and tungsten oxide to titanium oxide as a photocatalyst layer, a hydrophilic photocatalyst film which exhibits excellent hydrophilicity recovery even in low light and maintains excellent hydrophilicity for a long time even during shading and its preparation It may provide a method.

Claims (12)

친수성 광촉매막에 있어서,In the hydrophilic photocatalyst film, 주재료로서 산화티타늄과;Titanium oxide as a main material; 상기 산화티타늄에 대해서 0.1 mol% 내지 10 mol%로 함유하고 있는 알루미늄산화물과 텅스텐산화물을 포함하고 있는 것을 특징으로 하는 친수성 광촉매막.A hydrophilic photocatalyst film comprising aluminum oxide and tungsten oxide containing 0.1 mol% to 10 mol% with respect to the titanium oxide. 제1항에 있어서,The method of claim 1, 상기 알루미늄산화물과 텅스텐산화물의 상호 몰비율이 1:1 내지 1:2 인 것을 특징으로 하는 친수성 광촉매막.A hydrophilic photocatalyst film, wherein the molar ratio of the aluminum oxide and tungsten oxide is 1: 1 to 1: 2. 제1항에 있어서,The method of claim 1, 상기 알루미늄산화물과 텅스텐산화물의 합계는 5 mol% 이하인 것을 특징으로 하는 친수성 광촉매막.The total amount of the aluminum oxide and tungsten oxide is 5 mol% or less, characterized in that the hydrophilic photocatalyst film. 친수성 광촉매막 제조방법에 있어서,In the method for producing a hydrophilic photocatalyst film, 주재료로서 산화티타늄과 첨가물로서 알루미늄산화물 및 텅스텐산화물의 액상 전구체를 마련하는 단계와;Providing a liquid precursor of titanium oxide as a main material and aluminum oxide and tungsten oxide as an additive; 상기 전구체들을 용매와 함께 혼합하여 혼합용액을 마련하는 용액혼합단계와;A solution mixing step of preparing a mixed solution by mixing the precursors with a solvent; 상기 혼합용액을 기지재료 표면에 피막형태로 도포하는 도포단계와;An application step of applying the mixed solution in the form of a film on the surface of the base material; 상기 혼합용액이 도포된 기지재료를 열처리하는 베이킹단계를 포함하는 것을 특징으로 하는 친수성 광촉매막 제조방법.Method for producing a hydrophilic photocatalyst film, characterized in that it comprises a baking step of heat-treating the base material coated with the mixed solution. 제4항에 있어서,The method of claim 4, wherein 상기 알루미늄산화물과 텅스텐산화물의 전구체는 졸(Sol) 상태의 유기 또는 무기 산화물인 것을 특징으로 하는 친수성 광촉매막 제조방법.The precursor of the aluminum oxide and tungsten oxide is a method of producing a hydrophilic photocatalyst film, characterized in that the organic or inorganic oxide in the sol (Sol) state. 제4항에 있어서,The method of claim 4, wherein 상기 용매는 무수에탄올과 질산을 포함하는 것을 특징으로 하는 친수성 광촉매막 제조방법.The solvent is a hydrophilic photocatalyst film production method comprising ethanol anhydride and nitric acid. 제4항 또는 제5항에 있어서,The method according to claim 4 or 5, 상기 용액혼합단계에서 알루미늄산화물과 텅스텐산화물은 산화티타늄에 대해서 0.1 mol% 내지 10 mol%로 혼합하는 것을 특징으로 하는 친수성 광촉매막 제조방법.In the solution mixing step, the aluminum oxide and tungsten oxide is mixed with 0.1 mol% to 10 mol% with respect to titanium oxide. 제4항 또는 제5항에 있어서,The method according to claim 4 or 5, 상기 알루미늄산화물과 텅스텐산화물의 상호 비율이 1 : 1 내지 1 : 2 인 것을 특징으로 하는 친수성 광촉매막 제조방법.A method for producing a hydrophilic photocatalyst film, characterized in that the mutual ratio of aluminum oxide and tungsten oxide is 1: 1 to 1: 2. 제4항에 있어서,The method of claim 4, wherein 상기 용액혼합단계는 혼합용액을 교반하는 단계를 더 포함하는 것을 특징으로 하는 친수성 광촉매막 제조방법.The solution mixing step of producing a hydrophilic photocatalyst film, characterized in that it further comprises the step of stirring the mixed solution. 제4항에 있어서,The method of claim 4, wherein 상기 도포단계에서 혼합용액을 분사(Spraying)나 침지(Dipping) 중 어느 하나에 의해서 기지재료에 피막을 형성하는 것을 특징으로 하는 친수성 광촉매막 제조방법.The method of manufacturing a hydrophilic photocatalyst film, characterized in that for forming a film on the base material by any one of the spraying (Spraying) or dipping (Dipping) the mixed solution. 제4항 또는 제10항에 있어서,The method according to claim 4 or 10, 상기 도포단계에서 기지재료에 형성된 피막의 두께는 2 ㎛ 이하 인 것을 특징으로 하는 친수성 광촉매막 제조방법.The thickness of the film formed on the base material in the coating step is a method of producing a hydrophilic photocatalyst film, characterized in that 2 ㎛ or less. 제4항에 있어서,The method of claim 4, wherein 상기 베이킹 단계에서 열처리 온도는 300 ℃~ 600 ℃ 인 것을 특징으로 하는 친수성 광촉매막 제조방법.The heat treatment temperature in the baking step is a method for producing a hydrophilic photocatalyst film, characterized in that 300 ℃ ~ 600 ℃.
KR10-2000-0044824A 2000-08-02 2000-08-02 Photo-induced Hydrophilic Film and Method of Forming the Film KR100406814B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044824A KR100406814B1 (en) 2000-08-02 2000-08-02 Photo-induced Hydrophilic Film and Method of Forming the Film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044824A KR100406814B1 (en) 2000-08-02 2000-08-02 Photo-induced Hydrophilic Film and Method of Forming the Film

Publications (2)

Publication Number Publication Date
KR20020011511A true KR20020011511A (en) 2002-02-09
KR100406814B1 KR100406814B1 (en) 2003-11-21

Family

ID=19681421

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0044824A KR100406814B1 (en) 2000-08-02 2000-08-02 Photo-induced Hydrophilic Film and Method of Forming the Film

Country Status (1)

Country Link
KR (1) KR100406814B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715491B1 (en) * 2005-06-11 2007-05-08 (주) 파나텍 Forming method for photocatalyst film and manufaturing methdod of industrial material using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738813B1 (en) * 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
JPH10114544A (en) * 1996-08-22 1998-05-06 Toto Ltd Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
KR100225342B1 (en) * 1997-09-04 1999-10-15 명호근 Method for preparing titanium oxide photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715491B1 (en) * 2005-06-11 2007-05-08 (주) 파나텍 Forming method for photocatalyst film and manufaturing methdod of industrial material using the same

Also Published As

Publication number Publication date
KR100406814B1 (en) 2003-11-21

Similar Documents

Publication Publication Date Title
KR100358851B1 (en) Multi-functional material having photo-catalytic function and produing method of thereof
DE102008056792B4 (en) Method for applying a porous self-cleaning anti-reflection coating and glass with this anti-reflection coating and use of a self-cleaning porous anti-reflection coating
JP3334709B2 (en) Self-cleaning member with photocatalytic hydrophilic surface
DE69617705T2 (en) SUBSTRATE WITH PHOTOCATALYTIC COATING
KR101352809B1 (en) Method of manufacturing glass and the glass
WO2006114321A1 (en) Anti-reflection coating and method for applying same
JP2001511107A (en) Tantalum oxide-based inorganic polymer material having high refractive index and mechanical abrasion resistance, method for producing the same, and optical material containing the polymer
JP2009120835A (en) Transparent aqua-based nano sol-gel coating agent composition which does not lower transmittance of visible ray and solar light through transparent substrate and method for coating it
KR101056593B1 (en) Method for producing metal nanoparticle inorganic composite and metal nanoparticle inorganic composite
CN1245533C (en) Composite element and method for preparation thereof
JPH10114545A (en) Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
KR100406814B1 (en) Photo-induced Hydrophilic Film and Method of Forming the Film
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JP3661814B2 (en) Membrane structure material and cleaning method thereof
DE10235803A1 (en) Substrate used as self-cleaning substrate for protecting objects in medicine and where hygiene is important comprises photocatalytic layer comprising photocatalytically active titanium dioxide and matrix material
JP3024749B2 (en) Hydrophilic member
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JP7359999B2 (en) Method for producing hydrophilic coating agent and method for forming coating film
JP3024748B2 (en) Hydrophilic member
KR20020034713A (en) Hydrophilic glass coated with metal oxide and method for producing it
JP2005288432A (en) Photocatalytic member
CN2702996Y (en) Float on-line self-cleaning sterilizing glass
WO2006123424A1 (en) Titanium oxide film, process for producing the same and aqueous peroxotitanic acid solution
JP3882227B2 (en) Highly cleanable design member and method for cleaning design member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061113

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee