KR20020008933A - Composition for cmp(chemical mechanical polishing) - Google Patents

Composition for cmp(chemical mechanical polishing) Download PDF

Info

Publication number
KR20020008933A
KR20020008933A KR1020000041938A KR20000041938A KR20020008933A KR 20020008933 A KR20020008933 A KR 20020008933A KR 1020000041938 A KR1020000041938 A KR 1020000041938A KR 20000041938 A KR20000041938 A KR 20000041938A KR 20020008933 A KR20020008933 A KR 20020008933A
Authority
KR
South Korea
Prior art keywords
cmp
composition
polishing
oxide
slurry
Prior art date
Application number
KR1020000041938A
Other languages
Korean (ko)
Inventor
김석진
이길성
이재석
Original Assignee
안복현
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사 filed Critical 안복현
Priority to KR1020000041938A priority Critical patent/KR20020008933A/en
Publication of KR20020008933A publication Critical patent/KR20020008933A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/02Light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Abstract

PURPOSE: Provided is a chemical mechanical polishing(CMP) composition, which can reduce the generation of mu-scratch after polishing and can be used as a polishing agent for a wafer of a semiconductor. CONSTITUTION: The CMP composition comprises 0.1-50wt% of at least one metal oxide selected from the group consisting of SiO2, Al2O3, CeO2, ZrO2, and TiO2, 45-99wt% of deionized water, and 0.01-10wt% of a polyether modified dimethylsiloxane comprising the repeat unit(formula), wherein x, y, n, and m are independently integers of 20-100, and R1 is -H or -CH.

Description

CMP용 조성물{COMPOSITION FOR CMP(CHEMICAL MECHANICAL POLISHING)}Composition for CPM {COMPOSITION FOR CMP (CHEMICAL MECHANICAL POLISHING)}

본 발명은 화학적 물리적 연마(Chemical Mechanical Polishing ; 이하 CMP라 칭함)용 조성물에 관한 것으로서, 더욱 상세하게는 탈이온수와 금속산화물을 주성분으로 하는 연마용 조성물에 실리콘 화합물을 첨가하여 CMP이후 피연마 재료상에μ-스크래치가 생성되는 것을 방지 또는 최소화시킨 CMP용 조성물에 관한 것이다.The present invention relates to a composition for chemical mechanical polishing (hereinafter referred to as CMP), and more specifically, to a polishing composition comprising deionized water and a metal oxide as a main component, and adding a silicon compound to a polishing material after CMP. The present invention relates to a composition for CMP which prevents or minimizes the generation of mu-scratches.

최근들어 반도체 디바이스가 고성능화 및 고집적화됨에 따라 256M 바이트 및 1G 바이트 DRAM으로 대표되는 초대규모 집적 회로(Ultra Large Scale Integration ; 이하 ULSI라 칭함)의 시대로 돌입하고 있으며, 디바이스 제조의 최종 요구 가공 사이즈가 점점 소형화되어가는 추세에 따라 차세대 디바이스의 경우 0.18 - 0.12㎚선이 요구될 전망이다. 이와 같은 고집적 포토 공정시 원하는 해상도를 얻기 위해서는 스테퍼의 고성능화, 랜즈 개구수의 증대 및 빛의 단파장화가 필요하다. 그러나 이러한 조건들을 만족시키게 되면 초점 심도(Depth Of Focus ; DOF)가 얕아지고 디바이스 표면의 단차로 인하여 해상도가 충분하지 못하게 된다.In recent years, as semiconductor devices have become higher performance and higher integration, they have entered the era of ultra large scale integration (hereinafter referred to as ULSI) represented by 256M byte and 1G byte DRAM. With the trend toward miniaturization, next-generation devices will require 0.18-0.12nm lines. In order to obtain a desired resolution in such a highly integrated photo process, it is necessary to increase the stepper performance, increase the lens numerical aperture, and shorten the wavelength of light. However, if these conditions are met, the depth of focus (DOF) is shallow and the resolution of the device surface is insufficient due to the step difference of the device surface.

한편 배선 구조의 미세화와 동시에 고밀도 집적회로를 얻고자 할 경우 배선 층수를 다층화시킬 필요가 있는데, 회로 소자 배열(Logic)의 경우 층수는 6 - 7층으로 증가하게 되고 DRAM의 경우에는 층수가 2 - 3층으로 증가하게 될 것이다. 이처럼 배선 층수가 증가함에 따라서 점점 소자의 표면 구조가 복잡해지고 표면 요철의 정도도 심해지게 된다.On the other hand, when the wiring structure is miniaturized and a high density integrated circuit is to be obtained, the number of wiring layers needs to be multilayered. In the case of a logic element array (Logic), the number of layers is increased to 6-7 layers, and in the case of DRAM, the number of layers is 2-2. It will increase to the third floor. As the number of wiring layers increases, the surface structure of the device becomes more complicated, and the degree of surface irregularities also increases.

평탄화 기술은 리소그래피 수행시 초점 심도 여유의 감소와 배선 구조의 다층화에 따른 문제점을 해결할 수 있는 중요한 기술로서 대두되고 있다. 왜냐하면 광역 평탄화가 이루어진 표면은 리소그래피 및 배선이 용이할 뿐만 아니라 이들 과정이 이상적으로 수행될 수 있기 때문이다. 종래의 웨이퍼 평탄화 공정(Reflow/SOG Etch Back/ECR Depo & Etch등)은 대부분 부분 평탄화 기술로서 광역 평탄화를 실현하기에는 불충분하다. 이러한 가운데에 광역 평탄화를 실현할 수 있는 가장 능률적인 기술로서 주목 받기 시작한 평탄화 기술이 CMP이다.Planarization technology has emerged as an important technology to solve the problems caused by the reduction of the depth of focus margin and the multilayer structure of the wiring structure during lithography. This is because the surface planarized is not only easy to lithography and wiring but also these processes can be ideally performed. Conventional wafer planarization processes (such as Reflow / SOG Etch Back / ECR Depo & Etch) are mostly partial planarization techniques and are insufficient to realize wide area planarization. Among these, CMP is the planarization technique that has attracted attention as the most efficient technique that can realize wide area planarization.

상기 CMP 기술의 원리는 피연마 재료를 연마 패드 표면위에 접촉시킨 상태에서 연마액 슬러리를 공급하여 피연마 재료의 표면을 화학적으로 반응시키고 한편으로는 연마 패드와 피연마 재료를 상대적으로 운동시켜 물리적으로 피연마 재료의 요철 부분을 평탄화시키는 것이다.The principle of the CMP technique is to supply a slurry of polishing liquid while the polishing material is brought into contact with the polishing pad surface to chemically react the surface of the polishing material and to physically move the polishing pad and the polishing material relative to each other. It is to flatten the uneven portion of the material to be polished.

CMP용 조성물의 주요 성분으로서는 탈이온수, 금속 산화물, pH 조절용 염기 또는 산 그리고 연마 속도를 개선시키기 위한 산화제등을 포함한다. 이들중 금속 산화물로서는 실리카(SiO2), 알루미나(Al2O3), 산화 세륨(CeO2), 산화 지르코늄(ZrO2), 산화 티타늄(TiO2)등이 있는데, 이들은 발연법 또는 졸-겔(Sol-Gel)법등으로 제조된다. 이들 슬러리 조성에 대한 공지된 사항을 금속산화물의 종류 및 첨가제별로 예를 들면, 절연층 연마용 슬러리로서 실리카/아민으로 구성된 슬러리(US 특허 제 4,169,337호), 실리카/4급 암모늄염으로 구성된 슬러리(US 특허 제 5,139,571호), 금속 배선 및 플러그 연마용 슬러리로서 알루미나/H202(US 특허 제 5,244,523호), 실리카/K2Fe(CN)6(US 특허 제 5,340,370호), 실리콘니트리드/디카복실산 (유럽 특허 제 786,504호), 금속 산화물/산화제/불소 이온으로 구성된 슬러리(WO 특허 제 9,743,070호)등이 있다. 상기 슬러리들은 피연마 재료 및 CMP 공정에 따라 반도체 생산에 실제로 사용되고 있는 슬러리로서, 연마 성능 평가 항목중 연마 속도, 평탄성, 선택도는 어느 정도 만족할 정도의 수준에 있으나, 연마후 웨이퍼 표면에 μ-스크래치가 다량 발생된다는 문제점을 가지고 있다. CMP 이후 피연마 재질에 발생하는 μ-스크래치등의 결함은 대부분 슬러리에 포함되어 있는 일부 큰 연마제 입자에 의해 발생되는 것이다. 이와 같은 큰 입자의 크기는 수 ㎛(1-10 ㎛) 정도로서, 발생 원인은 슬러리 내부의 연마제의 분산 상태의 변화에 의한 집성화(aggregation) 또는 슬러리가 외부 공기에 노출됨에 따른 건조를 들 수 있는데, 상기 연마제의 분산 상태 변화를 방지하여 응집에 의한 큰 입자(large particle)의 발생 수를 최소화시키고 발생된 큰 입자가 피연마 재질과 접촉시 완충 작용을 할 수 있는 화합물이 필요하다. 특히, 얇은 트렌치 분리(Shallow Trench Isolation;이하 STI라 칭함)공정에 있어서 μ-스크래치 발생은 디바이스의 고장을 유발하게 되어 치명적인데, 이는 트렌치를 이루는 구조가 200㎚정도로 얇고 미세하여 μ-스크래치가 발생할 경우 STI 구조 자체가 파괴되고 위층에 형성되는 트렌치 또는 커패시터등에 영향을 미치게 되기 때문이다. 따라서 CMP공정에 있어서, μ-스크래치를 제거하는 것은 매우 중요한 것이다.The main components of the composition for CMP include deionized water, metal oxides, pH or bases for pH adjustment, and oxidizing agents for improving the polishing rate. Among them, metal oxides include silica (SiO 2 ), alumina (Al 2 O 3 ), cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), and titanium oxide (TiO 2 ), which are fumed or sol-gel. It is manufactured by the (Sol-Gel) method. Known matters regarding these slurry compositions are classified according to types and additives of metal oxides, for example, slurry composed of silica / amine as slurry for polishing an insulating layer (US Pat. No. 4,169,337), slurry composed of silica quaternary ammonium salt (US Patent No. 5,139,571), Alumina / H202 (US Patent No. 5,244,523), Silica / K 2 Fe (CN) 6 (US Patent No. 5,340,370), Slurry for Polishing Metal Wires and Plugs (European) Patent No. 786,504), slurry consisting of metal oxide / oxidant / fluorine ions (WO Patent No. 9,743,070) and the like. The slurries are slurries that are actually used for semiconductor production according to the material to be polished and the CMP process, and the polishing rate, flatness, and selectivity of the polishing performance evaluation items are somewhat satisfactory. Has a problem that a large amount is generated. Defects such as μ-scratches on the material to be polished after CMP are mostly caused by some large abrasive particles contained in the slurry. The size of such large particles is about several micrometers (1-10 micrometers), which may be caused by aggregation due to a change in the dispersion state of the abrasive in the slurry or drying as the slurry is exposed to the outside air. In addition, a compound capable of minimizing the number of large particles generated by agglomeration by preventing a change in dispersion state of the abrasive and buffering the generated large particles in contact with the material to be polished is required. In particular, in the case of thin trench isolation (hereinafter referred to as STI) process, the occurrence of μ-scratch is fatal because it causes the device to fail, and the structure forming the trench is thin and fine at about 200 nm, causing the μ-scratch to occur. This is because the STI structure itself is destroyed and affects trenches or capacitors formed on the upper layer. Therefore, in the CMP process, it is very important to remove the micro-scratches.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 탈이온수와 금속산화물을 주성분으로 하는 연마용 조성물에 실리콘 화합물을 첨가하여 CMP이후 피연마 재료상에μ-스크래치가 생성되는 것을 방지 또는 최소화시킨 CMP용 조성물을 제공하는 것이다.An object of the present invention for solving the above problems is to add a silicon compound to the polishing composition mainly containing deionized water and metal oxides for CMP to prevent or minimize the generation of μ-scratch on the material to be polished after CMP It is to provide a composition.

즉, 본 발명은That is, the present invention

금속 산화물 0.1 - 50중량%,Metal oxides 0.1-50% by weight,

탈이온수 45 - 99중량% 및45-99% by weight deionized water and

하기 화학식 1의 단량체로 구성된 폴리에테르 변성 디메틸실록산Polyether-modified dimethylsiloxane composed of the monomer of formula (1)

0.01 - 10중량%0.01-10 wt%

을 포함하는 CMP용 조성물을 제공하는 것이다.It is to provide a composition for CMP comprising a.

(상기 화학식중 x, y, n, m은 각각 독립적으로 20 - 100 사이의 정수이고; 에틸렌옥시드의 경우 R1은 -H이며, 프로필렌옥시드의 경우 R1은 -CH 그룹임)(Wherein x, y, n, m are each independently an integer between 20 and 100; R1 is -H for ethylene oxide and R1 is -CH group for propylene oxide)

이하 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 금속 산화물은 실리카(SiO2), 알루미나(Al2O3), 산화 세륨(CeO2), 산화 지르코늄(ZrO2), 산화 티타늄(TiO2)등이 있는데, 이들은 발연법 또는 졸-겔(Sol-Gel)법등으로 제조된다. 상기 금속 산화물의 1차 입자 즉, 수용액 분산 이전 상태의 입자의 입도는 10 - 100㎚인데, 바람직하게는 20 - 60㎚이다(BET 측정 결과). 만일 상기 1차 입자의 입도가 10㎚ 미만일 경우에는 연마 속도가 느려지게 되어 생산성이 떨어져서 좋지 않으며, 상기 입도가 100㎚를 초과하는 경우에는 연마 속도가 빨라지게 되어 생산성 측면에서는 유리하지만 분산이 어려워져서 큰 입자(large particle)가 다량으로 존재하게 되므로 μ-스크래치 발생률이 증가하게 되어 좋지 않다.Metal oxides used in the present invention include silica (SiO 2 ), alumina (Al 2 O 3 ), cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), and the like. It is manufactured by the Sol-Gel method. The particle size of the primary particles of the metal oxide, that is, the particles before the aqueous solution dispersion is 10-100 nm, preferably 20-60 nm (BET measurement result). If the particle size of the primary particles is less than 10nm, the polishing rate is lowered and the productivity is not good, and if the particle size exceeds 100nm, the polishing rate is faster, which is advantageous in terms of productivity but difficult to disperse Since large particles are present in a large amount, it is not good to increase the incidence of μ-scratch.

상기 금속 산화물의 2차 입자 즉, 수용액 분산 상태의 입자의 바람직한 입도는 50 - 500㎚이며, 더욱 바람직하게는 50 - 250㎚이다. 만일 상기 입도가 50㎚ 미만일 경우에는 연마 속도가 느려져서 생산성 측면에서 좋지 않으며, 입도가 500㎚를 초과하는 경우에는 μ-스크래치가 급격히 증가할 뿐만 아니라 침강 안정성이 떨어져 1주일 이상 실온에서 방치하였을 경우 침강이 일어나게 되므로, CMP 공정에서 전처리 공정(교반 공정)이 추가로 요구되어 좋지 않다.The preferred particle size of the secondary particles of the metal oxide, that is, particles in an aqueous solution dispersion state is 50 to 500 nm, more preferably 50 to 250 nm. If the particle size is less than 50 nm, the polishing rate is slow, which is not good in terms of productivity. If the particle size is more than 500 nm, the micro-scratch increases not only rapidly but also the sedimentation stability is lowered, so that it is settled at room temperature for more than one week. Since this happens, a pretreatment step (stirring step) is additionally required in the CMP process, which is not good.

상기 금속 산화물의 함량은 조성물 전체에 대하여 0.1 - 50중량%이며, 바람직하게는 1 - 25중량%이다. 통상적으로 실리카를 연마제로 사용한 연마액 슬러리를 반도체 웨이퍼 절연층 연마용으로 사용할 경우의 함량은 9 - 15중량%이며, 금속 배선 및 플러그 등의 연마용으로 사용할 경우의 함량은 3-6중량%이다.The content of the metal oxide is 0.1 to 50% by weight based on the whole composition, preferably 1 to 25% by weight. Generally, the polishing liquid slurry using silica as an abrasive is used for polishing a semiconductor wafer insulating layer in a content of 9-15% by weight, and in the case of polishing for metal wires and plugs, the content is 3-6% by weight. .

본 발명에서 실리콘 첨가제는 연마용 조성물 성분중에 필수 첨가제로서 사용되는 것으로서 하기 화학식 1의 단량체로 구성된 폴리에테르 변성 디메틸폴리실록산 공중합체이다. 화학식 1의 폴리에테르 변성 디메틸폴리실록산은 여러가지 유기물을 첨가하거나 또는 가지의 수를 조절하여 실리콘 사슬을 변성시켜 만들어지는 것으로서 상용성이 개선된 화합물이다. 상기 폴리에테르 변성 디메틸폴리실록산의 상용성을 조절하기 위한 하나의 방법으로서 폴리에테르 그룹의 비율을 조절하는 것인데, 이는 또한 표면 장력에도 영향을 미친다. 즉, 디메틸 그룹의 수가 증가하면 표면 장력은 낮아지고 그 수가 감소하면 표면 장력은 높아진다. 뿐만 아니라, 상기 폴리에테르 자체를 변화시키는 경우 상기 실리콘 첨가제 구조의 극성을 조절할 수 있다. 즉, 폴리에테르 사슬은 에틸렌옥시드 및 프로필렌옥시드로 구성되어 있는데 폴리에틸렌옥시드는 친수성(극성)이며, 폴리프로필렌옥시드는 소수성(비극성)이다. 상기 폴리에틸렌옥시드 및 폴리프로필렌옥시드의 비율을 조절하여 상기 실리콘 첨가제 구조의 극성을 변화시킬 수 있는 것이다.In the present invention, the silicone additive is used as an essential additive in the polishing composition component and is a polyether-modified dimethylpolysiloxane copolymer composed of the monomer of Formula 1 below. Polyether-modified dimethylpolysiloxane of the formula (1) is a compound having improved compatibility by being made by modifying the silicone chain by adding various organics or by controlling the number of branches. One method for controlling the compatibility of the polyether modified dimethylpolysiloxanes is to control the proportion of polyether groups, which also affects surface tension. In other words, as the number of dimethyl groups increases, the surface tension decreases, and as the number decreases, the surface tension increases. In addition, the polarity of the silicone additive structure may be adjusted when the polyether itself is changed. That is, the polyether chain is composed of ethylene oxide and propylene oxide. Polyethylene oxide is hydrophilic (polar) and polypropylene oxide is hydrophobic (nonpolar). It is possible to change the polarity of the silicon additive structure by adjusting the ratio of the polyethylene oxide and polypropylene oxide.

[화학식 1][Formula 1]

(상기 화학식중 x, y, n, m은 각각 독립적으로 20 - 100 사이의 정수이고; 에틸렌옥시드의 경우 R1은 -H이며, 프로필렌옥시드의 경우 R1은 -CH 그룹이다)(Wherein x, y, n, m are each independently an integer between 20 and 100; R1 is -H for ethylene oxide and R1 is -CH group for propylene oxide)

상기 실리콘 첨가제의 함량은 전체 조성물에 대하여 0.01 - 10중량%이다. 만일 상기 함량이 0.01중량% 미만이면 본 발명의 효과를 기대할 수 없고, 만일 10중량%를 초과하면 상기 실리콘 첨가제의 첨가 효과가 발휘되지 않을 뿐만아니라 거품이 발생하여 연마시 제거 속도(removal rate)를 저하시키므로 좋지 않다.The content of the silicone additive is 0.01-10% by weight based on the total composition. If the content is less than 0.01% by weight can not expect the effect of the present invention, if it exceeds 10% by weight not only the effect of the addition of the silicone additive is exhibited, but also foaming occurs to remove the removal rate (removal rate) during polishing It is not good because it lowers.

상기 실리콘 첨가제에 의하여 CMP 슬러리 연마 성능중 μ-스크래치 발생률을 감소시키는 효과에 대한 정확한 설명은 불가능하지만 대략 다음과 같은 원리로 설명될 수 있을 것이다. 즉, 폴리에테르 변성 디메틸폴리실록산 화합물이 습윤 분산제로서 작용하여 금속 산화물의 집성화(aggregation) 또는 응집화(agglomeration)를 방지함으로써 윤활 작용을 하기 때문이라 생각된다.Although the precise description of the effect of reducing the mu-scratch incidence during the CMP slurry polishing performance by the silicone additive is impossible, it may be explained on the following principle. That is, it is considered that the polyether-modified dimethylpolysiloxane compound acts as a wet dispersant to lubricate by preventing aggregation or agglomeration of metal oxides.

상기 첨가제의 첨가 순서는 특별히 한정되지 않아서 금속 산화물의 분산전또는 분산후 어느 경우에나 첨가할 수 있으며, 상업적으로 시판중인 슬러리 조성물에 추가로 첨가하더라도 동일한 효과를 나타낼 수 있다. 뿐만 아니라, 상기 실리콘 첨가제를 사용할 경우 장기간 보관시 슬러리 입자가 침강되지 않는데, 이는 상기 첨가제가 CMP용 슬러리 입자의 분산 안정성을 증가시키기 때문이다. 따라서 본 발명에 의한 CMP용 슬러리는 종래의 CMP용 슬러리보다 μ-스크래치 발생률이 감소되는 효과를 나타낸다. 또한 슬러리 제조시에도 분산시키기전에 슬러리의 점도가 상승하는 틱소트로피(thixotrpy) 현상을 방지하므로 상기 첨가제를 사용하지 않은 경우보다 제조시 매우 유리하다는 부수적 효과를 얻을 수 있다.The addition order of the additives is not particularly limited and may be added before or after the dispersion of the metal oxide, and may be added to a commercially available slurry composition to have the same effect. In addition, when the silicon additive is used, the slurry particles do not settle during long-term storage, because the additive increases dispersion stability of the slurry particles for CMP. Therefore, the slurry for CMP according to the present invention exhibits an effect of reducing the incidence of µ-scratch than the conventional slurry for CMP. In addition, since the thixotrpy phenomenon in which the viscosity of the slurry rises before dispersion is prevented even during the slurry preparation, a side effect of producing the slurry may be very advantageous when the additive is not used.

본 발명에 의한 연마용 조성물은 피연마 재료의 종류에 따라 제 2의 첨가제를 부가적으로 첨가할 수도 있는데, 예를 들면 웨이퍼의 절연층을 연마할 경우에는 KOH 또는 아민염과 같은 염기성 물질을, 금속 배선 및 플러그등을 연마할 경우에는 H2SO4, HNO3, CH3COOH와 같은 산과 산화제등을 첨가하여 사용할 수 있다.The polishing composition according to the present invention may additionally add a second additive depending on the type of material to be polished. For example, when polishing the insulating layer of the wafer, a basic material such as KOH or an amine salt may be used. When polishing metal wires and plugs, an acid such as H 2 SO 4 , HNO 3 , CH 3 COOH and an oxidizing agent can be added.

이하 실시예를 들어 본 발명을 구체화할 것이며, 다음의 실시예는 어디까지나 본 발명을 예시하기 위한 목적으로 기재된 것이지 본 발명의 보호 범위를 제한하고자 하는 것은 아니다.The present invention will be described with reference to the following examples, and the following examples are only described for the purpose of illustrating the present invention and are not intended to limit the protection scope of the present invention.

실시예 1Example 1

시판중인 Aerosil 200(Degussa社) 130g, 20%-KOH 용액 18g, 탈이온수 860g의혼합물을 2L들이 폴리에틸렌 플라스크에 넣고, 1000rpm에서 2시간동안 전혼합(premixing)시킨후 폴리에테르 변성 디메틸폴리실록산 5g(0.5중량%)을 첨가하여 최근 본 발명자들이 새로이 개발한 방법, 즉 수용액에 전혼합된 실리카를 고압으로 가속시켜 오리피스내에서 전단력(shearing force), 충돌력(impact) 및 공동화(cavitation)를 일으키게 하는 방법[대한 민국 특허출원 제 98-39212호, 제 99-34608호]으로 상기 혼합물을 분산시켰다. 결과로 수득된 슬러리를 1㎛두께의 필터를 사용하여 여과한후 하기와 같은 조건에서 2분 동안 연마시켰으며 연마에 의해 제거된 두께의 변화로써 연마 속도를 측정하였으며 웨이퍼 결합 검사기기로 μ-스크래치 발생수를 측정하였다. 연마 성능 평가 결과를 표 1에 나타내었다.A mixture of 130 g of commercially available Aerosil 200 (Degussa), 18 g of 20% -KOH solution, and 860 g of deionized water was placed in a 2 L polyethylene flask, premixed at 1000 rpm for 2 hours, and then 5 g (0.5 g) of polyether modified dimethylpolysiloxane. By weight percent), which is a newly developed method of the present inventors, that is, a method of accelerating the premixed silica in an aqueous solution to high pressure to cause shearing force, impact and cavitation in the orifice. The mixture was dispersed in [Korean Patent Application Nos. 98-39212, 99-34608]. The resulting slurry was filtered using a 1 μm thick filter and then ground for 2 minutes under the following conditions, and the polishing rate was measured by changing the thickness removed by polishing. The number of occurrences was measured. The polishing performance evaluation results are shown in Table 1.

실시예 2 - 5Examples 2-5

발연 실리카(fumed silica) 대신 표 1에 나타낸 금속 산화물들을 각각 사용한 점 및 분산후의 pH를 달리 조절한 점을 제외하고는 실시예 1과 동일한 방법으로 실시하였으며, 연마 성능 평가 결과를 표 1에 나타내었다.Except for fumed silica, except that each of the metal oxides shown in Table 1 and the pH after dispersion was adjusted in the same manner as in Example 1, the polishing performance evaluation results are shown in Table 1 .

비교예 1Comparative Example 1

폴리에테르 변성 디메틸폴리실록산을 첨가하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 실시하였으며, 연마 성능 평가 결과를 표 2에 나타내었다.Except that polyether modified dimethylpolysiloxane was not added, it was carried out in the same manner as in Example 1, the results of the polishing performance evaluation is shown in Table 2.

비교예 2 - 5Comparative Example 2-5

폴리에테르 변성 디메틸폴리실록산을 첨가하지 않은 점, 발연 실리카 대신에 표 2에 나타낸 금속 산화물들을 각각 사용한 점 및 분산후의 pH를 달리 조절한 점을 제외하고는 실시예 1과 동일한 방법으로 실시하였으며, 연마 성능 평가 결과를 표 2에 나타내었다.The polishing process was carried out in the same manner as in Example 1 except that no polyether modified dimethylpolysiloxane was added, the metal oxides shown in Table 2 were used instead of the fumed silica, and the pH after dispersion was adjusted differently. The evaluation results are shown in Table 2.

[연마 조건][Polishing condition]

* 패드 타입 ; IC1000/SubaIV Stack형(Rodel社)Pad type; IC1000 / SubaIV Stack type (Rodel)

* 평삭반(platen) 속도 ; 90rpmPlaten speed; 90 rpm

* 스핀들(spindle) 속도 ; 30rpmSpindle speed; 30 rpm

* 하강력(down force) ; 8psiDown force; 8 psi

* 배경 압력(back pressure) ; 0psiBack pressure; 0psi

* 온도 ; 25℃* Temperature ; 25 ℃

* 슬러리 유속 ; 150㎖/min* Slurry flow rate; 150ml / min

* 연마기 ; Model 6EC (STRASBAUGH社)Grinding machine; Model 6EC (STRASBAUGH)

* 피연마 재료 ; PE TEOS가 도포된 6"-웨이퍼* Material to be polished; 6 "-wafer with PE TEOS

상기 실시예 및 표 1의 결과를 통하여 확인되는 바와 같이, 본 발명의 CMP용 조성물은 μ-스크래치 발생률이 감소된 이점을 갖는다.As confirmed through the results of the Examples and Table 1, the composition for CMP of the present invention has the advantage that the mu-scratch incidence is reduced.

Claims (4)

금속 산화물 0.1 - 50중량%,Metal oxides 0.1-50% by weight, 탈이온수 45 - 99중량% 및45-99% by weight deionized water and 하기 화학식 1의 반복 단위로 구성된 폴리에테르 변성 디메틸실록산Polyether-modified dimethylsiloxane consisting of repeating units of the formula 0.01 - 10중량%0.01-10 wt% 을 포함하는 CMP용 조성물.Composition for CMP comprising a. [화학식 1][Formula 1] (상기 화학식중 x, y, n, m은 각각 독립적으로 20 - 100 사이의 정수이고; 에틸렌옥시드의 경우 R1은 -H이며, 프로필렌옥시드의 경우 R1은 -CH 그룹이다)임(Wherein x, y, n, m are each independently an integer between 20 and 100; R1 is -H for ethylene oxide and R1 is -CH group for propylene oxide) 제 1항에 있어서, 상기 금속 산화물이 실리카(SiO2), 알루미나(Al2O3), 산화 세륨(CeO2), 산화 지르코늄(ZrO2), 산화 티타늄(TiO2)으로 구성된 그룹으로부터 선택된 하나 이상의 것임을 특징으로 하는 CMP용 조성물.The metal oxide of claim 1, wherein the metal oxide is one selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), and titanium oxide (TiO 2 ). The composition for CMP characterized by the above-mentioned. 제 1항에 있어서, 상기 금속 산화물의 1차 입자의 평균 입도가 10 - 100㎚인 것을 특징으로 하는 CMP용 조성물.The composition for CMP according to claim 1, wherein the average particle size of the primary particles of the metal oxide is 10-100 nm. 제 1항에 있어서, 상기 금속 산화물의 2차 입자의 평균 입도가 50 - 500㎚인 것을 특징으로 하는 CMP용 조성물.The composition for CMP according to claim 1, wherein the average particle size of the secondary particles of the metal oxide is 50 to 500 nm.
KR1020000041938A 2000-07-21 2000-07-21 Composition for cmp(chemical mechanical polishing) KR20020008933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000041938A KR20020008933A (en) 2000-07-21 2000-07-21 Composition for cmp(chemical mechanical polishing)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000041938A KR20020008933A (en) 2000-07-21 2000-07-21 Composition for cmp(chemical mechanical polishing)

Publications (1)

Publication Number Publication Date
KR20020008933A true KR20020008933A (en) 2002-02-01

Family

ID=19679202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000041938A KR20020008933A (en) 2000-07-21 2000-07-21 Composition for cmp(chemical mechanical polishing)

Country Status (1)

Country Link
KR (1) KR20020008933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396369B1 (en) * 2001-05-04 2003-09-02 주식회사 엘지화학 Coating composition for electric conduction film having superior anti-scratching and method for preparing electric conduction film using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665116A (en) * 1985-08-28 1987-05-12 Turtle Wax, Inc. Clear cleaner/polish composition
US4743648A (en) * 1985-05-17 1988-05-10 Dow Corning, Ltd. Novel polish compositions
JPH05214297A (en) * 1991-11-07 1993-08-24 Dow Corning Corp Polishing composition containing derived amine-functional organosilicon compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743648A (en) * 1985-05-17 1988-05-10 Dow Corning, Ltd. Novel polish compositions
US4665116A (en) * 1985-08-28 1987-05-12 Turtle Wax, Inc. Clear cleaner/polish composition
JPH05214297A (en) * 1991-11-07 1993-08-24 Dow Corning Corp Polishing composition containing derived amine-functional organosilicon compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396369B1 (en) * 2001-05-04 2003-09-02 주식회사 엘지화학 Coating composition for electric conduction film having superior anti-scratching and method for preparing electric conduction film using the same

Similar Documents

Publication Publication Date Title
KR20000069823A (en) Composition for Oxide CMP
US7708900B2 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
US8512593B2 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
EP2092034B1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
KR100761649B1 (en) Composition for polishing
KR20020008933A (en) Composition for cmp(chemical mechanical polishing)
KR100449610B1 (en) Slurry Composition for Polishing Insulating Layer
KR100367830B1 (en) Composition for chemical mechanical polishing
KR20200132756A (en) Chemical mechanical polishing compositions and methods having enhanced defect inhibition and selectively polishing silicon nitride over silicon dioxide in an acid environment
KR100497410B1 (en) Slurry Composition for Chemical Mechanical Polishing of Oxide with Enhanced Polishing Performance
KR100746917B1 (en) Chemical mechanical polishing slurry composition for polishing Poly-Silicon film
KR100660767B1 (en) Chemical mechanical polishing slurry for polishing Poly-Silicon film and method for producing thereof
KR100466422B1 (en) Composition for chemical mechanical polishing
KR100561568B1 (en) Composition for chemical mechanical polishing
JP4830194B2 (en) CMP polishing agent and substrate polishing method
KR100366304B1 (en) Composition for chemical mechanical polishing of insulating layer in semiconductor wafer
KR100565419B1 (en) Composition for cmp
KR20070090128A (en) Composition for polishing
KR101178716B1 (en) CMP slurry composition for polishing Poly silicon layer and polishing method using the same
KR101178717B1 (en) CMP slurry composition for polishing Poly silicon layer and polishing method using the same
KR100522301B1 (en) CMP slurry for polishing oxide film of Semiconductor Device
KR100740898B1 (en) Chemical mechanical polishing slurry increasing the removal rate of interlayer dielectric film
KR100445499B1 (en) CMP slurry for polishing oxide film of semiconductor device
KR20100050833A (en) Chemical mechanical polishing slurry compositions for polishing oxide layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E801 Decision on dismissal of amendment
E601 Decision to refuse application