KR20020007458A - Preparing method of rice hull activated carbon for electric double layer capacitor - Google Patents

Preparing method of rice hull activated carbon for electric double layer capacitor Download PDF

Info

Publication number
KR20020007458A
KR20020007458A KR1020000040268A KR20000040268A KR20020007458A KR 20020007458 A KR20020007458 A KR 20020007458A KR 1020000040268 A KR1020000040268 A KR 1020000040268A KR 20000040268 A KR20000040268 A KR 20000040268A KR 20020007458 A KR20020007458 A KR 20020007458A
Authority
KR
South Korea
Prior art keywords
activated carbon
rice hull
specific surface
chaff
double layer
Prior art date
Application number
KR1020000040268A
Other languages
Korean (ko)
Other versions
KR100348499B1 (en
Inventor
김명수
강안수
임정빈
Original Assignee
김명수
강안수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김명수, 강안수 filed Critical 김명수
Priority to KR1020000040268A priority Critical patent/KR100348499B1/en
Publication of KR20020007458A publication Critical patent/KR20020007458A/en
Application granted granted Critical
Publication of KR100348499B1 publication Critical patent/KR100348499B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE: A method for preparing rice hull activated carbon with high specific surface area ranging from 1970 to 2500m¬2/g and optimal pore size/volume is provided, which is used for electric double layer capacitor as well as natural gas adsorber. CONSTITUTION: The rice hull activated carbon is produced by (i) carbonization of rice hull in the temperature range 500 to 1000deg.C for 1-3hrs followed by crushing into 0.1-1.0μm in diameter; (ii) impregnation of carbonized/crushed rice hull in a basic solution followed by stirring in the temperature range 50 to 80deg.C for 10-60min; (iii) heat treating the rice hull under inert atmosphere of 500 to 1000deg.C for 3-5hrs for the activation of the rice hull; and then (iv) washing and drying, thereby obtaining rice hull activated carbon with an external specific surface of 320 to 660m¬2/g and a specific surface of 1970 to 2500m¬2/g. In the preparation method of the rice hull activated carbon, the basic solution is characterized in that it is 30-80% basic solution that is prepared by (i) mixing either KOH or NaOH with either Na2CO3 or K2CO3 in the ratio 1:1, and then adding distilled water.

Description

전기이중층 캐패시터용 왕겨 활성탄의 제조방법{Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor}Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor}

본 발명은 벼 도정시 부생되는 왕겨를 원료로 하여 전기이중층 캐패시터에 유용한 활성탄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing activated carbon useful in electric double layer capacitors using rice hull produced by-products during rice milling.

최근 전기에너지의 효율적인 운영 체계를 위한 장치로 각광을 받고 있는 전기이중층 캐패시터(electric double layer capacitor)의 전극 소재로서 활성탄이 이용되고 있다. 일반적으로 활성탄의 제조방법은 탄소질 원료의 탄화공정, 탄화원료의 활성화 공정, 그리고 사용된 약품 회수를 위한 세정공정 및 건조공정으로 구성된다. 전기이중층 캐피시터는 흡·탈착의 원리로 전하를 축적하는 장치로서 일반 2차 전지와 비교하여 충전속도가 빠르며, 작동수명이 길고 충 방전 사이클이 반영구적이기 때문에 급속 충전, 순간 고전류 방전을 필요로 하는 여러 형태의 전자제품, 예를들면 자동차용 하이브리드 축전지 및 전기 자동차용 보조 전원 등에 적용이 가능하며, 태양에너지를 이용한 발전기의 잉여 전력 저장 등, 다양한 분야의 응용방안에 대한 연구가 활발히 진행 중에 있다. 고용량의 전기적 특성을 나타내기 위하여 전기이중층 캐패시터의 전극은 전기전도도 및 비표면적이 크고 알맞은 크기의 세공직경 및 세공구조를 가진 활성탄 소재를 사용하여야 한다. 기존의 상업용으로 쓰이고 있는 페놀계 및 야자껍질계 활성탄은 상대적으로 내부저항이 크고, 높은 용량의 전기이중층 캐패시터에 적합한 세공구조를 나타내지 못하고 있기 때문에 내부저항이 낮고 고용량의 전기적 특성을 나타내주기 위하여는 적당한 크기의 세공 구조를 가진 활성탄의 개발이 요구되고 있다.Recently, activated carbon is being used as an electrode material of an electric double layer capacitor, which is in the spotlight as a device for an efficient operation system of electric energy. In general, a method of manufacturing activated carbon is composed of a carbonization process of carbonaceous raw materials, an activation process of carbonization raw materials, and a washing process and a drying process for recovering used chemicals. The electric double layer capacitor is a device that accumulates electric charges based on the principle of adsorption / desorption and desorption. Compared with general secondary batteries, the charging speed is faster, the operating life is long, and the charge and discharge cycle is semi-permanent. The present invention can be applied to various types of electronic products, such as automotive hybrid storage batteries and auxiliary power supplies for electric vehicles, and researches on various applications such as storage of surplus power of generators using solar energy are being actively conducted. In order to exhibit high capacity electrical characteristics, the electrode of the electric double layer capacitor should be made of activated carbon material having high electrical conductivity and specific surface area and pore size and pore structure of suitable size. Phenol and coconut shell activated carbon, which is used for commercial use, has relatively high internal resistance and does not show a pore structure suitable for high capacity electric double layer capacitors. Therefore, it is suitable for showing low internal resistance and high capacity electrical characteristics. There is a need for development of activated carbon having a pore structure of size.

일반적으로 활성탄은 이산화탄소, 수증기 및 산소를 이용하는 가스 활성화 방법과 수산화칼륨(KOH), 탄산칼륨(K2CO3), 수산화나트륨(NaOH), 탄산나트륨(Na2CO3), 염화알루미늄(AlCl3), 염화아연(ZnCl2), 염화마그네슘(MgCl2) 및 인산(H3PO4) 등을 이용하는 약품 활성화 방법에 의해 탄소질 원료에 세공이 형성되도록 하여 만들어진다. 이러한 활성탄은 다양한 세공구조를 가진 흡착제로서 기상 및 액상에서 뛰어난 흡착특성을 보여 오래 전부터 식품, 의약, 화학공업 등 여러 분야에서 사용되어오고 있다.In general, activated carbon is a gas activation method using carbon dioxide, water vapor, and oxygen, potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ), sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), aluminum chloride (AlCl 3 ) It is made by forming pores in a carbonaceous raw material by a chemical activation method using zinc chloride (ZnCl 2 ), magnesium chloride (MgCl 2 ), phosphoric acid (H 3 PO 4 ), and the like. Such activated carbon is an adsorbent having various pore structures, and has been used in various fields such as food, medicine, and chemical industry for a long time since it shows excellent adsorption characteristics in the gas phase and liquid phase.

잘 발달한 세공구조를 갖는 활성탄은 기상 및 액상에서 뛰어난 흡착특성을 보여 분리·정제공정, 폐수처리 및 대기정화 등 여러 분야에서 흡착제로 사용되어 왔다. 최근에는 활성탄이 단위 부피당 흡착질의 흡착용량이 큰 것을 이용하여 천연가스 저장체(natural gas adsorber)로도 이용되고 있다.Activated carbon, which has a well-developed pore structure, has excellent adsorption characteristics in gas phase and liquid phase, and has been used as an adsorbent in various fields such as separation and purification processes, wastewater treatment, and atmospheric purification. Recently, activated carbon has been used as a natural gas adsorber due to the large adsorption capacity of adsorbate per unit volume.

종래 왕겨를 수산화나트륨으로 처리하여 실리카를 제거한 후 인산을 활성화제로 하여 활성탄을 제조하는 방법이 제안된 바 있는데, 그 방법에서는 활성화 조건에 따라 비표면적이 600∼1,400 m2/g으로 얻어졌다고 보고된 바 있다[고용식, 안화승, "국산왕겨를 이용한 활성탄의 제조 및 흡착특성, 화학공학 31, 707(1993)]. 또한 왕겨를 탄화시키고 알칼리 수용액으로 처리하여 실리카를 용출한 후, 수산화나트륨을 침지시켜서 활성화하여 비표면적이 1,300∼1,900 m2/g되는 활성탄을 제조하는 방법이 알려져 있다[김광수, 대한환경공학회지 18, 1313 (1996)]. 탄화왕겨를 알카리 수용액으로 처리하여 실리카를 회수한 후, 수산화나트륨으로 활성화시키는 방법[대한민국 특허 117497호]도 알려져 있으나, 이 방법은 2 단계 공정으로 처리 방법이 복잡하고, 비표면적도 최대 1,900 m2/g 수준이며 세공직경이나 세공구조도 캐패시터의 전극으로서는 충분히 못한 것이어서 고용량 캐패시터의 전극으로 사용하기에는 부족한 편이다. 이런 이유로 현재까지 왕겨 활성탄이 전기이중층 캐패시터에 이용된 사례는 없었다. 전기이중층 캐패시터의 전극에는 현재 일본에서 시판되는 야자껍질계 및 페놀계 활성탄이 사용되고 있으나, 단위 질량 당 정전 용량이10∼20 F/g 정도로 작아 전기 자동차용 하이브리드 축전지 등 고용량 전기이중층 캐패시터에 사용되기 위해서는 보다 정전용량을 증가시킬 필요가 있다.Conventionally, a method of preparing activated carbon by treating bran with sodium hydroxide to remove silica and then using phosphoric acid as an activator has been proposed. In this method, a specific surface area of 600-1,400 m 2 / g has been reported. [Employment Formula, An Hwa Seung Seung, "Preparation and Adsorption Characteristics of Activated Carbon Using Domestic Chaff, Chemical Engineering 31, 707 (1993)]. Carbonized chaff was treated with an aqueous alkali solution to elute silica and then immersed in sodium hydroxide. It is known to produce activated carbon having a specific surface area of 1,300 to 1,900 m 2 / g by activating it [Kim, Kwang-Su, Korean Environmental Engineering Journal, 18, 1313 (1996)]. A method of activating with sodium hydroxide [Korean Patent No. 117497] is also known, but this method is a two-step process which is complicated in processing and has a maximum specific surface area. It is 1,900 m 2 / g and the pore diameter and pore structure are not enough as the electrode of the capacitor, so it is not enough to be used as the electrode of the high capacity capacitor.Therefore, there have been no cases of chaff activated carbon used in the electric double layer capacitor. Currently, the shell electrode and phenol-based activated carbon which are commercially available in Japan are used as the electrode of the capacitor, but the capacitance per unit mass is about 10 to 20 F / g, so that the electrostatic capacitor is used for high capacity electric double layer capacitors such as hybrid batteries for electric vehicles. It is necessary to increase the dose.

본 발명의 목적은 상기와 같은 전기이중층 캐패시터의 분극성 전극재로서의 활성탄의 문제점을 해결하고자 하는 것으로서 왕겨를 원료로 하고 그 특성에 맞는 탄화 및 활성화 조건을 적절하게 선택하여 고용량 전기이중층 캐패시터 분극성 전극재에 적합한 비표면적을 갖는 왕겨 활성탄의 제조방법을 제공하는데 있다.An object of the present invention is to solve the problem of activated carbon as a polarizable electrode material of the electric double layer capacitor as a high capacity electric double layer capacitor polarizable electrode by using the chaff as a raw material and by appropriately selecting the carbonization and activation conditions according to its characteristics The present invention provides a method for producing chaff activated carbon having a specific surface area suitable for ash.

또한 전기이중층 캐패시터의 정전용량이 단순히 활성탄의 비표면적에 비례하지 않는 것은 아주 작은 세공에는 전해질의 이온들이 흡착될 수 없기 때문이므로, 전해질의 이온크기에 따라 활성탄의 세공구조를 최적화하는 왕겨 활성탄의 제조방법을 제공하는 것이다.In addition, since the capacitance of the electric double layer capacitor is not simply proportional to the specific surface area of the activated carbon, since the ions of the electrolyte cannot be adsorbed in very small pores, the preparation of chaff activated carbon which optimizes the pore structure of the activated carbon according to the ion size of the electrolyte To provide a way.

도 1은 본 발명의 왕겨 활성탄 제조 공정도1 is a process chart of chaff activated carbon production of the present invention

도 2a는 본 발명의 실시예 1에 의거 제조된 왕겨 활성탄과 전기이중 층 캐패시터용 상용 활성탄의 20 Å이하의 세공분포를 비교한 그림Figure 2a is a comparison of the pore distribution of less than 20 Å of chaff activated carbon prepared according to Example 1 of the present invention and commercial activated carbon for electric double layer capacitor

도 2b는 본 발명의 실시예 1에 의거 제조된 왕겨 활성탄과 전기이중층 캐 패시터용 상용 활성탄의 30 Å이상의 세공분포를 비교한 그림Figure 2b is a picture comparing the pore distribution of 30 Å or more of chaff activated carbon prepared according to Example 1 of the present invention and commercial activated carbon for electric double layer capacitor

도 3은 본 발명의 실시예 1에 의거 제조된 왕겨 활성탄과 전기이중층 캐패 시터용 상용 활성탄의 표면구조를 관찰한 그림Figure 3 is a view of the surface structure of the chaff activated carbon prepared according to Example 1 of the present invention and the commercial activated carbon for electric double layer capacitor

왕겨 활성탄을 현미경으로 관찰해 보면 야자껍질과 페놀계 활성탄에 비하여 섬유질 구조의 발달이 두드러져서, 전극으로 제조되었을 때 다른 원료로 제조된 활성탄에 비하여 자체 비저항을 낮출 수 있다. 높은 비표면적과 적절한 크기의 세공구조를 갖는 활성탄을 제조하기 위하여 최적의 탄화 및 활성화 조건을 확립하는 것이 중요하고, 본 발명의 제조공정 개요를 도 1에 나타내었으며 좀더 구체적으로 설명하면 다음과 같다.Microscopic observation of chaff activated carbon shows the development of fibrous structure in comparison with palm peel and phenolic activated carbon, which can lower its specific resistance as compared to activated carbon manufactured from other raw materials when manufactured by electrode. In order to produce activated carbon having a high specific surface area and a pore structure of an appropriate size, it is important to establish optimum carbonization and activation conditions, and an outline of the manufacturing process of the present invention is shown in FIG. 1 and described in more detail as follows.

1. 왕겨로부터 휘발성 물질을 제거하고 고정탄소 함량을 증가시키기 위하여, 질소와 같은 비활성 분위기에서 500∼1000℃의 온도로 1∼3시간동안 열처리하여 탄화왕겨를 제조한다. 탄화과정은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 방법이지만, 열처리 온도가 증가됨에 따라 얻어지는 탄화왕겨 내의 탄소 결정화도가 커져서 활성화 조건에 영향을 미친다.1. In order to remove volatiles from chaff and increase the fixed carbon content, carbonized chaff is prepared by heat treatment at a temperature of 500-1000 ° C. for 1-3 hours in an inert atmosphere such as nitrogen. The carbonization process is a method commonly used in the art to which the present invention pertains, but as the heat treatment temperature is increased, the degree of carbon crystallinity in the chaff obtained is increased, which affects the activation conditions.

2. 수산화칼륨(KOH) 또는 수산화나트륨(NaOH)과 탄산칼륨(K2CO3) 또는 탄산나트륨(Na2CO3)을 1:1로 혼합한 것을 증류수로 30∼80 중량%의 염기성 용액을 조제한다.2. A mixture of potassium hydroxide (KOH) or sodium hydroxide (NaOH) and potassium carbonate (K 2 CO 3 ) or sodium carbonate (Na 2 CO 3 ) in a 1: 1 ratio was prepared from 30 to 80% by weight of a basic solution with distilled water. do.

3. 상기 염기성 용액에 0.1~1.0㎛로 분쇄한 탄화왕겨를 1:1~10:1의 중량 조성비로 혼합하여 탄화왕겨에 염기성 용액을 함침시킨 후, 50~80℃온도에서 10~60분간 교반하여 탄화왕겨에 염기성 용액이 균일하게 스며들도록 한다.3. Mix the carbonized rice husk crushed to 0.1 to 1.0㎛ in the basic solution in a weight ratio of 1: 1 to 10: 1, impregnate the basic solution to the carbonized rice husk, and then stir for 10 to 60 minutes at a temperature of 50 to 80 ° C. The basic solution is evenly soaked into the rice husk.

4. 약품이 함침된 탄화 왕겨를 높은 비표면적, 세공부피 및 적당한 세공분포를 위하여 비활성 분위기에서 500∼1000℃의 온도에서 3∼5시간동안 열처리하여 활성화시킨다.4. Chemically impregnated carbonized chaff is activated by heat treatment for 3 to 5 hours at a temperature of 500 to 1000 ° C in an inert atmosphere for high specific surface area, pore volume and proper pore distribution.

5. 활성화처리를 행한 후, 잔존하고 있는 약품을 세정하여 회수하고 건조시켜 본 발명의 왕겨 활성탄을 제조한다. 종래의 방법[대한민국 특허 117497호]이 탄화왕겨를 알카리 수용액으로 처리하여 실리카를 제거한 후 다시 수산화나트륨으로 활성화시키는 2 단계 공정을 사용하는데 비하여, 본 발명에서는 실리카를 제거하기 위한 별도의 공정이 없이 1 단계 약품활성화 만으로도 왕겨 내의 실리카가 99% 이상이 제거되고 얻어지는 활성탄의 비표면적도 1970~2500 m2/g로 기존 활성탄에 비해 훨씬 높다.5. After the activation treatment, the remaining chemicals are washed, recovered and dried to prepare the chaff activated carbon of the present invention. Compared to the conventional method [Korean Patent No. 117497] using a two-step process of treating the chaff with an aqueous alkali solution to remove silica and then activating with sodium hydroxide, in the present invention, there is no separate process for removing silica. At the stage of chemical activation alone, more than 99% of the silica in chaff is removed, and the specific surface area of the activated carbon obtained is 1970 ~ 2500 m 2 / g, which is much higher than that of conventional activated carbon.

다음의 실시예는 본 발명을 보다 구체적으로 설명하는 것이지만, 본 발명의 범위를 한정하는 것은 아니다.The following examples further illustrate the invention, but do not limit the scope of the invention.

실시예 1Example 1

건조된 왕겨를 알루미나 보트에 담아 전기로 내의 석영관 안에 넣고, 질소를 100 ml/min으로 흘러 보내면서 700℃에서 2시간 동안 탄화시키고 냉각시켜 탄화왕겨를 제조하였다. 얻어진 탄화왕겨를 분쇄시켜 0.1∼1㎛ 크기의 미분말로 제조하고, 탄화왕겨 중량의 4 배에 해당하는 수산화칼륨:탄산나트륨(1:1) 혼합물을 녹여 50 중량% 농도의 염기성 수용액에 넣어 함침시킨 후, 60℃의 온도에서 20분간 교반하여 약품이 골고루 스며들도록 하고, 다시 알루미나 보트에 담고 질소 분위기에서 850℃ 온도로 3시간동안 활성화하였다. 잔존해 있는 약품을 회수하기 위하여 증류수로 3번 세정 후 건조하여 본 발명의 왕겨 활성탄을 제조하였다.The dried rice husk was placed in an alumina boat, placed in a quartz tube in an electric furnace, and carbonized and cooled at 700 ° C. for 2 hours while flowing nitrogen at 100 ml / min. The resulting chaff was pulverized to prepare a fine powder of 0.1-1 μm size, dissolved in a potassium hydroxide: sodium carbonate (1: 1) mixture corresponding to 4 times the weight of the chaff, and impregnated in a 50 wt% basic aqueous solution. After stirring for 20 minutes at a temperature of 60 ℃, the medicine was evenly immersed, and put back into the alumina boat and activated for 3 hours at 850 ℃ temperature in a nitrogen atmosphere. In order to recover the remaining chemicals three times washed with distilled water and dried to prepare the chaff activated carbon of the present invention.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 약품 침지비 만을 달리하여 왕겨 활성탄을 제조하였다. 약품 침지비에 따른 활성탄의 비표면적의 변화를 현재 일본에서 전기이중층 캐패시터의 전극재료로 사용되고 있는 페놀계 활성탄(A) 및 야자껍질계 활성탄(B)의 비표면적과 비교하여 표 1에 기재하였고, 세 가지 활성탄의 미세 세공부피(micropore volume), 중간 및 거대세공 부피(meso and macropore volume), 평균 세공직경을 표2에 기재하였다.Chaff activated carbon was prepared in the same manner as in Example 1 only by varying the chemical immersion ratio. The change in specific surface area of activated carbon according to the chemical immersion ratio is described in Table 1 in comparison with the specific surface areas of phenolic activated carbon (A) and coconut shell activated carbon (B), which are currently used as electrode materials for electric double layer capacitors in Japan. The micropore volume, meso and macropore volume, and average pore diameter of the three activated carbons are listed in Table 2.

활성탄의 물리적 성질 비교Comparison of Physical Properties of Activated Carbon 구분division 시료(활성화제:탄화왕겨)Sample (activator: charcoal chaff) 비표면적(m2/g)Specific surface area (m 2 / g) 내부비표면적(m2/g)Internal specific surface area (m 2 / g) 외부비표면적(m2/g)External specific surface area (m 2 / g) 실시예 1Example 1 1:11: 1 565565 490490 7575 실시예 2Example 2 2:12: 1 13551355 11881188 167167 4:14: 1 25002500 21812181 318318 6:16: 1 24602460 18061806 654654 10:110: 1 19711971 13031303 668668 종래의 활성탄Conventional activated carbon 활성탄 AActivated carbon A 18191819 17561756 6363 활성탄 BActivated carbon B 15661566 14741474 9292 활성탄 A : 종래의 페놀계 활성탄(BP-20, Kuraray Chemical)활성탄 B : 종래의 야자껍질계 활성탄(YP-17, Kuraray Chemical)Activated Carbon A: Conventional Phenol Activated Carbon (BP-20, Kuraray Chemical) Activated Carbon B: Conventional Palm Bark Activated Carbon (YP-17, Kuraray Chemical)

활성탄의 세공직경 분포 비교Comparison of pore diameter distribution of activated carbon 활성탄Activated carbon Surface Area[m2/g]Surface Area [m 2 / g] MicroporeVolume[cc/g]MicroporeVolume [cc / g] Meso & MacroporeVolume[cc/g]Meso & MacroporeVolume [cc / g] DiameterÅDiameterÅ 왕겨 활성탄Chaff activated carbon 25002500 1.0351.035 0.38490.3849 16.916.9 활성탄 AActivated carbon A 18191819 0.76250.7625 0.0610.061 16.7716.77 활성탄 BActivated carbon B 15661566 0.65390.6539 0.12230.1223 16.716.7

총 비표면적을 내부비표면적 및 외부비표면적으로 분리·정량화 하였는데, 내부비표면적은 세공의 직경이 20 옴스트롱(Å) 이하의 미세공이 차지하는 비표면적을, 외부비표면적은 그 보다 큰 세공들이 차지하는 비표면적을 나타낸다. 약품의 함침비가 4:1∼10:1일 때의 비표면적이 상업용 활성탄보다 비표면적이 높았고, 두드러진 점은 외부비표면적과 중간 및 거대세공 부피가 월등하게 높게 얻어졌는데, 본 발명의 활성탄이 전기이중층 캐패시터의 전극으로 제조되었을 때, 이러한 상대적으로 큰 세공들이 전해질의 확산 및 흡착에 유리하게 작용하는 것으로 이해된다.약품 함침비 4:1에서 제조된 왕겨 활성탄의 세공크기 분포를 상기의 상업용 활성탄과 비교한 것을 도 2에 나타내었다. 도 2a는 20 옴스트롱 이하의 세공 분포도를, 도 2b는 30 옴스트롱 이상의 세공 분포도를 나타낸다. 본 발명에서 제조된 왕겨 활성탄이 상업용 활성탄에 비하여 15∼50 옴스트롱 사이의 중간크기의 세공 발달이 두드러져 있었다.The total specific surface area is separated and quantified into the internal specific surface area and the external specific surface area.The internal specific surface area is the specific surface area occupied by the micropores having a pore diameter of 20 ohms or less and the external specific surface area is occupied by the larger pores. The specific surface area is shown. When the impregnation ratio of the drug was 4: 1 to 10: 1, the specific surface area was higher than that of commercial activated carbon, and the remarkable point was that the external specific surface area and the intermediate and macropore volume were significantly higher. It is understood that these relatively large pores favor the diffusion and adsorption of the electrolyte when made with the electrodes of the double layer capacitor. The pore size distribution of the chaff activated carbon prepared at the chemical impregnation ratio of 4: 1 is compared with that of the commercial activated carbon. A comparison is shown in FIG. 2A shows pore distribution of 20 ohms or less, and FIG. 2B shows pore distribution of 30 ohms or more. The chaff activated carbon produced in the present invention was more prominent in the development of medium pores between 15 and 50 ohms strong compared to commercial activated carbon.

상기 실시예 1에서 제조한 왕겨 활성탄과 종래의 페놀계 및 야자껍질계 활성탄을 이용하여 다음과 같은 방법으로 전기이중층 캐패시터의 전극을 제조하였다. 결합재로 폴리비닐리덴 플루오라이드(PVDF) 4중량%를 1-메틸-2-피롤리디논(1-methyl-2-pyrrolidinone)에 용해한 후, 분말 활성탄와 결합재를 각각 7:3의 일정 중량 비율로 배합하였다. 불균일한 상태의 배합된 혼합물을 기계적 교반기를 이용하여 100∼200 rpm의 일정속도로 혼합하였다. 슬러지 상태인 활성탄 혼합물을 코팅기를 이용하여 판 상태로 제조하고 100 ℃의 진공 건조기에서 24시간 이상 건조하여 1.0 mm의 일정한 두께의 전극(20 ㎜ × 20 ㎜)을 제작하였다. 건조된 전극에 전해질을 함침시킨 후 절연성 밀폐판(butyl rubber gasket)으로 밀봉하고 격리막을 전극과 전극사이에 고정하고 볼트와 너트를 이용하여 압착시켜 셀을 제조하였고, 단위 셀의 정전용량을 표 3에 나타내었다.The electrode of the electric double layer capacitor was prepared using the chaff activated carbon prepared in Example 1 and conventional phenolic and palm husk based activated carbon as follows. After dissolving 4% by weight of polyvinylidene fluoride (PVDF) in 1-methyl-2-pyrrolidinone as a binder, the powdered activated carbon and the binder were mixed at a constant weight ratio of 7: 3, respectively. It was. The heterogeneous blended mixture was mixed at a constant speed of 100-200 rpm using a mechanical stirrer. The sludge-activated carbon mixture was prepared in a plate state using a coating machine, and dried in a vacuum dryer at 100 ° C. for at least 24 hours to produce an electrode having a constant thickness of 1.0 mm (20 mm × 20 mm). After impregnating the electrolyte in the dried electrode and sealing it with an insulating sealing gasket (butyl rubber gasket), the separator was fixed between the electrode and the electrode and pressed using a bolt and a nut to prepare a cell, the capacitance of the unit cell Table 3 Shown in

활성탄의 전기적 특성비교Comparison of Electrical Characteristics of Activated Carbon 시료sample 왕겨 활성탄Chaff activated carbon 활성탄 AActivated carbon A 활성탄 BActivated carbon B 저항[ Ω]Resistance [Ω] 2.52.5 2.82.8 4.84.8 정전용량[F/g]Capacitance [F / g] 49.549.5 13.613.6 6.16.1

이상 설명한 것과 같이 본 발명의 제조 방법에 따르면, 탄화왕겨의 1 단계 활성화공정에 의해 높은 비표면적과 적절한 세공 직경 및 세공 구조를 갖는 고품질의 활성탄을 생산하는 것이 가능하게 함으로써, 내부저항은 낮고 높은 정전용량을 가진 전기이중층 캐패시터의 전극의 제조뿐만 아니라 여러 가지 공해물질의 흡착제 및 천연가스와 같은 가스 에너지의 저장체로 이용할 수 있는 효과가 있다.As described above, according to the manufacturing method of the present invention, it is possible to produce high-quality activated carbon having a high specific surface area, an appropriate pore diameter, and a pore structure by a one-step activation process of carbonized rice hull, whereby the internal resistance is low and high electrostatic In addition to the production of electrodes of a capacitive electric double layer capacitor, there is an effect that can be used as an adsorbent of various pollutants and a storage of gas energy such as natural gas.

Claims (2)

왕겨 활성탄을 제조하는 방법에 있어서,In the method for producing chaff activated carbon, 왕겨를 비활성 분위기에서 500~1000℃의 온도로 1~3시간 동안 열처리하여 얻은 탄화왕겨를 0.1~1.0㎛의 크기로 분쇄하고, 분쇄된 탄화왕겨를 염기성 용액에 1:4~1:10의 중량비로 혼합·함침시켜 50~80℃에서 10~60분간 교반시킨후, 염기성 용액이 함침된 탄화왕겨를 비활성 분위기에서 500~1000℃에서 3~5시간 동안 열처리하여 활성화시키고, 세정·건조시켜 비표면적이 1970~2500m2/g이고, 외부비표적인 320~660m2/g인 전기 이중층 캐패시터용 왕겨 활성탄의 제조방법.The charcoal chaff obtained by heat treatment for 1 to 3 hours at a temperature of 500 ~ 1000 ℃ in an inert atmosphere is ground to a size of 0.1 ~ 1.0㎛, and the crushed charcoal chaff in a basic solution 1: 4 ~ 1:10 by weight ratio After mixing and impregnating with agitation and stirring at 50 to 80 ° C. for 10 to 60 minutes, the carbonized rice hull impregnated with basic solution was activated by heat treatment at 500 to 1000 ° C. for 3 to 5 hours in an inert atmosphere, and then washed and dried to obtain a specific surface area. This is a method for producing chaff activated carbon for electric double layer capacitor of 1970 ~ 2500m 2 / g, external non-standard 320 ~ 660m 2 / g. 제 1항에 있어서, 염기성 용액이 수산화칼륨(KOH) 또는 수산화나트륨(NaOH)과 탄산칼륨(K2CO3) 또는 탄산나트륨(Na2CO3)를 1:1로 혼합한 염기성 혼합물을 증류수에 녹인 30~80 중량% 농도의 수용액인 것을 특징으로 하는 전기 이증충 캐패시터용 왕겨 활성탄의 제조방법.The basic solution of claim 1, wherein the basic solution is dissolved in distilled water with a basic mixture of potassium hydroxide (KOH) or sodium hydroxide (NaOH) and potassium carbonate (K 2 CO 3 ) or sodium carbonate (Na 2 CO 3 ) in a 1: 1 ratio. A method for producing chaff activated carbon for electric binary capacitor, characterized in that the aqueous solution of 30 to 80% by weight.
KR1020000040268A 2000-07-13 2000-07-13 Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor KR100348499B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000040268A KR100348499B1 (en) 2000-07-13 2000-07-13 Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000040268A KR100348499B1 (en) 2000-07-13 2000-07-13 Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor

Publications (2)

Publication Number Publication Date
KR20020007458A true KR20020007458A (en) 2002-01-29
KR100348499B1 KR100348499B1 (en) 2002-08-10

Family

ID=19677874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000040268A KR100348499B1 (en) 2000-07-13 2000-07-13 Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor

Country Status (1)

Country Link
KR (1) KR100348499B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647010B1 (en) * 2005-10-24 2006-11-23 재단법인 포항산업과학연구원 Preparation method of short response time carbon electrode of supercapacitor
KR100715873B1 (en) * 2005-10-24 2007-05-07 재단법인 포항산업과학연구원 Increasing method of meso porous amount activated carbon for supercapacitor electrode
KR100731338B1 (en) * 2005-09-12 2007-06-25 새한에너테크 주식회사 Koh treatment of activated carbon for supercapacitor active material
KR100766265B1 (en) * 2006-07-04 2007-10-12 재단법인 포항산업과학연구원 Method for preparing electrode material used in a supercapacitor having high electrical capacitance per unit area
KR100849857B1 (en) * 2006-08-31 2008-08-18 전자부품연구원 Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
WO2008100573A1 (en) * 2007-02-14 2008-08-21 University Of Kentucky Research Foundation Inc. Methods of forming activated carbons
KR101065274B1 (en) * 2011-03-03 2011-09-16 청해 Env (주) A treatment method of leachate of site of buried animal husbandry using bm-prbs
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
CN103936006A (en) * 2014-04-21 2014-07-23 北京理工大学 Method for preparing porous activated carbon material from rice bran
CN107500263A (en) * 2017-08-03 2017-12-22 南京师范大学 A kind of rice husk derives preparation method and its resulting materials and the application of hard carbon
CN109179410A (en) * 2018-09-26 2019-01-11 南京天博环境检测技术有限公司 A kind of preparation method of biomass-based active carbon
CN113371709A (en) * 2021-07-21 2021-09-10 哈尔滨工业大学 Preparation method of rice hull-based high-specific-surface-area biochar material
CN113603088A (en) * 2021-07-02 2021-11-05 四川大学 High-specific surface area active carbon, super capacitor electrode and preparation method thereof
CN113800517A (en) * 2021-09-28 2021-12-17 南平元力活性炭有限公司 Preparation method of water-resistant rice hull-based granular activated carbon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503687B1 (en) * 2013-05-06 2015-03-23 배재대학교 산학협력단 activated carbon, manufacturing method thereof, and capacitor that contains it
KR102086589B1 (en) 2013-11-08 2020-03-10 파워카본테크놀로지(주) Electrode materials, electrochemical device comprising the same and method for manufacturing the same
KR101932966B1 (en) 2016-11-30 2018-12-27 삼신디바이스 주식회사 Super capacitor and method for manufacturing the same
KR102016520B1 (en) 2017-10-24 2019-08-30 삼신디바이스 주식회사 Super capacitor with high voltage and method for manufacturing the same
CN108101044B (en) * 2017-12-12 2020-06-16 谢金庚 Nano-structure graphite carbon material and preparation method and application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR100731338B1 (en) * 2005-09-12 2007-06-25 새한에너테크 주식회사 Koh treatment of activated carbon for supercapacitor active material
KR100715873B1 (en) * 2005-10-24 2007-05-07 재단법인 포항산업과학연구원 Increasing method of meso porous amount activated carbon for supercapacitor electrode
KR100647010B1 (en) * 2005-10-24 2006-11-23 재단법인 포항산업과학연구원 Preparation method of short response time carbon electrode of supercapacitor
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
KR100766265B1 (en) * 2006-07-04 2007-10-12 재단법인 포항산업과학연구원 Method for preparing electrode material used in a supercapacitor having high electrical capacitance per unit area
KR100849857B1 (en) * 2006-08-31 2008-08-18 전자부품연구원 Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
WO2008100573A1 (en) * 2007-02-14 2008-08-21 University Of Kentucky Research Foundation Inc. Methods of forming activated carbons
KR101065274B1 (en) * 2011-03-03 2011-09-16 청해 Env (주) A treatment method of leachate of site of buried animal husbandry using bm-prbs
CN103936006A (en) * 2014-04-21 2014-07-23 北京理工大学 Method for preparing porous activated carbon material from rice bran
CN107500263A (en) * 2017-08-03 2017-12-22 南京师范大学 A kind of rice husk derives preparation method and its resulting materials and the application of hard carbon
CN109179410A (en) * 2018-09-26 2019-01-11 南京天博环境检测技术有限公司 A kind of preparation method of biomass-based active carbon
CN113603088A (en) * 2021-07-02 2021-11-05 四川大学 High-specific surface area active carbon, super capacitor electrode and preparation method thereof
CN113603088B (en) * 2021-07-02 2023-02-07 四川大学 High-specific surface area active carbon, super capacitor electrode and preparation method thereof
CN113371709A (en) * 2021-07-21 2021-09-10 哈尔滨工业大学 Preparation method of rice hull-based high-specific-surface-area biochar material
CN113800517A (en) * 2021-09-28 2021-12-17 南平元力活性炭有限公司 Preparation method of water-resistant rice hull-based granular activated carbon
CN113800517B (en) * 2021-09-28 2022-12-27 南平元力活性炭有限公司 Preparation method of water-resistant rice hull-based granular activated carbon

Also Published As

Publication number Publication date
KR100348499B1 (en) 2002-08-10

Similar Documents

Publication Publication Date Title
KR100348499B1 (en) Preparing Method of Rice Hull Activated Carbon for Electric Double Layer Capacitor
JP3446339B2 (en) Activated carbon production method
US11370665B2 (en) Method for producing activated carbon
Zhang et al. Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors
JP4618929B2 (en) Activated carbon for electric double layer capacitors
CN109336106B (en) Preparation method of bean dreg-based nitrogen and boron co-doped porous carbon material
Adinaveen et al. Comparative study of electrical conductivity on activated carbons prepared from various cellulose materials
KR101958645B1 (en) Manufacturing method of partially crystaline porous active carbon using water vapor activation and manufacturing method of the supercapacitor usig the partially crystaline porous active carbon
KR102113719B1 (en) Activated carbon and its manufacturing method
Gao et al. High surface area and oxygen-enriched activated carbon synthesized from animal cellulose and evaluated in electric double-layer capacitors
Kim et al. Spent coffee derived hierarchical porous carbon and its application for energy storage
WO2015013353A1 (en) High voltage edlc electrodes containing co2 activated coconut char
CN108400018A (en) A kind of preparation method of Enteromorpha activated carbon composite manganese dioxide electrode material for super capacitor
KR101950174B1 (en) Manufacturing method of porous active carbon using phosphoric acid activation and manufacturing method of the supercapacitor usig the porous active carbon
Zhang et al. Preparation and electrochemical performance of coconut shell activated carbon produced by the H3PO4 activation with rapid cooling method
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
KR101910461B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
KR20200055698A (en) Activated carbon and its manufacturing method
KR101094240B1 (en) Manufacturing method of porous activated carbon and non-porous carbon material composite electrode for capacitive deionization
Tamai et al. Mesoporous activated carbon as electrode for electric double layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
KR20190073710A (en) Method for manufacturing activated carbon for electrode material
KR101903160B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
JP2005243933A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070731

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee