KR20020005325A - Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby - Google Patents

Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby Download PDF

Info

Publication number
KR20020005325A
KR20020005325A KR1020000039345A KR20000039345A KR20020005325A KR 20020005325 A KR20020005325 A KR 20020005325A KR 1020000039345 A KR1020000039345 A KR 1020000039345A KR 20000039345 A KR20000039345 A KR 20000039345A KR 20020005325 A KR20020005325 A KR 20020005325A
Authority
KR
South Korea
Prior art keywords
absorbing material
carbon nano
carbon
electromagnetic wave
electromagnetic shielding
Prior art date
Application number
KR1020000039345A
Other languages
Korean (ko)
Other versions
KR100370069B1 (en
Inventor
신진국
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR10-2000-0039345A priority Critical patent/KR100370069B1/en
Publication of KR20020005325A publication Critical patent/KR20020005325A/en
Application granted granted Critical
Publication of KR100370069B1 publication Critical patent/KR100370069B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

PURPOSE: A method for manufacturing an electromagnetic wave shielding and absorbing material using a carbon nano tube and a carbon nano fiber, and an electromagnetic wave shielding and absorbing material manufactured thereby are provided to achieve an easy manufacturing method, that is environmental-friendly. CONSTITUTION: A carbon nano tube or carbon nano fiber(5) is added to a matrix(20). A mixing ratio of the carbon nano tube or carbon nano fiber to the matrix is adjusted to make an electric conductivity of an electromagnetic wave shielding and absorbing material becoming about 100S/cm. The carbon nano tube or carbon nano fiber is used in a state that there is a catalyst used in growth of the tube or fiber. A ferrite is additionally added. A nano wire to inside of which a metal is added is used in the carbon nano tube. The carbon nano tube or carbon nano fiber is added in the minimum amount, thereby reducing a cost.

Description

탄소나노튜브 또는 탄소나노화이버를 이용한 전자파차폐 및 흡수재의 제조방법, 및 상기 방법으로 제조된 전자파차폐 및 흡수재{METHOD FOR FABRICATING ELECTROMAGNETIC WAVE COMPATIBILITY MATERIALS USING CARBON NANOTUBE OR CARBON NANOFIBER, AND MATERIALS THEREBY}Method for manufacturing electromagnetic shielding and absorbing material using carbon nanotubes or carbon nanofibers, and electromagnetic shielding and absorbing material produced by the above method.

본 발명은 전자기기의 오동작을 초래하는 전자파를 차폐하는 전자파 차폐 및 흡수재에 관한 것으로, 보다 상세하게 최근 관심이 되고 있는 탄소나노튜브 또는 탄소나노화이버를 이용한 전자파 차폐 및 흡수재의 제조방법 및 상기 방법으로 제조된 전자파 차폐 및 흡수재에 관한 것이다.The present invention relates to an electromagnetic shielding and absorbing material for shielding electromagnetic waves that cause malfunction of the electronic device, and more particularly to a method of manufacturing an electromagnetic shielding and absorbing material using carbon nanotubes or carbon nanofibers and the method It relates to a manufactured electromagnetic shielding and absorbing material.

탄소나노튜브는 최근 작은 크기로 인하여 각광을 받고 있다. 상기 탄소나노튜브의 합성방법은 전기방전법, 레이저 증착법, 열분해증착법, 열화학기상증착법, 플라즈마화학기상증착법 등이 있다. 또한, 촉매로 사용되는 전이금속의 유무 및 종류에 따라 탄소나노튜브의 구조가 다양해질 수 있다. 상기 탄소나노튜브는 지름이 수나노미터이고 도체 또는 반도체로 조작이 가능하며 강철의 10배 정도되는 강도를 갖는다. 또한, 상기 튜브는 속이 비고 가늘다는 구조적 특성으로 인해 활용가능성이 무한하다. 도 1a와 1b를 참고하여 설명하면, 구모양의 입자들(1)이 접촉하기 위해 차지하는 부피가 약 74부피% 정도(도 1a)인데 반하여, 튜브모양의 입자들(5)은 입경에 대한 길이의 비가 크므로 수분의 일 내지 수부피%로도 3차원적인 연결, 즉 그물망 구조가 가능하다.Carbon nanotubes have recently been in the spotlight due to their small size. Synthesis methods of the carbon nanotubes include an electric discharge method, a laser deposition method, a thermal decomposition deposition method, a thermochemical vapor deposition method, a plasma chemical vapor deposition method and the like. In addition, the structure of the carbon nanotubes may vary depending on the presence and type of transition metal used as a catalyst. The carbon nanotubes are several nanometers in diameter, can be manipulated with a conductor or a semiconductor, and have a strength about 10 times that of steel. In addition, the tube is infinitely available due to its hollow and thin structural properties. Referring to FIGS. 1A and 1B, while the volume occupied by the spherical particles 1 for contact is about 74% by volume (FIG. 1A), the tube-shaped particles 5 have a length with respect to the particle diameter. Since the ratio of is large, the three-dimensional connection, that is, the network structure, is possible with one to several volume% of moisture.

최근 인체에 대한 유해성으로 인하여 전자파에 대한 규제가 강화되고 있다. 전자파는 전기장과 자기장이 결합된 에너지파로서, 200MHz 이상에서의 전자파는 전기장의 역할이 지배적이므로 전기장의 차폐를 통해 전자파가 차단될 수 있지만, 200MHz 이하의 전자파에서는 전기장과 자기장이 함께 차폐되어야 한다.Recently, due to the harmfulness to the human body has been tightening regulations on electromagnetic waves. Electromagnetic waves are energy waves combined with electric and magnetic fields. Electromagnetic waves at 200 MHz or higher can dominate electromagnetic waves through shielding of electric fields, but electromagnetic and magnetic fields should be shielded together at electromagnetic waves below 200 MHz.

상기 전자파를 차폐하는 전자파 차폐 및 흡수재는 구성 물질의 도전성, 즉 이동가능 전하의 보유정도에 따라 전자파를 투과, 반사, 또는 흡수함으로써 차폐할 수 있다. 전자파 차폐 및 흡수재가 이동전하를 갖지 않는 경우, 전자파는 상기 차폐재를 투과하게 되고, 이동전하는 있으나 저항이 작아 주울 열로 에너지가 소모되지 않는 경우에는 반사되며, 이동시 저항이 적당히 큰 경우는 전자파를 흡수한다.The electromagnetic shielding and absorbing material for shielding the electromagnetic wave may be shielded by transmitting, reflecting, or absorbing the electromagnetic wave according to the conductivity of the constituent material, that is, the retention of the movable charge. When the electromagnetic shielding and absorbing material does not have a mobile charge, the electromagnetic wave is transmitted through the shielding material, and when the electric charge is small but the resistance is small and energy is not consumed by Joule heat, the electromagnetic wave is absorbed. .

현재 사용되는 전자파 차폐 및 흡수재는 금속을 이용하는 것으로, 금속을 이용한 전자파 차폐 및 흡수재는 다음과 같은 방법으로 제조되어 전자파를 반사 또는 산란 차폐한다.Currently used electromagnetic shielding and absorbing material is a metal, electromagnetic shielding and absorbing material using a metal is manufactured by the following method to reflect or scatter shielding electromagnetic waves.

첫 번째 금속입자 즉, 동 또는 은을 전자파를 차폐하기 위한 대상, 예를들면 휴대폰 내면에 도포하는 방법이다. 두 번째, 플라스틱 또는 폴리머와 같은 매트릭스에 금속섬유를 분산시켜 사용하는 방법으로, 상기 금속섬유들이 그물망 구조를 이루어 전자파를 차폐하는 방법이다. 세 번째, 금속박막 또는 금속후막에 의한 차폐법이 있다.The first metal particles, that is, copper or silver, are applied to an object for shielding electromagnetic waves, for example, inside the mobile phone. Secondly, a metal fiber is dispersed and used in a matrix such as plastic or polymer, and the metal fibers form a mesh structure to shield electromagnetic waves. Third, there is a shielding method by a metal thin film or a metal thick film.

상기 금속섬유를 이용한 전자파 차폐 및 흡수재는 다음의 문제점을 갖는다.Electromagnetic shielding and absorbing material using the metal fiber has the following problems.

첫째, 상기 차폐재는 전자파를 단순히 반사 또는 산란 차폐한다. 따라서, 상기 차폐재는 인체를 보호할 수는 있지만 반사된 전자파는 다시 기기에 영향을 주어 기기의 오동작과 노이즈를 증가시킨다.First, the shield simply reflects or scatters electromagnetic waves. Thus, the shielding material can protect the human body, but the reflected electromagnetic waves affect the device again, increasing the malfunction and noise of the device.

둘째, 매트릭스 내에 금속섬유의 그물망 구조를 얻기 위해 입경이 작고 길이가 긴 금속섬유가 요구되나, 입경이 작은 금속섬유는 제조 비용이 높고 쉽게 부러질 수 있다.Second, although a metal particle having a small particle diameter and a long length is required to obtain a mesh structure of the metal fiber in the matrix, the metal fiber having a small particle diameter is expensive to manufacture and can be easily broken.

또한 종래 전자파 차폐 및 흡수재는 200MHz 이하의 저주파수 전자파에서 발생되는 자기장을 완전히 차폐할 수 없다는 단점이 있다.In addition, the conventional electromagnetic shielding and absorbing material has a disadvantage that it can not completely shield the magnetic field generated in the low frequency electromagnetic waves of 200MHz or less.

본 발명은 상술한 종래의 문제점을 개선하기 위하여 안출된 것으로서, 본 발명의 목적은 모든 주파수 범위의 전자파를 흡수하여 차폐하고, 소량으로 그물망 구조의 제조가 용이하고, 자연절약적 및 환경 친화적이며 제조비용이 저렴한 탄소나노튜브 또는 탄소나노화이버를 이용한 전자파 차폐 및 흡수재의 제조방법과 상기 방법으로 제조된 전자파 차폐 및 흡수재를 제공함에 있다.The present invention has been made to improve the above-mentioned conventional problems, an object of the present invention is to absorb and shield electromagnetic waves of all frequency ranges, and to easily manufacture a network structure in a small amount, it is natural and environmentally friendly and manufactured The present invention provides a method for producing an electromagnetic shielding and absorbing material using carbon nanotubes or carbon nanofibers, which is inexpensive, and an electromagnetic shielding and absorbing material prepared by the above method.

도 1a는 일정 공간에서 구형입자의 접촉을 보여주는 개략도이고;1A is a schematic view showing contact of spherical particles in a space;

도 1b는 본 발명의 일실시예에 따른 일정 공간에서 섬유형태 입자의 그물망 구조을 보여주는 개략도이고;Figure 1b is a schematic diagram showing the network structure of the fibrous particles in a certain space according to an embodiment of the present invention;

도 2a, 2b, 및 2c는 본 발명의 전자파 차폐 및 흡수재에서 탄소나노튜브에 다양한 형태로 잔존하는 촉매금속입자를 보여주는 단면도이고;2A, 2B, and 2C are cross-sectional views showing catalytic metal particles remaining in various forms on carbon nanotubes in the electromagnetic shielding and absorbing material of the present invention;

도 3a는 막구조의 도전체에서 전자파 흡수과정을 보여주는 개략도이고;3A is a schematic diagram showing a process of absorbing electromagnetic waves in a conductor of a film structure;

도 3b는 본 발명의 그물망 구조의 도전체에서 전자파 흡수과정을 보여주는 개략도이고; 및,Figure 3b is a schematic diagram showing the electromagnetic wave absorption process in the conductor of the network structure of the present invention; And,

도 4a는 본 발명의 다른 실시예에 따른 탄소나노튜브 또는 화이버와, 매트릭스의 복합체에 페라이트가 적당량 첨가된 것을 보여주는 개략도이고, 도 4b는 본 발명의 또다른 실시예에 따른 탄소나노튜브의 빈 공간에 금속이 첨가된 나노와이어의 단면도이다.Figure 4a is a schematic diagram showing that an appropriate amount of ferrite is added to the composite of the carbon nanotubes or fibers and the matrix according to another embodiment of the present invention, Figure 4b is an empty space of the carbon nanotubes according to another embodiment of the present invention It is sectional drawing of the nanowire to which the metal was added.

*도면의 주요부분에 대한 간단한 설명*Brief description of the main parts of the drawing

1: 구형입자1: spherical particle

5: 촉매금속이 끼어있거나 금속이 채워진 탄소나노튜브 또는 화이버5: Carbon nanotubes or fibers filled with or filled with catalytic metal

7: 페라이트7: ferrite

9: 거푸집으로 사용된 탄소나노튜브9: carbon nanotubes used as formwork

11: 촉매금속11: catalytic metal

13: 탄소나노튜브13: carbon nanotube

15: 전자기파15: electromagnetic waves

17: 금속17: metal

20: 매트릭스20: matrix

30: 막구조의 도전체막30: conductor film of film structure

40: 그물망구조의 도전체막40: conductor film of the network structure

A: 막구조의 도전체막에서의 전하이동경로A: charge transfer path in the conductor film of the film structure

B, C: 그물망구조의 도전체막에서의 전하이동경로B, C: charge transfer path in the conductor film of the network structure

본 발명은 매트릭스에 탄소나노튜브 또는 탄소나노화이버를 첨가하는 단계로 구성된 전자파 차폐 및 흡수재의 제조방법과 상기 방법으로 제조된 전자파 차폐 및 흡수재에 관한 것이다.The present invention relates to a method for producing an electromagnetic shielding and absorbing material consisting of adding carbon nanotubes or carbon nanofibers to a matrix, and to an electromagnetic shielding and absorbing material prepared by the method.

상기 매트릭스와 탄소나노튜브 또는 탄소나노화이버의 혼합비는 전자파 차폐 및 흡수재의 전기전도도가 약 100S/㎝가 되도록 조절된다.The mixing ratio of the matrix and carbon nanotubes or carbon nanofibers is controlled so that the electrical conductivity of the electromagnetic shielding and absorbing material is about 100 S / cm.

또한, 상기 탄소나노튜브 또는 탄소나노화이버는 상기 튜브나 화이버의 성장에 사용된 촉매가 존재하는 상태로 사용될 수 있다.In addition, the carbon nanotubes or carbon nanofibers may be used in a state where a catalyst used for growth of the tubes or fibers is present.

상기 전자파 차폐 및 흡수재의 제조방법은 바람직하게 페라이트를 첨가하는 단계를 더 포함할 수 있다.The method of manufacturing the electromagnetic shielding and absorbing material may preferably further include adding ferrite.

상기 탄소나노튜브는 액상법 또는 기상법을 이용하여 내부에 금속이 첨가된 나노와이어(nanowire)의 형태로 사용될 수 있다.The carbon nanotubes may be used in the form of nanowires in which a metal is added therein by using a liquid phase method or a gas phase method.

본 발명의 전자파 차폐 및 흡수재는 매트릭스 내에서 탄소나노튜브 또는 탄소나노화이버가 그물망 구조를 이루게 된다. 이때, 탄소나노튜브 또는 탄소나노화이버는 입경에 대한 길이비가 크므로 퍼컬레이션 이론(percolation theory)에 따르면 수분의 일 내지 수 부피%로도 그물망 구조를 이룰 수 있다.In the electromagnetic shielding and absorbing material of the present invention, carbon nanotubes or carbon nanofibers form a mesh structure in a matrix. In this case, carbon nanotubes or carbon nanofibers have a large length ratio with respect to the particle diameter, and according to percolation theory, the network structure may be achieved with one to several volume% of moisture.

이때, 완전한 그물망 구조에서 살펴볼 점은 상기 튜브 또는 화이버간의 접촉 저항이다. 즉, 접촉 저항이 높으면 도전체로 사용할 수 없다. 그러나, 카본나노튜브 자체의 저항 뿐 아니라 상기 튜브간의 접촉면에서의 저항측면에서도 상기 그물망 구조는 도전체로 사용하기에 문제가 없다.At this time, the point to look at the complete network structure is the contact resistance between the tube or fiber. In other words, if the contact resistance is high, it cannot be used as a conductor. However, not only the resistance of the carbon nanotubes themselves but also the resistance side at the contact surface between the tubes has no problem in using the mesh structure as a conductor.

상기 저항은 상기 화이버나 튜브의 구조를 제어하거나 도핑함으로써 제어가능하다. 통상적으로 전자파 흡수에 가장 유리한 전도도는 100S/㎝ 정도로 알려져 있으며 물질 제조공정 제어와, 매트릭스와, 탄소나노튜브 또는 탄소나노화이버의 배합비 조절을 통하여 상기 값을 얻을 수 있다. 또한 상기 적절한 전도도의 부여는 정전기 방지(electrostatic discharge)를 가능하게 한다.The resistance is controllable by controlling or doping the structure of the fiber or tube. In general, the most favorable conductivity for electromagnetic wave absorption is known to be about 100 S / cm and can be obtained by controlling the material manufacturing process and controlling the mixing ratio of the matrix and carbon nanotubes or carbon nanofibers. In addition, the provision of appropriate conductivity allows for electrostatic discharge.

또한, 본 발명의 전자파 차폐 및 흡수재는 고주파의 전자파 흡수뿐 아니라 저주파의 전자파도 흡수할 수 있다. 탄소나노튜브 또는 탄소나노화이버의 합성시 사용된 Fe, Co, Ni 등의 촉매 금속들은 도 2a, 2b, 및 2c와 같이 튜브 또는 화이버의 끝 부분(1), 몸체부분(2) 및 뿌리부분(3)에 끼어 있게 된다. 이제까지 상기 촉매 금속은 불순물로 취급되어 정제시 큰 문제점으로 인식되고 있다. 그러나, 상기 촉매 금속은 전이 금속이면서 강자성 물질로서 자기장 차폐에 큰 역할을 하므로 저주파 영역의 전자파를 효율적으로 차단할 수 있다. 따라서 본 발명은 탄소나노튜브를 키우기 위해 사용한 촉매금속을 정제하지 않고 그대로 사용함으로써 다양한 주파수의 전자파를 흡수차폐할 수 있다.In addition, the electromagnetic shielding and absorbing material of the present invention can absorb not only high frequency electromagnetic waves but also low frequency electromagnetic waves. Catalytic metals such as Fe, Co, Ni, and the like used in the synthesis of carbon nanotubes or carbon nanofibers are end portions (1), body portions (2), and root portions (tubes) of the tubes or fibers as shown in FIGS. 2A, 2B, and 2C. 3) will be stuck. Until now, the catalytic metal is treated as an impurity and is recognized as a big problem in purification. However, the catalytic metal is a transition metal and a ferromagnetic material that plays a large role in shielding the magnetic field, thereby efficiently blocking electromagnetic waves in the low frequency region. Therefore, the present invention can absorb and shield electromagnetic waves of various frequencies by using the catalyst metals used to grow carbon nanotubes without purification.

도 4b를 참고하면, 상기 탄소나노튜브 또는 탄소나노화이버는 매트릭스에 분산되어 입체적인 그물망 구조를 형성할 수 있다. 상기 그물망 구조는 도 4a의 막형 구조에 비해 보다 높은 전자파 차폐 흡수 능력을 가질 수 있다. 즉, 막형 구조(30)는 입사된 전자파(15)에 대해 다양하지 못한 경로 예를들면 A룰 형성하지만, 그물망 구조(40)는 B, C 등과 같이 입사되는 다양한 주파수의 전자파에 대해 경로를 달리하면서 효율적인 흡수가 일어나도록 반응할 수 있다. 전자파의 흡수과정을 살펴보면, 입사된 전자파는 전하의 이동에 의해 열에너지로 바뀌어 상기 열에너지는 도전막을 따라 전도되어 사라진다. 이때 도전체의 전하순환 경로와 순환 주파수는 전자파의 주파수와 밀접하게 관련된다. 낮은 주파수의 전자파에 대해서는 그에 해당하는 짧은 순환경로 B를 찾을 것이고 높은 주파수의 전자파에 대해서는 그에 해당하는 긴 순환경로 C를 찾을 것이다. 도 3b와 같이, 탄소나노튜브 또는 탄소나노화이버들(5)은 입체적인 그물망 구조를 이루고 있어 입사된 전자파(15)에 대해 B, C 등의 경로들이 다양하게 구성된다. 따라서 본 발명의 전자파 차폐 및 흡수재는 다양한 주파수의 전자파를 효율적으로 흡수차폐할 수 있다.Referring to FIG. 4B, the carbon nanotubes or carbon nanofibers may be dispersed in a matrix to form a three-dimensional network structure. The mesh structure may have a higher electromagnetic shielding absorption capability than the film structure of FIG. 4A. That is, the film structure 30 forms a path, for example, A, which is not varied with respect to the incident electromagnetic wave 15, but the network structure 40 has different paths with respect to the electromagnetic waves of various frequencies that are incident, such as B and C. Can be reacted to achieve efficient absorption. Looking at the absorption process of the electromagnetic wave, the incident electromagnetic wave is converted into thermal energy by the movement of the charge, and the thermal energy is conducted along the conductive film and disappears. At this time, the charge circulation path and the circulation frequency of the conductor are closely related to the frequency of the electromagnetic wave. For low frequency electromagnetic waves we will find the corresponding short circuit path B and for high frequency electromagnetic waves we will find the corresponding long circuit path C. As shown in FIG. 3B, the carbon nanotubes or carbon nanofibers 5 form a three-dimensional network structure, and various paths such as B and C are configured with respect to the incident electromagnetic wave 15. Therefore, the electromagnetic shielding and absorbing material of the present invention can efficiently absorb and shield electromagnetic waves of various frequencies.

또한 본 발명에 의한 저주파수의 전자파를 차폐하기에 효과적이도록 도 4a와 같이 탄소나노튜브 또는 탄소나노화이버(5)와, 매트릭스(20)의 복합체에 페라이트(7)를 적당량 첨가할 수 있고 도 4b와 같이 거푸집으로 사용되는 탄소나노튜브(9)의 내부에 액상법 또는 기상법을 이용하여 금속(17)을 첨가함으로써 생성된 나노와이어(nanowire)를 사용할 수 있다.In addition, an appropriate amount of ferrite 7 may be added to the composite of the carbon nanotubes or carbon nanofibers 5 and the matrix 20 as shown in FIG. 4A to effectively shield the low frequency electromagnetic waves according to the present invention. Likewise, nanowires generated by adding the metal 17 to the inside of the carbon nanotubes 9 used as the form using a liquid phase method or a gas phase method may be used.

또한, 본 발명의 전자파 차폐 및 흡수재는 통신기기, 가전제품 등에 적용될 수 있다.In addition, the electromagnetic shielding and absorbing material of the present invention can be applied to communication devices, home appliances, and the like.

본 발명의 탄소나노튜브 또는 탄소나노화이버를 이용한 전자파차폐 및 흡수재는 다음과 같은 장점을 갖는다.Electromagnetic shielding and absorbing material using the carbon nanotubes or carbon nanofibers of the present invention has the following advantages.

첫째, 탄소나노튜브 또는 탄소나노화이버를 극소량 첨가하여 그물망 구조의 도전막을 얻을 수 있으므로 비용이 저렴하다. 둘째, 상기 극소량의 양으로도 원하는 물성을 얻을 수 있으므로 기존의 전자기차폐 및 흡수재의 제조공정을 큰 변화없이 이용할 수 있다. 셋째, 첨가하는 나노물질과 매트릭스의 배합비 조절을 통하여 도전막의 원하는 물성을 얻을 수 있다. 넷째, 상기 나노튜브 또는 화이버를 첨가함으로써 폴리머 자체의 기계적 강도가 증가된다. 다섯째, 금속섬유의 경우 표면층이 쉽게 산화되어 산화물이 형성되므로 기계적인 강도 저하와 EMI(Electromagnetic radio frequency interference/Radio frequency interference) 차폐능력 저하가 나타나지만 본 발명의 전자파 차폐 및 흡수재를 이용하면 표면 산화현상이 발생되지 않으므로 전자파 차폐능력 저하 현상이 발생되지 않는다. 여섯째, 매트릭스와 탄소나노튜브 또는 탄소나노화이버의 친화력이 뛰어나므로 상기 튜브 또는 화이버의 박리 또는 분리 등이 일어나지 않는다. 일곱째, 금속섬유의 경우 금속자원의 낭비가 심하고 회수 및 재활용시 비용이 많이 소모된다. 그러나, 탄소나노튜브 또는 화이버의 탄소는 자연계에서 순환하는 물질이므로 특별한 재처리가 필요 없고 환경 친화적이며 자원 절약적이다. 여덟째, 상기 탄소나노튜브 또는 화이버는 전자파 차폐 및 흡수재에 극소량 첨가되어 그물망 구조의 도전막 형성이 가능하므로 제품의 외관에 변화를 주지 않는다.First, since a small amount of carbon nanotubes or carbon nanofibers can be added to obtain a conductive film having a mesh structure, the cost is low. Second, since the desired physical properties can be obtained even in the very small amount, the manufacturing process of the existing electromagnetic shielding and absorbing material can be used without significant change. Third, the desired physical properties of the conductive film can be obtained by controlling the mixing ratio of the nanomaterial to be added and the matrix. Fourth, the mechanical strength of the polymer itself is increased by adding the nanotubes or fibers. Fifth, in the case of metal fibers, the surface layer is easily oxidized to form oxides, so that mechanical strength and EMI (Electromagnetic radio frequency interference / Radio frequency interference) shielding ability are deteriorated, but the surface oxidation phenomenon is obtained by using the electromagnetic shielding and absorbing material of the present invention. Since it does not occur, the phenomenon of electromagnetic wave shielding ability is not lowered. Sixth, since the affinity between the matrix and carbon nanotubes or carbon nanofibers is excellent, separation or separation of the tubes or fibers does not occur. Seventh, in the case of metal fiber, the waste of metal resources is severe and the cost of recovery and recycling is high. However, carbon in carbon nanotubes or fibers is a material that circulates in nature and thus does not require special reprocessing, and is environmentally friendly and resource-saving. Eighth, the carbon nanotubes or fibers are added to the electromagnetic shielding and absorbing material in a very small amount to form a conductive film of the network structure, and thus does not change the appearance of the product.

Claims (6)

매트릭스에 탄소나노튜브 또는 탄소나노화이버를 첨가하는 단계로 구성된 전자파 차폐 및 흡수재의 제조방법.A method of manufacturing an electromagnetic shielding and absorbing material, comprising adding carbon nanotubes or carbon nanofibers to a matrix. 제 1 항에 있어서,The method of claim 1, 상기 매트릭스와 탄소나노튜브 또는 탄소나노화이버의 혼합비는 전자파 차폐 및 흡수재의 전기전도도가 약 100S/㎝가 되도록 조절됨을 특징으로 하는 전자파 차폐 및 흡수재의 제조방법.The mixing ratio of the matrix and the carbon nanotubes or carbon nanofibers is controlled so that the electrical conductivity of the electromagnetic shielding and absorbing material is about 100S / ㎝. 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브 또는 탄소나노화이버는 상기 튜브 또는 화이버의 성장에 사용된 촉매가 존재하는 상태로 사용됨을 특징으로 하는 전자파 차폐 및 흡수재의 제조방법.The carbon nanotube or carbon nanofiber is a method of manufacturing an electromagnetic shielding and absorbing material, characterized in that used in the presence of the catalyst used for the growth of the tube or fiber. 제 1 항에 있어서,The method of claim 1, 상기 방법은 페라이트 첨가하는 단계를 더 포함함을 특징으로 하는 전자파 차폐 및 흡수재의 제조방법.The method further comprises the step of adding ferrite electromagnetic shielding and absorbing material manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브는 내부에 금속이 첨가된 나노와이어가 사용됨을 특징으로 하는 전자파 차폐 및 흡수재의 제조방법.The carbon nanotube is a method of manufacturing an electromagnetic shielding and absorbing material, characterized in that the use of nanowires with metal added therein. 제 1 항 내지 제 5 항 중 어느 한 방법으로 제조된 전자파 차폐 및 흡수재.Electromagnetic shielding and absorbing material produced by any one of claims 1 to 5.
KR10-2000-0039345A 2000-07-10 2000-07-10 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby KR100370069B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0039345A KR100370069B1 (en) 2000-07-10 2000-07-10 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0039345A KR100370069B1 (en) 2000-07-10 2000-07-10 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby

Publications (2)

Publication Number Publication Date
KR20020005325A true KR20020005325A (en) 2002-01-17
KR100370069B1 KR100370069B1 (en) 2003-01-30

Family

ID=19677168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0039345A KR100370069B1 (en) 2000-07-10 2000-07-10 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby

Country Status (1)

Country Link
KR (1) KR100370069B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348498B1 (en) * 2000-07-13 2002-08-09 명지대학교 Preparing Method of Coating Materials for Electromagnetic Interference Shielding
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
KR100437093B1 (en) * 2001-06-14 2004-06-26 명지대학교 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same
KR100744517B1 (en) * 2005-09-28 2007-08-01 엘지전자 주식회사 Interception material of electromagnetic waves
KR100789103B1 (en) * 2006-12-01 2007-12-26 도레이새한 주식회사 Polylactic composite comprising carbon nanotube and manufacturing method thereof
KR100794183B1 (en) * 2005-01-26 2008-02-18 임병윤 TV and computer monitor electromagnetic shield
US7498632B2 (en) 2004-12-10 2009-03-03 Kyungpook National University Industry-Academic Cooperation Foundation Saddle type flash memory device and fabrication method thereof
CN102391830A (en) * 2011-08-09 2012-03-28 中国科学院宁波材料技术与工程研究所 Application of ferrite-carbon nano-tube composite material used as wave-absorbing material at low temperature
KR101415835B1 (en) * 2007-03-23 2014-07-07 (주)탑나노시스 An additive for improving conductivity of carbon nanotube, carbon nanotube composite, carbon nanotube film and method for manufacturing the carbon nanotube film comprising the carbon nanotube composite
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
KR20180116023A (en) * 2017-04-14 2018-10-24 원광대학교산학협력단 Carbon fiber composite comprising unwoven carbon fabric coated with carbon nanotube, method for manufacturing the same and use thereof
CN112075133A (en) * 2018-09-28 2020-12-11 日本瑞翁株式会社 Electromagnetic wave absorbing sheet and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023384B1 (en) 2008-09-23 2011-03-18 진 홍 창 Anti-electromagnetic interference material arrangement
EP2427038A1 (en) 2010-09-01 2012-03-07 LANXESS Deutschland GmbH EMF-shielded plastic organo-sheet hybrid structural component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621682A (en) * 1992-04-17 1994-01-28 Ohbayashi Corp Sheet material for shield
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
EP1052654B1 (en) * 1999-05-13 2004-01-28 Union Carbide Chemicals & Plastics Technology Corporation Cable semiconducting shield
JP2001267782A (en) * 2000-03-21 2001-09-28 Shimadzu Corp Electromagnetic wave absorbing shield material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348498B1 (en) * 2000-07-13 2002-08-09 명지대학교 Preparing Method of Coating Materials for Electromagnetic Interference Shielding
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
KR100437093B1 (en) * 2001-06-14 2004-06-26 명지대학교 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same
US7498632B2 (en) 2004-12-10 2009-03-03 Kyungpook National University Industry-Academic Cooperation Foundation Saddle type flash memory device and fabrication method thereof
KR100794183B1 (en) * 2005-01-26 2008-02-18 임병윤 TV and computer monitor electromagnetic shield
KR100744517B1 (en) * 2005-09-28 2007-08-01 엘지전자 주식회사 Interception material of electromagnetic waves
KR100789103B1 (en) * 2006-12-01 2007-12-26 도레이새한 주식회사 Polylactic composite comprising carbon nanotube and manufacturing method thereof
KR101415835B1 (en) * 2007-03-23 2014-07-07 (주)탑나노시스 An additive for improving conductivity of carbon nanotube, carbon nanotube composite, carbon nanotube film and method for manufacturing the carbon nanotube film comprising the carbon nanotube composite
CN102391830A (en) * 2011-08-09 2012-03-28 中国科学院宁波材料技术与工程研究所 Application of ferrite-carbon nano-tube composite material used as wave-absorbing material at low temperature
CN102391830B (en) * 2011-08-09 2014-01-29 中国科学院宁波材料技术与工程研究所 Application of ferrite-carbon nano-tube composite material used as wave-absorbing material at low temperature
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
KR20180116023A (en) * 2017-04-14 2018-10-24 원광대학교산학협력단 Carbon fiber composite comprising unwoven carbon fabric coated with carbon nanotube, method for manufacturing the same and use thereof
CN112075133A (en) * 2018-09-28 2020-12-11 日本瑞翁株式会社 Electromagnetic wave absorbing sheet and method for manufacturing same
CN112075133B (en) * 2018-09-28 2023-11-14 日本瑞翁株式会社 Electromagnetic wave absorbing sheet and method for producing same

Also Published As

Publication number Publication date
KR100370069B1 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
KR100370069B1 (en) Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
Gunwant et al. Microwave absorbing properties of carbon fiber based materials: a review and prospective
Ren et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials
Wang et al. Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption
Wei et al. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption
Li et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures
Maruthi et al. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects
Gao et al. Achieving absorption-type electromagnetic shielding performance in silver micro-tubes/barium Ferrites/Poly (lactic acid) composites via enhancing impedance matching and electric-magnetic synergism
Lu et al. Structural effects in a composite nonwoven fabric on EMI shielding
KR100744517B1 (en) Interception material of electromagnetic waves
KR101101172B1 (en) Method for purificating carbon nanotube and electromagnetic wave absorption material to include carbon nanotube that fabricated using the same
JP4748529B2 (en) Magnetic material
Wu et al. Electromagnetic interference shielding effectiveness of composite carbon nanotube macro-film at a high frequency range of 40 GHz to 60 GHz
Wu et al. Surface-oxidized amorphous Fe nanoparticles supported on reduced graphene oxide sheets for microwave absorption
Deng et al. Microwave characterization of submicrometer-sized nickel hollow sphere composites
Tan et al. Development and current situation of flexible and transparent EM shielding materials
Devi et al. Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites: A review
Sun et al. One-dimensional Ag@ NC-Co@ NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption
Zhao et al. Development of multiscale Fe/SiC–C fibrous composites for broadband electromagnetic and acoustic waves absorption
Wilson et al. An introduction to materials for potential EMI shielding applications: Status and future
Luo et al. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber
Liu et al. Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties
Peymanfar et al. Recent advances in microwave-absorbing materials fabricated using organic conductive polymers
Lv et al. Ti3C2Tx/Co-MOF derived TiO2/Co/C composites for broadband and high absorption of electromagnetic wave
JP2009238981A (en) Magnetic body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080102

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee