KR20020004015A - Measuring System for Minimum Ignition Energy of Flammable Powder - Google Patents

Measuring System for Minimum Ignition Energy of Flammable Powder Download PDF

Info

Publication number
KR20020004015A
KR20020004015A KR1020000036673A KR20000036673A KR20020004015A KR 20020004015 A KR20020004015 A KR 20020004015A KR 1020000036673 A KR1020000036673 A KR 1020000036673A KR 20000036673 A KR20000036673 A KR 20000036673A KR 20020004015 A KR20020004015 A KR 20020004015A
Authority
KR
South Korea
Prior art keywords
explosion
ignition energy
minimum ignition
discharge
powder material
Prior art date
Application number
KR1020000036673A
Other languages
Korean (ko)
Inventor
이동훈
Original Assignee
이동훈
(주)선재하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이동훈, (주)선재하이테크 filed Critical 이동훈
Priority to KR1020000036673A priority Critical patent/KR20020004015A/en
Publication of KR20020004015A publication Critical patent/KR20020004015A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0091Powders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE: A minimum ignition energy measuring device of inflammable powder material is provided to reduce fire and explosion caused by static electric charge of inflammable powder material by providing an explosion device and a measuring device of minimum ignition energy to corresponding industry. CONSTITUTION: A minimum ignition energy measuring device(1) of inflammable powder material consists of an explosion device of inflammable powder material and a measuring device of minimum ignition energy. An explosion case(2) of the explosion device has pyrex structure with thickness of 5mm, inner diameter of 70mm and height of 300mm. An explosion diffusion device is adhered to the upper part of the explosion case. If a high voltage switch is switched on, charged energy of a condenser charged with high voltage is fed to a discharge electrode(3). The energy is discharged in the explosion case in a moment, and specific pressure of air is fed to inflammable powder material on a powder diffusion vessel(4) through an air dispensing system. Thereby, the inflammable powder material is ignited. The discharge current and discharge voltage are measured from a discharge current measuring terminal and a discharge voltage terminal respectively to obtain the minimum ignition energy. The minimum ignition energy is differentiated sequentially by a computer program to obtain the minimum ignition energy. Therefore, fire and explosion caused by static electric discharge is reduced.

Description

가연성 분체류의 최소착화에너지 측정장치{Measuring System for Minimum Ignition Energy of Flammable Powder}Measuring system for minimum ignition energy of flammable powders {Measuring System for Minimum Ignition Energy of Flammable Powder}

가연성 분체를 사용하는 공정, 특히 사료공장, 고분자제조 화학공장, 목재가공공장 등에서는 부유 분체의 취급시에 정전기대전으로 인한 화재·폭발사고가 우리나라 전체의 중대산업재해(가스폭발 포함)의 25% 이상을 차지하고 있는 실정이다. 대전된 가연성 분체의 화재·폭발을 예방을 위해서는 우선 가연성 분체의 최소착화에너지를 정량적으로 해석하여야 하고, 또한 착화매카니즘을 고찰하여 분체의 대전전압을 저하시킬 필요가 있다. 따라서 본 제안에서는 가연성분체의 최소착화에너지를 정량적으로 측정할 수 있도록 취상식 가연성 분체의 폭발장치와 정전기방전법을 이용한 가연성분체의 최소착화에너지 측정장치를 개발·제안하여 관련 산업계에 제공하여 가연성분체의 정전기대전으로 인한 화재·폭발사고를 줄이는데 그 목적이 있다.In processes that use combustible powders, especially feed plants, polymer manufacturing chemical plants, and wood processing plants, 25% of major industrial accidents (including gas explosions) in Korea are caused by fire and explosion accidents due to electrostatic charges when handling floating powders. The situation is occupied more. In order to prevent fire and explosion of the charged combustible powder, it is necessary to first quantitatively analyze the minimum ignition energy of the combustible powder, and also to consider the ignition mechanism to lower the charged voltage of the powder. Therefore, in this proposal, in order to quantitatively measure the minimum ignition energy of flammable components, the explosive device of the flammable powder and the minimum ignition energy measurement device of flammable components using the electrostatic discharge method are developed and proposed to related industries by providing them to related industries. Its purpose is to reduce fire and explosion accidents caused by static electricity discharge.

본 기술은 방전 및 고전압에 관한 것이다.The technology relates to discharge and high voltage.

가연성 분체의 착화위험성을 정량적으로 해석하여만 대전된 분체의 정전기방전으로 인한 사고 대책방안을 강구할 수가 있으나, 현재 일부분의 가연성 분체류의 최소착화에너지는 정전기 핸드북 또는 각종 화학물질자료집에 언급되어 있으나, 실제로 사업장에서 사용하고 있는 대부분의 분체에 대해서는 알 수 없으며, 특히 복합 분체류의 최소착화에너지 및 차과 메카니즘은 전혀 알지 못하고 있는 실정이다.Only by quantitatively analyzing the ignition risk of flammable powders can we take countermeasures against accidents caused by electrostatic discharge of charged powders.However, the minimum ignition energy of some combustible powders is currently mentioned in the electrostatic handbook or various chemical data sheets. In fact, most of the powders used in the workplace are not known, and in particular, the minimum ignition energy and the difference mechanism of the composite powders are not known at all.

본 기술적 과제의 주된 내용은 다음 8가지로 나누어 실시하였다.The main contents of this technical problem were divided into eight categories.

① 폭발통(강화유리) 제작, 폭발방산 장치의 부착① Explosion container (tempered glass) production

② 시료용 분체의 분사용기의 제작② Preparation of injection container of powder for sample

③ 침대침 전극의 제작 및 전극 간격 조절③ Fabrication of bed needle electrode and control of electrode gap

④ 방전전극간격의 변화에 따른 최소착화에너지의 측정④ Measurement of minimum ignition energy according to change of discharge electrode interval

⑤ 콘덴서 충전식 직류고전압 발생장치의 제작 및 특성 조사⑤ Fabrication and characteristics investigation of capacitor DC high voltage generator

⑥ 고전압 충전콘덴서의 용량계산 및 누설전류 평가⑥ Capacity calculation and leakage current evaluation of high voltage charging capacitor

⑦ 데이타 분석장치(GPIB)와 컴퓨터의 Interface⑦ Interface of data analysis device (GPIB) and computer

⑧) data처리 software 설계 및 실험⑧) Data processing software design and experiment

그림 1은 가연성 분체의 폭발 및 측정장치에 대한 전체적인 블록도이고, 그림 2는 그림 1의 ①항에 나타남 정전기방전법을 이용한 최소착화에너지 측정장치의 내부 회로도를 나타내었다. 그림 1에서 분체폭발장치는 취상식의 구조로 크게 2개의 부분, 즉, 폭발통(Explosion Case, 그림1의 ②)와 공기분사장치(Air Dispersion System, 그림1의 ④⑤⑦⑧)으로 구성되어져 있다. 폭발통은 폭발시의 압력에 견딜 수 있도록 강화파이렉스(두께 5 mm)로 되어 있고, 방전전극(그림1의 ③)은 텅스텐(지름 : 5mm, 침전극)으로 구성되어 있다. 한편 공기분사장치는 에어콤퓨레샤, 에어저장용기, 솔레노이드밸브 및 가연성분체 분사용기로 구성되어 있다. 그림 2의 최소착화에너지 측정장치는 정전에너지 저장용 콘덴서(5 종류, 그림2의 ④), 직류고전압발생을 위한 변압기(그림2의 ②), 가스봉입형 고전압절환스위치(그림2의 ①), 방전전극, 데이타 분석장치(GPIB, 그림2의 ⑧) 및 컴퓨터(그림2의 ⑨)로 구성되어져 있다. 특히 방전전극은 불꽃 발생을 용이하게 하기 위하여 침대침 전극의 구조로 되어 있으며, 전극간의 간격은 Digital Calipus에 연결되어 자유롭게 조절 가능하도록 되어 있다. 그림2의 ⑤의 방전제한저항은 급격한 방전을 억제하여 콘덴서에 축적된 전에너지가 가연성분체의 착화에 전달되도록 하기 위하여 설치되어 있으며,그림2의 ⑥의 무유도저항은 방전시 고주파진동을 억제하기 위하여 설치하였으며, 그림2의 ⑦의 저항은 방전시의 방전전류를 측저하기 위한 단자로서 사용되었다.Figure 1 shows the overall block diagram of the flammable powder explosion and measuring device. Figure 2 shows the internal circuit diagram of the minimum ignition energy measuring device using the electrostatic discharge method. In Figure 1, the powder explosive device has a structure of a drinking ceremony, and is composed of two parts, an explosion case (② of Figure 1) and an air dispersion system (④⑤⑦⑧ of Figure 1). The explosion barrel is made of reinforced pyrex (5 mm thick) to withstand the pressure of the explosion, and the discharge electrode (3 in Figure 1) consists of tungsten (diameter: 5 mm, precipitation electrode). On the other hand, the air injection unit is composed of an air compressor, an air storage container, a solenoid valve and a combustible component injection container. The minimum ignition energy measuring device in Fig. 2 includes electrostatic energy storage capacitors (5 types, ④ in Fig. 2), transformer for DC high voltage generation (② in Fig. 2), gas-enclosed high voltage switching switch (① in Fig. 2), It consists of a discharge electrode, a data analyzer (GPIB, ⑧ in Figure 2) and a computer (⑨ in Figure 2). In particular, the discharge electrode has a structure of the bed needle electrode in order to facilitate the generation of sparks, the distance between the electrodes is connected to the Digital Calipus to be freely adjustable. The discharge limiting resistor in ⑤ of Figure 2 is installed to suppress the sudden discharge so that all energy accumulated in the capacitor is transferred to the ignition of the combustible component.The inductive resistance of ⑥ in Figure 2 is used to suppress high frequency vibration during discharge. The resistor in ⑦ of Figure 2 was used as a terminal to measure the discharge current during discharge.

본 고안은 크게 2 부분, 즉 취상식 가연성 분체의 폭발장치와 최소착화에너지 측정장치로 구성되어 있다. 가연성 분체의 폭발장치의 폭발통은 파이렉스(두께 5 mm, 내경 70mm, 높이 300mm)로 되어 있으며, 폭발통의 상부에는 폭발방산장치(종이)가 부착되어져 있어 폭발시에는 파열하도록 되어 있다. 가연성분체의 착화단계는 고전압절환스위치를 작동시켜서 고전압으로 충전된 콘덴서의 충전에너지를 방전전극측에 인가하여 순간적으로 폭발통 내에서 기중 방전을 일으킴과 동시에 분체분산용기 위에 일정량을 올려 놓여진 가연성 분체에 공기분사장치를 통하여 일정 압력의 공기를 이용하여 가연선성 분체를 폭발통 내에서 기중 분사시켜 착화시키고, 이때 방전시의 방전전류측정 단자로부터의 방전전류 및 방전전압 단자로부터의 방전 전압을 측정하여 최소착화에너지를 측정한다. 방전전극 간격간에서 소비된 방전에너지, 즉 최소착화에너지는 방전전극 간의 방전전압과 방전전류의 적(積)을 컴퓨터 프로그램에 의해 순시적분을 함으로서 최소착화에너지를 산출할 수 있다. 최소착화에너지 측정장치는 정전에너지 저장용으로 사용되는 5종류의 콘덴서 (10 PF ∼ 2000PF)와 가스봉입형 고전압절환스위치, 방전제한저항, 침대침형 방전전극, 데이터 분석장치(GPIB) 및 컴퓨터로 구성되어 있다. 방전전극 중 접지전극에는 무유도저항(500Ω) 및 전류검출용의 무유도저항(50Ω)을 직렬로 연결하였다. 방전전극의 간격조절은 방전전극을 Digital Calipus에 연결하여 간격 조절이 자유롭게 되도록하였다. 방전전극과 접지전극간의 방전시의 방전전압은 고전압검출전극에 의하여, 방전전류는 전류검출용 무유도저항(50Ω)의 전압강하법에 의하여 각각 검출하였다. 또한 방전전류 및 방전전압의 파형을 디지털 오실로스코프에 파형을 각각 기억시키고, 이때의 데이타는 GPIB를 통하여 컴퓨터에 저장하여 Microsoft EXCELL Program에 의하여 최소착화에너지를 계산하였다.The present invention consists of two parts, namely the flammable powder explosive device and the minimum ignition energy measurement device. The explosion chamber of the flammable powder explosion device is made of pyrex (5 mm thick, 70 mm inside diameter, 300 mm high), and an explosion dissipation device (paper) is attached to the upper part of the explosion container to rupture in case of explosion. In the ignition step of the combustible component, the high voltage switching switch is operated to apply the charging energy of the capacitor charged to the high voltage to the discharge electrode side, causing instantaneous discharge in the explosion chamber, and simultaneously placing a predetermined amount on the combustible powder placed on the powder dispersion container. Combustible powder is ignited by injecting air into the explosion chamber by using air of constant pressure through the air injection device, and at this time, the discharge current from the discharge current measurement terminal and the discharge voltage from the discharge voltage terminal are measured and minimum. Measure the ignition energy. The discharge energy consumed between the discharge electrode intervals, that is, the minimum ignition energy, can be calculated by integrating the discharge voltage and the discharge current between the discharge electrodes instantaneously by a computer program. The minimum ignition energy measuring device is composed of five kinds of capacitors (10 PF ~ 2000PF), gas encapsulated high voltage switching switch, discharge limiting resistor, bed needle discharge electrode, data analysis device (GPIB) and computer used for electrostatic energy storage. It is. The induction resistance (500Ω) and the induction resistance (50Ω) for current detection were connected in series to the ground electrode among the discharge electrodes. The spacing control of the discharge electrode was connected to the Digital Calipus so that the spacing could be freely adjusted. The discharge voltage at the time of discharge between the discharge electrode and the ground electrode was detected by the high voltage detection electrode, and the discharge current was measured by the voltage drop method of the inductive resistance (50?) For current detection. In addition, the waveforms of the discharge current and the discharge voltage were stored in the digital oscilloscope, respectively, and the data at this time were stored in a computer through GPIB, and the minimum ignition energy was calculated by the Microsoft EXCELL Program.

본 제안된 가연성 분체의 최소착화에너지 측정장치는 한화로 약 800만원 정도로 저렴하게 제품화하여 국내관련업체에 공급할 수 있고, 가연성분체의 최소착화에너지를 정량적으로 측정할 수 있어서 가연성분체의 정전기대전으로 인한 화재·폭발사고를 줄이는데 그 주된 효과를 얻을 수 있어서, 이로 인한 년간 산업재해비용을 100 억원 이상 절감할 수 있을 것으로 생각된다.The proposed device for measuring the minimum ignition energy of the combustible powder can be supplied to domestic companies by inexpensive product of about 8 million won in Hanwha, and can be measured quantitatively by measuring the minimum ignition energy of the combustible components. The main effect is to reduce the fire and explosion accidents, which is expected to reduce the annual cost of industrial accidents by more than 10 billion won.

Claims (1)

가연성분체의 최소착화에너지 측정장치Minimum Ignition Energy Measuring Device for Combustible Components
KR1020000036673A 2000-06-27 2000-06-27 Measuring System for Minimum Ignition Energy of Flammable Powder KR20020004015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000036673A KR20020004015A (en) 2000-06-27 2000-06-27 Measuring System for Minimum Ignition Energy of Flammable Powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000036673A KR20020004015A (en) 2000-06-27 2000-06-27 Measuring System for Minimum Ignition Energy of Flammable Powder

Publications (1)

Publication Number Publication Date
KR20020004015A true KR20020004015A (en) 2002-01-16

Family

ID=19674989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000036673A KR20020004015A (en) 2000-06-27 2000-06-27 Measuring System for Minimum Ignition Energy of Flammable Powder

Country Status (1)

Country Link
KR (1) KR20020004015A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846697A (en) * 2010-04-22 2010-09-29 上海化工研究院 Pneumatic rod electrode and switch linking device for determining ignition energy
CN103033606A (en) * 2012-12-11 2013-04-10 常州大学 Method for determining minimum ignition energy of combustible gas in semi-open space
CN105651809A (en) * 2015-12-31 2016-06-08 中国人民解放军国防科学技术大学 Experimental device for particle combustion under high speed air flow
CN106841299A (en) * 2017-03-17 2017-06-13 中国工程物理研究院化工材料研究所 Suitable for the quick low humidity blast tank arrangement of Electrostatic Safety detection
AT517918A3 (en) * 2015-10-23 2018-01-15 Magdalena Kitzmann Gmbh Tester
CN109668930A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test method of gas-particle two-phase combustible material minimum ignition energy
CN112610981A (en) * 2020-11-30 2021-04-06 昆山莫帝斯科燃烧技术仪器有限公司 Device for testing dust ignition energy
CN114544706A (en) * 2022-01-18 2022-05-27 中国矿业大学(北京) Experimental system and method for measuring explosive product energy distribution proportion relation
CN116297674A (en) * 2022-09-09 2023-06-23 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846697A (en) * 2010-04-22 2010-09-29 上海化工研究院 Pneumatic rod electrode and switch linking device for determining ignition energy
CN103033606A (en) * 2012-12-11 2013-04-10 常州大学 Method for determining minimum ignition energy of combustible gas in semi-open space
AT517918A3 (en) * 2015-10-23 2018-01-15 Magdalena Kitzmann Gmbh Tester
CN105651809A (en) * 2015-12-31 2016-06-08 中国人民解放军国防科学技术大学 Experimental device for particle combustion under high speed air flow
CN106841299A (en) * 2017-03-17 2017-06-13 中国工程物理研究院化工材料研究所 Suitable for the quick low humidity blast tank arrangement of Electrostatic Safety detection
CN109668930A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test method of gas-particle two-phase combustible material minimum ignition energy
CN109668930B (en) * 2017-10-17 2022-06-17 中国石油化工股份有限公司 Method for testing minimum ignition energy of gas-solid two-phase combustible material
CN112610981A (en) * 2020-11-30 2021-04-06 昆山莫帝斯科燃烧技术仪器有限公司 Device for testing dust ignition energy
CN114544706A (en) * 2022-01-18 2022-05-27 中国矿业大学(北京) Experimental system and method for measuring explosive product energy distribution proportion relation
CN116297674A (en) * 2022-09-09 2023-06-23 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium
CN116297674B (en) * 2022-09-09 2023-10-10 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium

Similar Documents

Publication Publication Date Title
CN101692081B (en) Device for testing minimum ignition energy of combustible gas or vapor
US10578573B2 (en) Diagnostics for catalytic structures and combustible gas sensors including catalytic structures
KR20020004015A (en) Measuring System for Minimum Ignition Energy of Flammable Powder
Janes et al. MIKE 3 versus HARTMANN apparatus: Comparison of measured minimum ignition energy (MIE)
Bernard et al. Statistical method for the determination of the ignition energy of dust cloud-experimental validation
Randeberg et al. Measurement of minimum ignition energies of dust clouds in the< 1 mJ region
CN111257660B (en) System and method for measuring static inside fluid pipeline
CN109827994A (en) A kind of experimental provision and method measuring dust cloud combustion explosion characteristic
Randeberg et al. Initiation of dust explosions by electric spark discharges triggered by the explosive dust cloud itself
CN110018287A (en) A kind of explosive electrostatic test instrument for simulating static electricity on human body&#39;s spark discharge
CN201684292U (en) Novel alarm for electrostatic discharge of human body
CN101784153A (en) Human body electrostatic discharge alarm apparatus
CN200941109Y (en) Resistance tester for leakage of work terrace/platform
MXPA03005430A (en) Method and device for examining multi-layered films and containers produced therefrom.
CN106124895B (en) A kind of solid engines electrostatic safety system safety testing device and method
Ziyu et al. Study on internal pressure measurement of vacuum interrupter
CA2075034A1 (en) Method for determining a measurable variable and measuring arrangement
CN203519810U (en) Electrostatic charge analyzer calibrating device
Gabor et al. An innovative method for testing electronic detonating caps regarding sensitivity to electrostatic discharges
Guoxiang et al. Comprehensive study on electric spark sensitivity of ignitable gases and explosive powders
CN218995649U (en) Current waveform calibrating device for electrostatic sensitivity instrument
RO132362A0 (en) Universal system for determining the minimum ignition energy of explosive air - inflammable substance mixtures
CN219266162U (en) Pure oxygen environment material electrostatic discharge ignition test device
JP6651077B1 (en) Non-ground detection device
CN216696311U (en) Portable oil storage device and performance testing device for online monitor of dissolved gas in oil

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application