KR20020003887A - Method for Preparing Titanium Suboxide Powders - Google Patents

Method for Preparing Titanium Suboxide Powders Download PDF

Info

Publication number
KR20020003887A
KR20020003887A KR1020000034032A KR20000034032A KR20020003887A KR 20020003887 A KR20020003887 A KR 20020003887A KR 1020000034032 A KR1020000034032 A KR 1020000034032A KR 20000034032 A KR20000034032 A KR 20000034032A KR 20020003887 A KR20020003887 A KR 20020003887A
Authority
KR
South Korea
Prior art keywords
manganese
titanium oxide
titanium dioxide
mol
low
Prior art date
Application number
KR1020000034032A
Other languages
Korean (ko)
Inventor
이재도
이오상
이상훈
최영민
류병환
장현주
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR1020000034032A priority Critical patent/KR20020003887A/en
Publication of KR20020003887A publication Critical patent/KR20020003887A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method for preparing titanium suboxides powder with high thermal oxidation resistance is provided. The invented titanium suboxides is capable of keeping superior electrochemical property even in the temperature range higher than 400deg.C without reoxidation. CONSTITUTION: In the fabrication method of titanium suboxides powder where titanium dioxide ceramic slurry is granulated by spray dryer, and then it is reduced under hydrogen atmosphere, the present invention is characterized in that Mn 1-5wt.% is incorporated, based on the weight of titanium dioxide, in the titanium dioxide ceramic slurry.

Description

내산화성 저차산화티탄의 제조방법{Method for Preparing Titanium Suboxide Powders}Method for Preparing Oxidation Resistant Low Titanium Oxide {Method for Preparing Titanium Suboxide Powders}

본 발명은 저차산화티탄의 제조방법에 관한 것으로서, 보다 상세하게는, 망간산화물을 적정량 첨가하여 내산화성을 크게 증진시킨 저차산화티탄의 제조방법에 관한 것이다.The present invention relates to a method for producing low titanium oxide, and more particularly, to a method for producing low titanium oxide, in which an appropriate amount of manganese oxide is added to greatly enhance oxidation resistance.

저차산화티탄(이하, Magneli상인 Ti4O7을 주된 상으로 한 산화물을 말함)은, 흑연보다 전기전도도와 기계적 강도가 높으며, 티타늄금속보다 전기화학적으로 안정하다는 장점을 가지고 있음이 밝혀짐에 따라, 저차산화티탄의 높은 전기전도 및 내부식 특성을 이용하여 전기화학산업용 전극재료, CRT의 대전방지막 재료, 액정표시용 블랙 매트릭스 충전재료(black matrix filler), 화장품 원료 등에 활용하고자하는 움직임이 활발히 전개되어 왔다.Low-order titanium oxide (hereinafter referred to as an oxide mainly composed of Ti 4 O 7 which is a Magneli phase) has higher electrical conductivity and mechanical strength than graphite and has an advantage of being more electrochemically stable than titanium metal. , The use of high electrical conductivity and corrosion resistance of low-order titanium oxide is actively used to apply electrode material for electrochemical industry, antistatic film material of CRT, black matrix filler for liquid crystal display, cosmetic raw material, etc. Has been.

이러한 저차산화티탄을 이용한 전극제조 및 응용의 예로서, 미국 특허 제 4,422,917 호(Hayfield 등, 1983)에는 절연체인 이산화티탄(TiO2)의 약간 환원된 형태인 저차산화티탄은 Ti와 산소의 비(Ti/O ratio)에 따른 결정구조, 환원된 정도에 따라 전기전도성과 산, 알카리 용액에 대한 부식속도 등에 관한 기술이 개시되어 있다.As an example of the electrode manufacturing and application using such a low titanium oxide, US Patent No. 4,422,917 (Hayfield et al., 1983) Titanium Dioxide (TiO)2Low-titanium oxide, a slightly reduced form of), has been described for the crystal structure according to the ratio of Ti and oxygen (Ti / O ratio), the electrical conductivity according to the reduced degree and the corrosion rate of acid, alkali solution, etc. .

그러나, 저차산화티탄은 공기중에서는 약 400 ∼ 500℃ 부근에서 재산화가 일어나며 산화가 진행됨에 따라 저차산화티탄 고유의 흑색의 색상과 전기 전도성을 상실하게 되어 이의 활용 온도가 공기 중에서는 350℃ 이하로 제한되어 있다. 이러한 활용 제한성의 문제를 해결하기 위해서는 저차산화티탄의 내산화성을 증진시킬 필요성이 있다.However, the lower titanium oxide is reoxidized at about 400 ~ 500 ℃ in air, and as oxidation progresses, it loses the black color and electric conductivity inherent to low titanium oxide, and its utilization temperature is lower than 350 ℃ in air. It is limited. In order to solve this problem of limitation of utilization, it is necessary to improve the oxidation resistance of low-order titanium oxide.

한편, 저차산화티탄의 내산화성 증진에 관한 보고는 많이 이루어져 있지 않으며, 조사된 유일한 보고인 일본 특개평8-59,240 (Saito 등, 1996)에서는 무기흑색안료 용도로의 저차산화티탄의 내산화성을 증진시키기 위하여 저차산화티탄 분말 표면에 졸겔법을 이용하여 실리카, 알루미나, 이산화티탄, 이산화주석, 이산화게르마늄 등의 산화물피막을 형성하여 공기중에서 흑색상을 400 - 450℃ 까지 유지시킨 사례가 보고되고 있다.On the other hand, there are not many reports on the enhancement of the oxidation resistance of low titanium oxide, and Japanese Patent Laid-Open No. 8-59,240 (Saito et al., 1996), the only report investigated, promotes the oxidation resistance of low titanium oxide for inorganic black pigments. In order to achieve this, an oxide film such as silica, alumina, titanium dioxide, tin dioxide, germanium dioxide, etc. is formed on the surface of the lower titanium oxide powder by the sol-gel method, and black color is maintained at 400-450 ° C in the air.

그러나, 이러한 방법으로는 저차산화티탄의 전기적 성질을 유지시킬 수 없으며, 저차산화티탄 자체의 내산화성을 증진시켜 저차산화티탄 고유의 검은 색상은 물론 전기 전도성을 동시에 만족시킬 수 있을 정도의 사례는 아직 발견되지 않았다.However, such a method cannot maintain the electrical properties of the lower titanium oxide, and it is still possible to satisfy the electrical conductivity as well as the black color inherent in the lower titanium oxide by enhancing the oxidation resistance of the lower titanium oxide itself. Not found.

본 발명은 종래의 이러한 문제점을 해결하기 위하여 안출된 것으로, 저차산화티탄을 제조하는 과정에서 망간을 적정량 첨가함으로써 저차산화티탄 자체의 강화에 의하여 고온에서도 색상과 전기적 특성을 함께 유지하면서 내산화성을 증진시킨 저차산화티탄의 제조방법을 제공하고자 하는데 그 목적이 있다.The present invention has been made to solve such a problem in the prior art, by adding an appropriate amount of manganese in the process of manufacturing a low titanium oxide by enhancing the low titanium oxide itself by maintaining the color and electrical properties at high temperatures while enhancing the oxidation resistance It is an object of the present invention to provide a method for preparing low-order titanium dioxide.

도 1 은 본 발명 및 종래의 저차산화티탄의 TGA곡선을 나타낸 그래프이고,1 is a graph showing the TGA curve of the present invention and the conventional low titanium oxide,

도 2 는 본 발명 및 종래의 저차산화티탄의 DTA곡선을 나타낸 그래프이다.2 is a graph showing the DTA curve of the present invention and the conventional low titanium oxide.

이와 같은 목적을 달성하기 위하여, 본 발명에 따르면, 이산화티탄 세라믹 슬러리를 열분무법에 의해 과립으로 제조한 다음 환원공정을 통하여 저차산화티탄을 제조하는 방법에 있어서 상기 슬러리는 망간성분을 이산화티탄의 전체에 대하여 1∼5몰%로 함유하는 것을 특징으로 하는 저차산화티탄의 제조방법이 제공된다.In order to achieve the above object, according to the present invention, in the method of producing a titanium dioxide ceramic slurry into granules by thermal spraying method and then producing a low titanium dioxide through a reduction process, the slurry is a manganese component as a whole of titanium dioxide. There is provided a method for producing a low titanium oxide, characterized in that it is contained in an amount of 1 to 5 mol%.

본 발명에서는 저차산화티탄을 제조하기 위하여 일반적으로 널리 사용되고 있는 열분무 과립 제조기(spray dryer)를 이용하여 우선 망간이 첨가된 이산화티탄과립을 제조한 다음 적절한 환원조건하에서 이산화티탄과립을 환원반응시켜 저차산화티탄을 제조하였다.In the present invention, a titanium dioxide granule to which manganese is added is first prepared using a thermal spray granulator (spray dryer), which is generally used to produce low titanium oxide, and then the titanium dioxide granule is reduced to reduce the titanium dioxide granule under appropriate reducing conditions. Titanium oxide was prepared.

본 발명에 따라, 열분무법에 의해 이산화티탄 과립을 제조하기 위해서는 먼저 망간이 소정량으로 첨가된 이산화티탄 세라믹 슬러리를 제조하는데, 이 슬러리는 망간이 첨가된 이산화티탄, 바인더, 분산제 및 소포제를 이온교환수에 혼합하여 제조한다.According to the present invention, in order to prepare titanium dioxide granules by thermal spraying, first, a titanium dioxide ceramic slurry to which manganese is added in a predetermined amount is prepared. It is prepared by mixing with water.

제조된 슬러리는 열분무 과립제조기를 이용하여 이산화티탄 산화물로 제조한다음 수소분위기의 환원공정을 통하여 최종적으로 저차산화티탄이 얻어진다.The prepared slurry is made of titanium dioxide oxide using a thermal spray granulator, and finally low titanium oxide is obtained through a reduction process of hydrogen atmosphere.

본 발명은, 상기한 바와 같은 슬러리를 제조함에 있어 이산화티탄의 전체에 대하여 망간성분을 1∼5몰%, 바람직하게는 1∼2몰% 함유하도록 첨가해 줌으로써 최종적으로 얻어지는 저차산화티탄의 내산화성을 크게 개선시킨 것이다.In the present invention, in preparing the slurry as described above, the oxidation resistance of the low titanium oxide finally obtained by adding 1 to 5 mol%, preferably 1 to 2 mol% of manganese to the total amount of titanium dioxide, is finally obtained. Is a significant improvement.

망간성분의 함량이 1몰% 미만으로 첨가되는 경우에는 저차산화티탄의 내산화성을 크게 기대할 수 없으며, 그 첨가량이 5몰%를 초과하는 때에는 망간의 다량첨가에 의해 전기전도특성이 저하하게 되어 바람직하지 못하다.When the content of manganese is less than 1 mol%, the oxidation resistance of low titanium oxide cannot be expected to be large, and when the addition amount is more than 5 mol%, the electrical conductivity is deteriorated by the large amount of manganese. I can't.

한편, 첨가되는 망간성분은 망간의 산화물, 염화물, 질산염, 황산염, 탄산염, 옥살산염, 인산염 또는 이들의 혼합물등 어떠한 것이라도 무방하다.On the other hand, the added manganese component may be any of oxides, chlorides, nitrates, sulfates, carbonates, oxalates, phosphates or mixtures thereof.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

망간이 첨가된 이산화티탄 과립을 제조하기 위하여 망간이 1몰% 포함된 이산화티탄 세라믹 슬러리를 제조하였다. 슬러리의 구성은 망간이 1몰% 첨가된 이산화티탄이 100 중량부, 바인더는 0.5 중량부, 분산제는 0.3 중량부, 그리고 소포제는 0.2 중량부를 함유하도록 하였다. 실제 사산화삼망간 21.2g과 이산화티탄 2129.0g , 그리고 이온교환수 722.0g을 충전하여 약 74 중량% 농도의 슬러리를 제조하였다. 이 때, 볼밀(직경이 약 14.5cm이고 용적이 5 ℓ인 폴리에틸렌 재질의 포트)에 상기 슬러리 구성원과 분쇄매체로 약 10 mm 크기의 알루미나 볼을 5kg 충전하고, 약 60 rpm의 회전수로 약 3시간 밀링을 하였다.A titanium dioxide ceramic slurry containing 1 mol% of manganese was prepared to prepare titanium dioxide granules containing manganese. The slurry was composed of 100 parts by weight of titanium dioxide containing 1 mol% of manganese, 0.5 parts by weight of the binder, 0.3 parts by weight of the dispersant, and 0.2 parts by weight of the antifoaming agent. A slurry of about 74% by weight was prepared by charging 21.2 g of trimanganese tetraoxide, 2129.0 g of titanium dioxide, and 722.0 g of ion-exchanged water. At this time, a ball mill (a pot of polyethylene having a diameter of about 14.5 cm and a volume of 5 L) was charged with 5 kg of alumina balls having a size of about 10 mm with the slurry member and the grinding medium, and about 3 at a rotation speed of about 60 rpm. Time milling was performed.

제조된 슬러리를 열분무 과립제조기를 사용하여 240 g/min의 속도로 슬러리를 주입하면서, 아토마이저(atomizer)의 회전속도는 10,000 rpm으로 고정하고, 열풍의 주입온도는 120℃, 출구온도는 80 ∼ 100℃로 유지하였으며, 슬러리의 주입양(120 ∼ 360g/min)과 회전판의 속도조절(5,000 ∼ 15,000 rpm)에 의하여 20∼100㎛ 크기의 망간이 1몰% 포함된 이산화티탄산화물을 제조하였다.While injecting the slurry at a rate of 240 g / min using the thermal spray granulator, the rotation speed of the atomizer was fixed at 10,000 rpm, and the injection temperature of the hot air was 120 ° C., and the outlet temperature was 80. Titanium dioxide containing 1 mol% of manganese having a size of 20 to 100 μm was prepared by the injection amount of the slurry (120 to 360 g / min) and the speed control of the rotating plate (5,000 to 15,000 rpm). .

망간양이 1몰% 포함된 이산화티탄 과립을 500g 평량하고 그라파이트 로(爐)에서 수소를 500 ml/min으로 흘려주면서 10 ℃/min의 승온속도로 가열하여 약 1,150℃에서 각각 17시간 동안 환원하여 망간이 1몰% 포함된 저차산화티탄을 제조하였다.500 g of titanium dioxide granules containing 1 mol% of manganese was weighed and heated at a temperature rising rate of 10 ° C./min while flowing hydrogen at 500 ml / min in a graphite furnace, and reduced at about 1,150 ° C. for 17 hours. To prepare a low titanium oxide containing 1 mol% manganese.

(실시예 2)(Example 2)

상기 실시예에서 망간이 2몰% 첨가된 과립제조를 위한 슬러리 구성원의 사산화삼망간 42.6g과 이산화티탄 2110.9g을 넣었으며 다른 구성원의 양 및 과립제조 방법은 실시예 1과 동일하다. 또한 저차산화티탄 제조방법도 실시예 1과 동일하되, 단지 환원조건 1,150℃에서 16시간에서 환원하였다.In the above example, 42.6 g of trimanganese tetraoxide and 2110.9 g of titanium dioxide were added to the slurry member for the preparation of granules added with 2 mol% of manganese, and the amount of the other members and the method for producing granules were the same as in Example 1. In addition, the method of preparing a lower titanium oxide was the same as in Example 1, but was reduced at only 1,150 ℃ in 16 hours.

(실시예 3)(Example 3)

상기 실시예에서 망간이 3몰% 첨가된 과립제조를 위한 슬러리 구성원의 사산화삼망간 63.9g과 이산화티탄 2092.7g을 넣었으며 다른 구성원의 양 및 과립제조 방법은 실시예 1과 동일하다. 또한 저차산화티탄 제조방법도 실시예 1과 동일하되, 단지 환원조건 1,150℃에서 13시간에서 환원하였다.In the above example, 63.9 g of trimanganese tetraoxide and 2092.7 g of titanium dioxide were added to the slurry member for preparing granules containing 3 mol% of manganese, and the amount of the other members and the method of producing granules were the same as in Example 1. In addition, the method of preparing a lower titanium oxide was the same as in Example 1, but was reduced at only 1,150 ℃ in 13 hours.

(실시예 4)(Example 4)

상기 실시예에서 망간이 5몰% 첨가된 과립제조를 위한 슬러리 구성원의 사산화삼망간 106.8g과 이산화티탄 2056.2g을 넣었으며 다른 구성원의 양 및 과립제조방법은 실시예 1과 동일하다. 또한 저차산화티탄 제조방법도 실시예 1과 동일하되, 단지 환원조건 1,150℃에서 13시간에서 환원하였다.In the above example, 106.8 g of trimanganese tetraoxide and 2056.2 g of titanium dioxide were added to the slurry member for preparing granules in which 5 mol% of manganese was added, and the amount of the other members and the method of producing granules were the same as in Example 1. In addition, the method of preparing a lower titanium oxide was the same as in Example 1, but was reduced at only 1,150 ℃ in 13 hours.

(비교예 1)(Comparative Example 1)

상기 실시예에서 망간이 첨가되지 않은 과립제조를 위한 슬러리 구성원의 이산화티탄 2147.0g만을 넣었으며 다른 구성원의 양 및 과립제조 방법은 실시예 1과 동일하다. 또한 저차산화티탄 제조방법도 실시예 1과 동일하되, 단지 환원조건 1,150℃에서 18시간에서 환원하였다.In the above example, only 2147.0 g of titanium dioxide was added to the slurry member for preparing granules without adding manganese, and the amount of the other members and the granulation method were the same as in Example 1. In addition, the method of preparing a lower titanium oxide was the same as in Example 1, but was reduced at only 1,150 ℃ in 18 hours.

(비교예 2)(Comparative Example 2)

상용의 저차산화티탄의 과립과 분쇄한 분말을 내산화성 비교 시료로 사용하였다.Commercial Granules of low titanium oxide and ground powder were used as comparative samples for oxidation resistance.

상기 실시예 1 ∼ 4 및 비교예 1에서 제조한 저차산화티탄과 비교예 2의 저차산화티탄을 분쇄하기 위하여 각각 수계 슬러리의 농도를 약 50 중량%로 하여 어트리터에서 300rpm의 속도로 15시간 분쇄하였다. 분쇄전 모든 시료의 비표면적은 0.2∼0.5 m2/g이었으나, 모든 분쇄물의 비표면적은 약 6 m2/g로 크게 증가하였고, 평균 입자크기는 약 0.5㎛인 분말을 얻을 수 있었다. 또한, 분쇄 전후 저차산화티탄 분말의 상변화는 전혀 없음을 X선 회절분석결과에 의하여 확인할 수 있었다.In order to grind the low-titanium oxide prepared in Examples 1 to 4 and Comparative Example 1 and the low-titanium oxide of Comparative Example 2, the concentration of the aqueous slurry was about 50% by weight, respectively, for 15 hours at 300 rpm in the attritor. It was. The specific surface area of all the samples before grinding was 0.2 to 0.5 m 2 / g, but the specific surface area of all the grinding materials increased to about 6 m 2 / g, and a powder having an average particle size of about 0.5 μm was obtained. In addition, it was confirmed by X-ray diffraction analysis that there was no phase change of the low-order titanium oxide powder before and after grinding.

각 시료의 내산화성은 열분석기(SETARAM제, TGDTA92, 불란서)를 이용하였으며, 시료 1mg당 0.3 ml/min 속도로 공기를 흘려 주면서 10℃/min로 가열하여 각 시료의 내산화성을 조사하였다. 저차산화티탄의 산화반응에 의한 무게증가를 TGA로, 산화반응에 의한 발열량 추이를 DTA로 파악하였다. 이상의 결과를 도1에 나타내었으며, 도1에서의 산화개시온도(T1, T2) 및 최대 산화온도(Tmax)에 대한 정리를 표 1에 나타내었다.Oxidation resistance of each sample was used a thermal analyzer (SETARAM, TGDTA92, France), Oxidation resistance of each sample was investigated by heating at 10 ° C./min while flowing air at a rate of 0.3 ml / min per 1 mg of sample. The increase in weight due to the oxidation of low-order titanium oxide was determined by TGA and the calorific value by oxidation was determined by DTA. The above results are shown in FIG. 1, and the oxidation start temperature (T) in FIG.One, T2) And maximum oxidation temperature (Tmax) Is shown in Table 1.

산화온도(℃)Oxidation temperature (℃) T1 T 1 T2 T 2 Tmax T max 실시예1Example 1 Mn 1몰%Mn 1 mol% 502.9502.9 652.1652.1 696.3696.3 실시예2Example 2 Mn 2몰%Mn 2 mol% 526.8526.8 668.7668.7 699.7699.7 실시예3Example 3 Mn 3몰%Mn 3 mol% 257.9257.9 650.3650.3 692.6692.6 실시예4Example 4 Mn 5몰%Mn 5 mol% 250.5250.5 637.4637.4 681.6681.6 비교예1Comparative Example 1 Mn 무첨가Mn no addition 412.6412.6 545.4545.4 585.8585.8 비교예2Comparative Example 2 상용 저차산화티탄Commercially Low Titanium Oxide 386.8386.8 521.3521.3 578.4578.4 * 승온속도; 10℃/min,* 공기유속; 0.3ml/min·mgHeating rate; 10 ° C./min,* air flow rate; 0.3ml / minmg

표 1에서 보는 바와 같이, 산화시작온도 T1은 250℃ ∼ 580℃ 범위이고, 산화시작온도 T2및 Tmax(최대산화온도)는 520℃ ∼ 700℃ 범위에서 나타나고 있으며, 산화에 의한 무게증가는 6 ±0.5%이었다. 1 ∼2 몰% 망간이 첨가된 저차산화티탄의 내산화성은 망간이 첨가되지 않은 저차산화티탄이나 현재 상용되고 있는 것에 비하여 우수함을 알 수 있다.As shown in Table 1, the oxidation start temperature T 1 is in the range of 250 ° C. to 580 ° C., and the oxidation start temperatures T 2 and T max (maximum oxidation temperature) are shown in the range of 520 ° C. to 700 ° C., and the weight is increased by oxidation. Was 6 ± 0.5%. It can be seen that the oxidation resistance of low titanium oxide to which 1-2 mol% manganese was added is superior to that of low titanium oxide without manganese or currently commercially available.

즉, 망간을 1 ∼2 몰% 첨가한 저차산화티탄은 망간을 첨가하지 않은 저차산화티탄과 상용의 저차산화티탄에 비하여 산화시작온도가 약 130℃ ∼ 160℃ 증가되어 약 20%의 내산화성이 증진되었음을 확인할 수 있다.In other words, low titanium oxide containing 1 to 2 mol% of manganese has an oxidation start temperature of about 130 ° C. to 160 ° C. compared to low titanium oxide without manganese and commercially available low titanium oxide, resulting in about 20% oxidation resistance. You can see that it has been enhanced.

한편, 상기 실시예 1 ∼ 4 및 비교예 1 및 2에 의한 어트리터에서 15시간 분쇄한 후 약 90MPa로 가압성형하여 충진밀도가 52.4%인 성형체(크기; Φ25mm x H 5mm)를 제조하였으며, 이를 1150℃ 및 1350℃에서 각각 10시간 소결하여 소결체를제조하였다. 또한, 겔캐스팅법을 이용하여 성형밀도가 약 52%인 성형체(크기; Φ20mm x L 200mm)를 제조하였다 [참고문헌: 한국요업학회지 36(2), 178-185 (1998), vol. 36(2), 220-224 (1998), vol. 36(3), 266-273 (1998)]. 이를 1,150℃에서 각각 10시간 소결하였다. 각 소결체의 기공률을 아르키메데스법으로 측정하였다.On the other hand, after grinding for 15 hours in the attritors according to Examples 1 to 4 and Comparative Examples 1 and 2 to form a molded article (size; Φ25mm x H 5mm) having a filling density of 52.4% by press molding at about 90MPa, Sintered bodies were prepared by sintering at 1150 ° C and 1350 ° C for 10 hours, respectively. In addition, a molded article having a molding density of about 52% (size; Φ 20 mm x L 200 mm) was prepared by using the gel casting method [Reference: Korean Journal of Ceramics 36 (2), 178-185 (1998), vol. 36 (2), 220-224 (1998), vol. 36 (3), 266-273 (1998). It was sintered at 1,150 ° C. for 10 hours each. The porosity of each sintered compact was measured by the Archimedes method.

또한, 저차산화티탄 소결체의 상온 전기 전도도를 D.C. 4-단자법으로 측정하였다. 4-단자법에 의한 전기전도도 측정방법은 외부의 두 전극을 이용 current source(Keithley model 220)로 전류를 흘리면서 내부 전극으로는 Keithley model 196 DMM을 이용 전압강하를 측정하였다. 동일한 방법으로 측정한 7회의 전류와 전압 강하를 최소자승법을 이용하여 저항(R)을 계산하고 전기전도도를 구하였으며, 그 결과를 표 2에 나타내었다.In addition, the room temperature electrical conductivity of the low-titanium oxide sintered compact was measured by D.C. It measured by the 4-terminal method. In the 4-terminal method, the conductivity was measured by using a Keithley model 196 DMM as an internal electrode while flowing current through a current source (Keithley model 220) using two external electrodes. The seven currents and the voltage drops measured by the same method were calculated using the least-square method to calculate the resistance (R) and the electrical conductivity. The results are shown in Table 2.

물성 예Physical property example 가압성형 후 소결;(성형밀도; 52.4%소결; 1,350℃, 10h, Ar 분위기)Sintering after press molding; (molding density; 52.4% sintering; 1,350 ° C, 10h, Ar atmosphere) 겔캐스팅성형 후 소결;(성형밀도; 52%소결; 1,150℃, 10h, Ar 분위기)`Sintering after gel casting; (molding density; 52% sintering; 1,150 ℃, 10h, Ar atmosphere) ` 밀도(g/㎤)Density (g / cm 3) 기공율(%)Porosity (%) 전기전도도(S/cm)Electrical Conductivity (S / cm) 밀도(g/㎤)Density (g / cm 3) 기공율(%)Porosity (%) 전기전도도(S/cm)Electrical Conductivity (S / cm) 실시예1Example 1 Mn 1몰%Mn 1 mol% 4.224.22 2.92.9 675 ±21675 ± 21 2.502.50 42.242.2 121 ±6121 ± 6 실시예2Example 2 Mn 2몰%Mn 2 mol% 4.284.28 0.90.9 614 ±7614 ± 7 2.692.69 37.737.7 120 ±3120 ± 3 실시예3Example 3 Mn 3몰%Mn 3 mol% 4.044.04 6.56.5 231 ±5231 ± 5 2.172.17 49.949.9 47 ±147 ± 1 실시예4Example 4 Mn 5몰%Mn 5 mol% 4.174.17 3.53.5 72 ±172 ± 1 2.522.52 41.741.7 46 ±046 ± 0 비교예1Comparative Example 1 Mn 무첨가Mn no addition 4.194.19 3.03.0 692 ±4692 ± 4 2.552.55 41.041.0 222 ±3222 ± 3 비교예2Comparative Example 2 상용 저차산화티탄Commercially Low Titanium Oxide 4.164.16 3.73.7 291 ±5291 ± 5 2.512.51 41.941.9 113 ±3113 ± 3 * Ti4O7이론밀도; 4.32g/㎤로부터 기공율 환산* Theoretical density of Ti 4 O 7 ; Porosity conversion from 4.32 g / cm 3

표 2에서 보는 바와 같이, 성형체의 밀도는 성형법이 달라도 약 52%를 유지하였으며 1,150℃ 열처리의 경우 약 40%의 기공율을, 1,350℃ 열처리의 경우 약 3 ±3%의 기공율을 나타내었다.As shown in Table 2, the density of the molded article was maintained about 52% even if the molding method is different, the porosity of about 40% for 1,150 ℃ heat treatment, and about 3 ± 3% for 1,350 ℃ heat treatment.

망간의 함량이 2몰% 첨가될 때 기공율이 가장 낮음을 확인할 수 있었다. 망간을 첨가하지 않은 경우에는 상용의 저차산화티탄보다 2 ∼ 3배 큰 전기전도 특성을 나타내었으며 망간의 양을 1, 2몰% 첨가했을 때는 상용의 저차산화티탄과 유사한 전기전도 특성을 나타내었다.It was confirmed that the porosity was the lowest when the content of manganese 2 mol% is added. When manganese was not added, the conductivity was 2 to 3 times higher than that of commercially available low titanium oxide. When the amount of manganese was added 1, 2 mol%, the conductivity was similar to that of commercially available low titanium oxide.

상기에서 설명한 바와 같이, 본 발명에서 제조한 망간성분이 첨가된 저차산화티탄(과립)은 종래의 망간이 첨가되지 않은 저차산화티탄에 비하여 거의 유사한 전기전도성을 유지하면서도 내산화성이 약 20% 증진된 결과를 나타내므로, 보다 가혹한 환경에서 우수한 전극재료, CRT의 대전방지막재료, 액정표시용 블랙 매트릭스 충전재료, 화장품 원료등에 사용될 가능성을 보여주었다.As described above, the lower titanium oxide (granule) to which the manganese component prepared in the present invention is added has about 20% enhanced oxidation resistance while maintaining almost similar electrical conductivity as compared to the lower titanium oxide without conventional manganese. As a result, it showed that it can be used for excellent electrode materials, CRT antistatic film materials, liquid crystal display black matrix filling materials, cosmetic raw materials, etc. in harsher environments.

Claims (3)

이산화티탄 세라믹 슬러리를 열분무법에 의해 과립으로 제조한 다음 환원공정을 통하여 저차산화티탄을 제조하는 방법에 있어서,In the method of producing a titanium dioxide ceramic slurry into granules by thermal spraying method and then producing a low titanium oxide through a reduction process, 상기 슬러리는 망간성분을 이산화티탄의 전체에 대하여 1∼5몰%로 함유하는 것을 특징으로 하는 저차산화티탄의 제조방법.The slurry is a method for producing low titanium oxide, characterized in that containing 1 to 5 mol% of the manganese component of the total titanium dioxide. 제 1항에 있어서, 상기 망간성분은 1∼2몰%인 것을 특징으로 하는 저차산화티탄의 제조방법.The method of claim 1, wherein the manganese component is 1-2 mol%. 제 1항에 있어서, 상기 망간성분은 망간 산화물, 망간염화물, 망간질산염, 망간황산염, 망간탄산염, 망간옥살산염, 망간인삼염으로 구성되는 그룹에서 선택된 적어도 1종의 형태로 첨가되는 것을 특징으로하는 저차산화티탄의 제조방법.The method of claim 1, wherein the manganese component is added in at least one form selected from the group consisting of manganese oxide, manganese chloride, manganese nitrate, manganese sulfate, manganese carbonate, manganese oxalate, manganese phosphate salt Method for producing low titanium oxide.
KR1020000034032A 2000-06-21 2000-06-21 Method for Preparing Titanium Suboxide Powders KR20020003887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000034032A KR20020003887A (en) 2000-06-21 2000-06-21 Method for Preparing Titanium Suboxide Powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000034032A KR20020003887A (en) 2000-06-21 2000-06-21 Method for Preparing Titanium Suboxide Powders

Publications (1)

Publication Number Publication Date
KR20020003887A true KR20020003887A (en) 2002-01-16

Family

ID=19672872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000034032A KR20020003887A (en) 2000-06-21 2000-06-21 Method for Preparing Titanium Suboxide Powders

Country Status (1)

Country Link
KR (1) KR20020003887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130091219A (en) * 2012-02-07 2013-08-16 삼성전자주식회사 Metal suboxide and method of preparing same
CN104661962A (en) * 2012-09-28 2015-05-27 欧洲技术研究圣戈班中心 Molten grains of titanium sub-oxides and ceramic products comprising such grains

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589490A (en) * 1978-12-27 1980-07-07 Sumitomo Electric Ind Ltd Ceramic electrode material and its manufacture
JPS63225532A (en) * 1987-03-13 1988-09-20 Seiko Epson Corp Titanium oxide fine article
JPH07242422A (en) * 1994-03-08 1995-09-19 Titan Kogyo Kk Fine particle-shaped acicular titanium oxide and production thereof
JPH0859240A (en) * 1994-08-24 1996-03-05 Mitsubishi Materials Corp Titanium suboxide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589490A (en) * 1978-12-27 1980-07-07 Sumitomo Electric Ind Ltd Ceramic electrode material and its manufacture
JPS63225532A (en) * 1987-03-13 1988-09-20 Seiko Epson Corp Titanium oxide fine article
JPH07242422A (en) * 1994-03-08 1995-09-19 Titan Kogyo Kk Fine particle-shaped acicular titanium oxide and production thereof
JPH0859240A (en) * 1994-08-24 1996-03-05 Mitsubishi Materials Corp Titanium suboxide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130091219A (en) * 2012-02-07 2013-08-16 삼성전자주식회사 Metal suboxide and method of preparing same
KR101880152B1 (en) * 2012-02-07 2018-07-19 삼성전자주식회사 Metal suboxide and method of preparing same
CN104661962A (en) * 2012-09-28 2015-05-27 欧洲技术研究圣戈班中心 Molten grains of titanium sub-oxides and ceramic products comprising such grains

Similar Documents

Publication Publication Date Title
EP4343891A1 (en) Sodium-containing oxide positive electrode material and preparation method therefor and use thereof, and positive electrode plate and use thereof
JPH05508830A (en) Lanthanum chromite especially suitable for low temperature firing
CN111477949B (en) Lithium ion solid electrolyte with superstructure
CN101369657A (en) Multicomponent doping spherical lithium iron phosphate anode material and method of manufacturing the same
EP4411877A1 (en) Lithium iron phosphate composite material, and preparation method therefor and use thereof
CN108899524A (en) A kind of lithium ion battery mangaic acid lithium anode material and preparation method thereof
US7014881B2 (en) Synthesis of multi-element oxides useful for inert anode applications
CN107473731A (en) A kind of high-energy type piezo-resistance and its manufacture method
CN103232238B (en) Preparation method of high-strength electric smelting zirconia ceramic ball
KR20020003887A (en) Method for Preparing Titanium Suboxide Powders
CN110380006A (en) A kind of preparation method of the electrodes of lithium-ion batteries of the coating containing PTC
US20070295938A1 (en) Electro Conductive Tin Oxide Powder and Method for Producing the Same
CN109052953A (en) It is a kind of for enhancing the glaze feed additives of domestic ceramics corrosion resistance
JP2002252005A (en) Oxide ion electric conductor and its manufacturing method
CN106602115A (en) Preparation method of low-temperature type solid electrolyte material
JPH0616471A (en) Heat resistant conductive sintered body
CN101830694B (en) High-purity stannic oxide electrode ceramic material and preparation method thereof
CN115148981A (en) Lithium ion battery positive electrode material and preparation method and application thereof
EP0209081A2 (en) Sintered bodies of stabilized zirconia
JP2003277024A (en) Oxide ion conductor and manufacturing method thereof
JP3904338B2 (en) Synthetic mica powder, method for producing the same, and cosmetics containing the powder
CN111900376B (en) Electrode material for high-temperature electrolyte and preparation method thereof
CN110265658A (en) A kind of aluminum phosphate coats the preparation method of rich lithium ruthenium Base Metal oxyfluoride positive electrode
CN110698214A (en) High-strength ceramsite with slag as aggregate and preparation method thereof
JPH05844A (en) Heat resistant conductive sintered body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application