KR20020003424A - Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method - Google Patents
Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method Download PDFInfo
- Publication number
- KR20020003424A KR20020003424A KR1020000035935A KR20000035935A KR20020003424A KR 20020003424 A KR20020003424 A KR 20020003424A KR 1020000035935 A KR1020000035935 A KR 1020000035935A KR 20000035935 A KR20000035935 A KR 20000035935A KR 20020003424 A KR20020003424 A KR 20020003424A
- Authority
- KR
- South Korea
- Prior art keywords
- zeolite
- glassy polymer
- group
- mixed solution
- polyimide
- Prior art date
Links
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 title abstract description 24
- 229920005597 polymer membrane Polymers 0.000 title abstract description 6
- 238000002360 preparation method Methods 0.000 title 1
- 239000010457 zeolite Substances 0.000 claims abstract description 82
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 75
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229920000642 polymer Polymers 0.000 claims abstract description 43
- 239000012528 membrane Substances 0.000 claims abstract description 32
- 239000004642 Polyimide Substances 0.000 claims abstract description 26
- 229920001721 polyimide Polymers 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 4
- 239000013557 residual solvent Substances 0.000 claims abstract description 4
- 239000004952 Polyamide Substances 0.000 claims abstract description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 3
- 229920002647 polyamide Polymers 0.000 claims abstract description 3
- 229920001230 polyarylate Polymers 0.000 claims abstract description 3
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 3
- 239000004417 polycarbonate Substances 0.000 claims abstract description 3
- 229920006380 polyphenylene oxide Polymers 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 4
- 239000004962 Polyamide-imide Substances 0.000 claims abstract 2
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 claims abstract 2
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 claims abstract 2
- 229910052676 chabazite Inorganic materials 0.000 claims abstract 2
- 229910001603 clinoptilolite Inorganic materials 0.000 claims abstract 2
- 229910052680 mordenite Inorganic materials 0.000 claims abstract 2
- 229920002312 polyamide-imide Polymers 0.000 claims abstract 2
- 239000011259 mixed solution Substances 0.000 claims description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 125000000524 functional group Chemical group 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 5
- 125000001174 sulfone group Chemical group 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical group N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 150000003141 primary amines Chemical group 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- JQFSDOGHZKRSHQ-UHFFFAOYSA-N N1=C(N=C(C=C1N)N)N.N1=C(N=C(C=C1N)N)N Chemical group N1=C(N=C(C=C1N)N)N.N1=C(N=C(C=C1N)N)N JQFSDOGHZKRSHQ-UHFFFAOYSA-N 0.000 claims 1
- 150000001412 amines Chemical class 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 26
- 239000011521 glass Substances 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 2
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 description 17
- 239000000243 solution Substances 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 4
- 238000006884 silylation reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- -1 polyimideamide Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/148—Organic/inorganic mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3435—Piperidines
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 2,4,6-트리아미노피리미딘을 이용하여 유리질 고분자에 제올라이트를 첨가하여 제조한 분리막 및 그 제조 방법에 관한 것으로, 유리질 고분자에 제올라이트를 첨가하는데 상용화제를 이용하여 단순한 공정으로 효과적인 블랜드를 얻어내고, 그로부터 기체 선택도가 높은 분리막을 제조함과 동시에 유리질 고분자와 제올라이트 사이의 계면 공극이 없이 제올라이트를 함유한 유리질 고분자 분리막을 제조하도록 한 것이다.The present invention relates to a separator prepared by adding zeolite to a glassy polymer using 2,4,6-triaminopyrimidine, and a method for preparing the same, and is effective in a simple process using a compatibilizer to add zeolite to a glassy polymer. A blend was obtained to prepare a membrane having a high gas selectivity therefrom and to prepare a vitreous polymer membrane containing zeolite without interfacial voids between the vitreous polymer and the zeolite.
맨 처음 제올라이트(zeolite)를 고분자에 도입하고자 하는 시도는 테 헤네페(te Hennepe) 등에 의한 것이었으며 (미합중국 특허 제4,925,562호), 제올라이트를 고무상 고분자에 도입하여 투과증발막을 제조하는 것이었다.The first attempt to introduce zeolites into polymers was by Te Hennepe et al. (US Pat. No. 4,925,562), and the introduction of zeolites into rubbery polymers to produce pervaporation membranes.
그러다가 현재는 제올라이트를 기체 분리막에 이용하려는 쪽으로 연구가 진행되고 있다.Currently, research is underway to use zeolites in gas separation membranes.
즉, 지금까지의 연구에 의해 고분자 자체만으로 효과적인 투과도와 선택도를가진 기체 분리막을 만드는데 한계에 도달했기 때문에, 제올라이트를 이용함으로써 더 나은 분리막을 얻어내고자 하는 것이다.In other words, the research to date has reached the limit of making a gas separation membrane having effective permeability and selectivity only by the polymer itself, so that a better separation membrane is obtained by using zeolite.
지금까지 제올라이트를 고분자에 도입하려는 시도는 크게 고무질 고분자에 제올라이트를 도입하는 방법과 유리질 고분자에 제올라이트를 도입하는 방법으로 나눌 수 있다.So far, attempts to introduce zeolites into polymers can be broadly divided into methods of introducing zeolites into rubbery polymers and methods of introducing zeolites into glassy polymers.
일반적으로 고무질 고분자는 투과도가 높고 선택도가 낮은 반면, 유리질 고분자는 투과도가 낮고 선택도가 높다. 제올라이트를 고무질 고분자에 첨가한 경우에는 고분자와 제올라이트 사이의 계면 공극(interfacial void)이 생기지 않지만 선택도는 그다지 증가하지 않으며, 유리질 고분자에 첨가한 경우에는 계면 공극이 생기는 문제가 있다 (J. Appl. Polym. Sci., vol. 54, p. 409, 1994). 만약 유리질 고분자에 제올라이트를 첨가한 뒤 계면 공극만 효과적으로 제거할 수만 있다면 높은 투과도와 선택도를 동시에 얻을 수 있을 것으로 기대되고 있다.In general, rubbery polymers have high permeability and low selectivity, while glassy polymers have low permeability and high selectivity. When the zeolite is added to the rubbery polymer, the interfacial void between the polymer and the zeolite does not occur, but the selectivity does not increase so much, and when the zeolite is added to the glassy polymer, there is a problem that the interfacial void is generated (J. Appl. Polym. Sci., Vol. 54, p. 409, 1994). If the zeolite is added to the glassy polymer and only the interfacial void can be effectively removed, high permeability and selectivity can be obtained at the same time.
제올라이트를 함유한 유리질 고분자 분리막의 경우 이러한 문제를 해결하기 위해 몇 가지 방법이 시도되었는데 하나는 압출(extrusion) 방법을 이용하여 유리질 고분자와 제올라이트를 블랜드 하려는 방법이고 (J. Membr. Sci., vol. 93, p. 283, 1994), 다른 하나는 실릴화(silylation)를 이용하는 방법이다.(J. Phys. Chem., vol. 100, p. 3753, 1996)In the case of the glassy polymer membrane containing zeolite, several methods have been attempted to solve this problem. One method is to blend the glassy polymer and the zeolite using an extrusion method (J. Membr. Sci., Vol. 93, p. 283, 1994), and the other is to use silylation (J. Phys. Chem., Vol. 100, p. 3753, 1996).
전자의 경우 폴리술폰 펠렛에 제올라이트 13X 분말을 혼합하여 340℃에서 두 번 압출하는데 각각의 압출 후 200℃에서 16시간 동안 진공 건조하는 방법을 사용하였다. 후자의 경우 제올라이트를 아미노알콕시실란(aminoalkoxysilane)으로 화학반응에 의해 실릴화시킨 뒤, 폴리이미드의 전구체인 폴리아믹산(polyamic acid)을 중합시키면서 실릴화 시킨 제올라이트를 첨가하여 220℃에서 경화시키는 방법을 사용하였다.In the former case, zeolite 13X powder was mixed in polysulfone pellets and extruded twice at 340 ° C., followed by vacuum drying at 200 ° C. for 16 hours after each extrusion. In the latter case, the zeolite is silylated with an aminoalkoxysilane by chemical reaction, and then a silylated zeolite is added and cured at 220 ° C. while polymerizing polyamic acid, a precursor of polyimide. It was.
그러나 압출 방법을 이용한 경우 순수한 고분자 분리막과 거의 비슷한 수준의 투과도와 선택도가 얻어졌으며, 후자의 경우 자일렌(xylene) 흡착 실험에서 실릴화 시키지 않은 것을 고분자에 첨가한 것과 비교해서 별 차이가 없는 것으로 나타났으나, 단순히 흡착 실험만으로는 고분자와 제올라이트 사이의 계면 공극의 유무를 판단하기 어렵다.However, the extrusion method yielded almost the same level of permeability and selectivity as pure polymer membranes. In the latter case, there was no difference compared to the addition of silylated compounds to the polymer in the xylene adsorption experiment. However, it is difficult to determine the presence or absence of interfacial voids between the polymer and the zeolite simply by adsorption experiments.
이외에도 압출을 이용한 방법은 제올라이트의 균일한 분포가 문제가 되며, 높은 온도의 가공이 고분자에 영향을 줄 수도 있다.In addition to the extrusion method, the uniform distribution of the zeolite becomes a problem, and high temperature processing may affect the polymer.
또한 실릴화 반응을 이용한 방법은 제올라이트 표면에 단층(monolayer)으로 실릴화 반응을 제어하기가 어렵고 실릴화 반응 조건이 까다로운 단점이 있다.In addition, the method using the silylation reaction has a disadvantage in that it is difficult to control the silylation reaction as a monolayer on the zeolite surface and the silylation reaction conditions are difficult.
본 발명은 상기와 같은 종래의 문제점을 감안하여 안출한 것으로, 유리질 고분자에 제올라이트를 첨가하는데 상용화제를 이용함으로써 단순한 공정으로 효과적인 블랜드를 얻어내고, 그로부터 기체 선택도가 높은 분리막을 제조함과 동시에 유리질 고분자와 제올라이트 사이의 계면 공극이 없이 제올라이트를 함유한 유리질 고분자 분리막을 제조하는데 그 목적이 있다.The present invention has been made in view of the above-described conventional problems, and by using a compatibilizer to add zeolite to a glassy polymer, an effective blend can be obtained by a simple process, and a membrane having high gas selectivity can be prepared therefrom. It is an object of the present invention to prepare a vitreous polymer membrane containing zeolite without interfacial voids between the polymer and the zeolite.
상기와 같은 목적을 달성하기 위한 본 발명은 유리질 고분자와 제올라이트의경우 둘 사이의 친화도가 낮기 때문에 둘을 혼합하여 유리질 고분자 내에 제올라이트가 분산된 분리막을 제조할 경우 둘 사이에 계면 공극이 생기는데 이와 같이 계면 공극이 발생하면 기체 등 분리막을 투과하는 물질이 대부분 이러한 공극을 통과하여 물질전달이 이루어지기 때문에 분리막으로서의 선택 분리능이 상실되므로 이 둘 간의 상호작용을 증가시킬 수 있는 방법을 도입해야만 안정된 블랜드를 얻을 수 있다는 점, 즉, 일반적으로 서로 잘 섞이지 않는 고분자 블랜드의 경우, 상용화제(compatibilizer)를 이용하여 상용성(miscibility)을 증가시키는 경우가 많기 때문에 유리질 고분자와 제올라이트 사이에서 효과적으로 작용할 수 있는 상용화제를 이용하면 이 둘 간의 계면 공극을 제거할 수 있다는 점에 착안하여 연구개발된 것이다.In order to achieve the above object, the present invention has a low affinity between the glassy polymer and the zeolite. Thus, when the two are mixed to prepare a membrane in which the zeolite is dispersed in the glassy polymer, interfacial voids are generated between the two. When interfacial voids occur, most of the materials that permeate the separator, such as gas, pass through these voids, and thus the selective resolution as a separator is lost. Therefore, a stable blend can be obtained only by introducing a method that can increase the interaction between them. That is, in general, polymer blends that do not mix well with each other often use a compatibilizer to increase miscibility, so a compatibilizer that can effectively work between the glassy polymer and the zeolite can be used. The interface between the two It was researched and developed with the idea that the voids can be removed.
본 발명에서는 상용화제로 TAP(2,4,6-triaminopyrimidine, Acros Organics사)을 사용하였는데, TAP은 3개의 1차 아민기(primary amine group)를 가지고 있어서 여러 물질들 사이에서 강한 수소결합을 유도하는 성질을 가지고 있으며, TAP의 아민기와 수소결합 가능한 관능기로는 수산화기(hydroxyl group), 카르복실기(carboxyl group), 아민기(amine group), 카르보닐기(carbonyl group), 술폰기(sulfone group), 시안기(cyanide group) 등을 들 수 있는데, 유리질 고분자와 제올라이트가 이러한 관능기를 가지고 있는 경우 TAP을 상용화제로서 사용할 수 있다.In the present invention, TAP (2,4,6-triaminopyrimidine, Acros Organics Co., Ltd.) was used as a compatibilizer, and TAP has three primary amine groups to induce strong hydrogen bonds between various substances. The functional group capable of hydrogen bonding with the amine group of TAP is hydroxyl group, carboxyl group, amine group, carbonyl group, sulfone group, cyan group ( cyanide group), TAP can be used as a compatibilizer when the glassy polymer and zeolite have such functional groups.
상기 관능기를 갖는 유리질 고분자는 폴리이미드, 폴리아미드, 폴리이미드아미드, 폴리술폰, 폴리카보네이트, 폴리아릴레이트, 폴리페닐렌옥사이드, 셀룰로오즈, 셀룰로오즈 아세테이트 등이 있는데, 특히 본 실험에서는 유리질 고분자로 폴리이미드(Matrimide 5218 CH polyimide, Ciba-Geigy Co., Ltd.)를 사용하였다.The glassy polymer having the functional group includes polyimide, polyamide, polyimideamide, polysulfone, polycarbonate, polyarylate, polyphenylene oxide, cellulose, cellulose acetate, and the like. Matrimide 5218 CH polyimide, Ciba-Geigy Co., Ltd.) was used.
그리고 제올라이트는 모든 종류가 사용 가능한데, 특히 5A(Aldrich Chemical Company Inc.), 13X(Aldrich Chemical Company Inc.), NaY (Aldrich Chemical Company Inc.)를 사용하였다.All kinds of zeolites can be used, in particular 5A (Aldrich Chemical Company Inc.), 13X (Aldrich Chemical Company Inc.), NaY (Aldrich Chemical Company Inc.) was used.
폴리이미드의 경우 카르보닐기를 가지고 있으며, 제올라이트의 경우 표면에 수산화기를 가지고 있다.Polyimide has a carbonyl group, and zeolite has a hydroxyl group on its surface.
따라서 이러한 반응기들과 TAP사이에 수소결합이 가능하며, 이것을 이용해서 제올라이트와 유리질 고분자 사이의 친화도를 높일 수 있고 계면 공극 없이 분리막을 제조할 수 있다.Therefore, hydrogen bonding is possible between these reactors and the TAP, and by using this, the affinity between the zeolite and the glassy polymer can be increased and a separator can be prepared without interfacial pores.
또한 Si/Al 비(ratio)가 2 이상인 경우, 단순히 폴리이미드와 제올라이트 만으로 디메틸설폭사이드 등의 용매에 녹여 혼합 용액을 만들면 상분리가 일어나 폴리이미드 층과 제올라이트 층이 분리되는 현상이 나타난다.In addition, when the Si / Al ratio (2) or more, simply dissolved in a solvent such as dimethyl sulfoxide with a polyimide and zeolite alone to form a mixed solution, a phase separation occurs and the polyimide layer and the zeolite layer appears.
이러한 경우 TAP을 첨가하면 상분리가 일어나지 않으며, 안정된 혼합 용액을 얻을 수 있다.In this case, the addition of TAP does not cause phase separation, and a stable mixed solution can be obtained.
또한 본 발명에 바람직한 용매로는 디메틸설폭사이드와 디메틸포름아마이드가 있으나, 전자가 TAP에 대한 용해도가 더 뛰어나다.In addition, preferred solvents in the present invention include dimethyl sulfoxide and dimethylformamide, but the former has better solubility in TAP.
이하 본 발명을 좀더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.
먼저 본 발명에서는 선택된 용매 하에서 폴리이미드와 제올라이트의 비율을 중량비로 7:3으로 고정시킨 뒤, 제올라이트 13X의 경우 TAP을 제올라이트 중량의1/2, 제올라이트 NaY의 경우 2/3, 제올라이트 5A의 경우 5/6로 각각 첨가시켜 용액을 제조하고 이를 평판박막 등의 분리막 형태로 성형시킨 다음 20-150℃, 특히 80-100℃의 온도에서 용매를 증발시키면 계면 공극이 없는 막을 제조할 수 있다. 따라서 본 발명에 사용되는 TAP의 양은 제올라이트 종류에 따라 위에서 언급한 농도 이상으로 사용하는 것이 바람직하다.First, in the present invention, the ratio of polyimide and zeolite under a selected solvent is fixed at 7: 3 by weight ratio, and then, for zeolite 13X, TAP is 1/2 of zeolite weight, 2/3 for zeolite NaY, and 5 for zeolite 5A. The solution is prepared by adding / 6, and forming the solution in the form of a separator such as a flat film, and then evaporating the solvent at a temperature of 20-150 ° C., particularly 80-100 ° C., to prepare a membrane free of interfacial pores. Therefore, the amount of TAP used in the present invention is preferably used above the concentrations mentioned above depending on the type of zeolite.
이하, 실시예를 통하여 본 발명의 방법 및 효과를 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the method and effect of the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
실시예 1 내지 3Examples 1 to 3
폴리이미드와 제올라이트 13X를 7:3 중량비로 디메틸설폭사이드(dimethyl sulfoxide, Junsei Chemical Co., Ltd.)에 녹여 20 중량%의 혼합용액을 만든다.Polyimide and zeolite 13X are dissolved in dimethyl sulfoxide (Junsei Chemical Co., Ltd.) in a 7: 3 weight ratio to make a 20% by weight mixed solution.
이때 먼저 폴리이미드를 완전히 녹인 후, 여기에 제올라이트를 넣어 균일하게 분산될 때까지 하루 이상 교반시켰다.At this time, the polyimide was completely dissolved, and then zeolite was added thereto and stirred for at least one day until uniformly dispersed.
이와같이 만들어진 혼합용액에 제올라이트의 중량 기준으로 33-34 중량%의 TAP을 첨가하여 완전히 녹을 때까지 교반시켜서 또다른 혼합용액을 만든 다음 이를 캐스팅 나이프를 이용하여 유리판 위에 150μm 두께로 캐스팅 하였다.The mixed solution thus prepared was added with 33-34% by weight of TAP based on the weight of the zeolite and stirred until it was completely dissolved to form another mixed solution, which was cast to a thickness of 150 μm on a glass plate using a casting knife.
그런 다음 유리판 위에 용액이 캐스팅 된 상태로 80℃에서 12시간, 100℃에서 6시간 건조하여 용매를 증발시킨 뒤, 유리판에서 떼어내어 100℃ 진공 하에서 3일간 건조하여 잔여 용매를 제거하여 분리막을 제조하였다.Then, the solution was cast on a glass plate and dried at 80 ° C. for 12 hours and at 100 ° C. for 6 hours to evaporate the solvent, and then separated from the glass plate and dried for 3 days under vacuum at 100 ° C. to remove residual solvent to prepare a separator. .
여기서, 상기와 같은 본 발명의 일 실시예에 의해 제조된 분리막의 기체에 대한 투과도는 저압 일정 부피법(low-pressure constant-volume method)을 이용하여 측정하였다.Here, the permeability to the gas of the separator prepared according to an embodiment of the present invention as described above was measured using a low-pressure constant-volume method.
즉, 스테인레스 스틸로 제작한 상하의 두 부분으로 이루어진 분리막 고정기에 평판형 분리막을 고정시키고, 35℃ 항온으로 유지하면서 진공펌프를 이용하여 분리막의 상단부 및 하단부의 압력을 0.014 mmHg 이하로 배기(evacuation)하여 잔존 기체를 모두 제거하였다.That is, the plate-type membrane is fixed to the membrane holder consisting of two parts of stainless steel, and the upper and lower pressures of the membrane are evacuated to 0.014 mmHg or less using a vacuum pump while maintaining the temperature at 35 ° C. All remaining gas was removed.
이후 진공 펌프를 차단하고, 분리막의 상단부에 측정하고자 하는 기체를 게이지(gauge)압으로 760 mmHg 주입하였다.Then, the vacuum pump was shut off, and the gas to be measured at the upper end of the separator was injected with a gauge pressure of 760 mmHg.
분리막을 투과한 기체는 분리막 하단부에 연결된 기체 포집기에 모이게 되며, 이에 따라 기체 포집기 내의 압력이 상승하게 된다.Gas passing through the membrane is collected in the gas collector connected to the lower end of the membrane, thereby increasing the pressure in the gas collector.
이와같은 기체 포집기 내의 압력 증가를 압력 변환기(pressure transducer)를 이용하여 측정하고, 시간에 대한 기체 포집기 내의 압력 증가 속도가 일정한 시간대에서 시간에 대한 압력 증가 속도의 기울기로부터 기체 투과도를 측정하였다.This pressure increase in the gas collector was measured using a pressure transducer, and the gas permeability was measured from the slope of the pressure increase rate with respect to time at a time when the rate of pressure increase in the gas collector with respect to time is constant.
투과도를 측정한 기체는 CO2, O2, N2이며, 측정된 기체 투과도는 P(X)로 표시하고, 단위는 배러(Barrer)로 하여 아래 표1에 나타내었다 (1 Barrer = 10-10cm3(STP)·cm/cm2·sec·cmHg).Gases measured permeability are CO 2 , O 2 , N 2 , and measured gas permeability is expressed as P (X), and the unit is indicated as Barrer in Table 1 below (1 Barrer = 10 -10). cm 3 (STP) cm / cm 2 sec cmHg).
비교예 1 내지 2Comparative Examples 1 and 2
상기 실시예 1에 의해 제조된 분리막의 투과 성능을 비교하기 위해 순수한 폴리이미드 분리막의 투과도(미합중국 특허 제5015270호)와 TAP을 첨가하지 않고 상기 실시예 1과 동일한 방법으로 제조한 폴리이미드/제올라이트 (7:3 중량비) 분리막의 투과도를 표2에 나타내었다.In order to compare the permeation performance of the separator prepared in Example 1, the polyimide / zeolite prepared in the same manner as in Example 1 without adding the permeability (US Patent No. 5015270) and TAP of pure polyimide membrane ( 7: 3 weight ratio) The permeability of the separator is shown in Table 2.
실시예 4 내지 6Examples 4-6
폴리이미드와 제올라이트 5A 및 TAP을 7:3:2.5∼2.6 중량비로 디메틸설폭사이드에 녹여, 상기 실시예 1과 동일한 방법으로 용액을 제조하고 이로부터 분리막을 제조하여 기체 투과도를 측정하여 그 결과를 표3에 나타내었다.The polyimide, zeolite 5A and TAP were dissolved in dimethyl sulfoxide in a 7: 3: 2.5 to 2.6 weight ratio, a solution was prepared in the same manner as in Example 1, a membrane was prepared therefrom, and the gas permeability was measured. 3 is shown.
실시예 7 내지 9Examples 7-9
제올라이트 NaY의 경우 먼저 폴리이미드와 TAP을 1:0.29∼0.30 무게비로 하여 디메틸설폭사이드에 넣어 완전히 녹인 후, 제올라이트를 넣어 균일한 혼합용액을 만든다. 이때 폴리이미드와 제올라이트 NaY는 중량비로 7:3이며, TAP을 제외한상태에서 폴리이미드와 제올라이트는 20 중량%의 혼합용액이 된다. 만들어진 혼합용액을 가지고 실시예 1과 동일한 방법으로 분리막을 제조하여 기체 투과도를 측정하였으며 그 결과를 표 4에 나타내었다.In the case of zeolite NaY, polyimide and TAP are first dissolved in dimethyl sulfoxide at a weight ratio of 1: 0.29 to 0.30, and then dissolved in zeolite to make a uniform mixed solution. At this time, the polyimide and zeolite NaY are 7: 3 by weight, and in the state excluding TAP, the polyimide and zeolite are a mixed solution of 20% by weight. The separation membrane was prepared in the same manner as in Example 1 using the prepared mixed solution, and the gas permeability was measured. The results are shown in Table 4.
실시예 10Example 10
폴리이미드와 제올라이트 13X 및 TAP을 7:3:1.47 중량비로 디메틸설폭사이드에 녹여, 상기 실시예 1과 동일한 방법으로 용액을 제조하고 이로부터 분리막을 제조하여 여러 기체에 대한 투과도를 측정하여 그 결과를 표5에 나타내었다.Polyimide, zeolite 13X and TAP were dissolved in dimethyl sulfoxide in a weight ratio of 7: 3: 1.47, a solution was prepared in the same manner as in Example 1, a membrane was prepared therefrom, and the permeability of various gases was measured. Table 5 shows.
본 발명에 따라 제올라이트를 유리질 고분자에 도입할 경우 상용화제인 TAP을 사용하면, 고분자와 제올라이트 사이에서 효과적인 수소결합을 통해 계면 공극이 없고 He, H2, CO2, O2, N2등의 기체로 이루어진 이성분 또는 다성분계 기체혼합물 분리시 높은 투과선택도를 가진 분리막을 제조할 수 있다.Using the commercially available agent TAP When introducing the zeolite in the glassy polymer in accordance with the present invention, there is no interfacial gap through effective hydrogen bonding between the polymer and the zeolite with a gas, such as He, H 2, CO 2, O 2, N 2 When the two-component or multi-component gas mixture is made of separation membrane having a high permeability can be prepared.
본 발명에 의해 제조된 막은 제올라이트를 첨가하지 않은 폴리이미드 분리막이나 폴리이미드와 제올라이트만으로 제조된 분리막에 비해 훨씬 높은 선택도를 나타내는 장점이 있다. 또한 막을 제조하는 방법이 간단하며, 압출이 아닌 용액 캐스팅 방법을 사용하기 때문에 코팅을 이용한 복합막(composite membrane) 제조까지 응용할 수 있다.The membrane prepared by the present invention has an advantage of exhibiting a much higher selectivity than a polyimide membrane not added with zeolite or a membrane made of only polyimide and zeolite. In addition, the method of preparing the membrane is simple, and since the solution casting method is used instead of extrusion, it is possible to apply to the production of a composite membrane using a coating.
또한 본 발명은 단순히 폴리이미드 뿐만 아니라 수소결합이 가능한 모든 고분자에 응용이 가능하기 때문에, 여러 혼합 기체들로부터 CO2나 O2등을 분리해 내는 데 크게 응용될 수 있는 것으로 본 발명에 의해 제조된 분리막을 이용하여 연소 배기가스로부터 이산화탄소를 분리회수 하기 위한 분리막공정을 도입할 경우 분리막의 선택투과성이 매우 높아 여타한 분리공정에 비하여 경제성이 매우 우수한 등 매우 획기적인 발명이다.In addition, since the present invention is applicable to all polymers capable of hydrogen bonding as well as polyimide, the present invention can be greatly applied to separate CO 2 or O 2 from various gas mixtures. In the case of introducing a membrane process for separating and recovering carbon dioxide from combustion exhaust gas by using a membrane, the membrane has a very high permeability, and is very innovative compared to other separation processes.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000035935A KR20020003424A (en) | 2000-06-28 | 2000-06-28 | Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000035935A KR20020003424A (en) | 2000-06-28 | 2000-06-28 | Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020003424A true KR20020003424A (en) | 2002-01-12 |
Family
ID=19674400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000035935A KR20020003424A (en) | 2000-06-28 | 2000-06-28 | Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020003424A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110869107A (en) * | 2017-07-07 | 2020-03-06 | 沙特阿拉伯石油公司 | Multilayer aramid thin film composite membrane for separating gas mixtures |
US12116326B2 (en) | 2021-11-22 | 2024-10-15 | Saudi Arabian Oil Company | Conversion of hydrogen sulfide and carbon dioxide into hydrocarbons using non-thermal plasma and a catalyst |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000042386A (en) * | 1998-07-27 | 2000-02-15 | Mitsui Eng & Shipbuild Co Ltd | Separation membrane for mixture |
-
2000
- 2000-06-28 KR KR1020000035935A patent/KR20020003424A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000042386A (en) * | 1998-07-27 | 2000-02-15 | Mitsui Eng & Shipbuild Co Ltd | Separation membrane for mixture |
Non-Patent Citations (2)
Title |
---|
논문(J. Phys. Chem. 1996, 100, 3753-3758) * |
논문(고려대학교 대학원; 화학공학과, 1999.08, pp10, 12, 14, 20) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110869107A (en) * | 2017-07-07 | 2020-03-06 | 沙特阿拉伯石油公司 | Multilayer aramid thin film composite membrane for separating gas mixtures |
CN110869107B (en) * | 2017-07-07 | 2022-05-13 | 沙特阿拉伯石油公司 | Multilayer aramid thin film composite membrane for separating gas mixtures |
US11724230B2 (en) | 2017-07-07 | 2023-08-15 | Saudi Arabian Oil Company | Multilayer aromatic polyamide thin-film composite membranes for separation of gas mixtures |
US12116326B2 (en) | 2021-11-22 | 2024-10-15 | Saudi Arabian Oil Company | Conversion of hydrogen sulfide and carbon dioxide into hydrocarbons using non-thermal plasma and a catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ying et al. | Ultrathin covalent organic framework membranes via a multi‐interfacial engineering strategy for gas separation | |
US7410525B1 (en) | Mixed matrix membranes incorporating microporous polymers as fillers | |
US7806962B2 (en) | Cross-linkable and cross-linked mixed matrix membranes and methods of making the same | |
CA2918287C (en) | Membrane separation of olefin and paraffin mixtures | |
AU2008358898B2 (en) | Mixed matrix membranes incorporating microporous polymers as fillers | |
US7810652B2 (en) | Method to improve the selectivity of polybenzoxazole membranes | |
Koros | Gas separation membranes: needs for combined materials science and processing approaches | |
US8561812B2 (en) | Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups | |
US20090149313A1 (en) | Mixed Matrix Membranes Containing Low Acidity Nano-Sized SAPO-34 Molecular Sieves | |
US6878409B2 (en) | Method for producing silver salt-containing facilitated transport membrane for olefin separation having improved stability | |
US20090277837A1 (en) | Fluoropolymer Coated Membranes | |
US8915379B2 (en) | Method to improve the selectivity of polybenzoxazole membranes | |
KR20170010898A (en) | Modificaton of zeolitic imidazolate frameworks and azide cross-linked mixed-matrix membranes made therefrom | |
US20090120875A1 (en) | High Performance Mixed Matrix Membranes Incorporating at Least Two Kinds of Molecular Sieves | |
US20100133187A1 (en) | Polybenzoxazole Polymer-Based Mixed Matrix Membranes | |
WO2009158157A2 (en) | Mixed matrix membranes containing ion-exchanged molecular sieves | |
US20100133171A1 (en) | Polybenzoxazole Polymer-Based Mixed Matrix Membranes | |
US20110072973A1 (en) | Polybenzoxazole membranes | |
US8459469B2 (en) | Polybenzoxazole membranes prepared from aromatic polyamide membranes | |
Fauzan et al. | Various techniques for preparation of thin‐film composite mixed‐matrix membranes for CO2 separation | |
JP7337629B2 (en) | Separation membrane and membrane separation method | |
US9266058B1 (en) | High selectivity polyimide membrane for natural gas upgrading and hydrogen purification | |
EP4129456A1 (en) | Separation film | |
US8641807B2 (en) | Hollow-fiber membrane casting solution additive for rapid solvent removal | |
KR20020003424A (en) | Zeolite-filed glassy polymer membranes with 2,4,6-triaminopyrimidine and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |