KR20010103980A - Manufacturing method for lithium secondary cell - Google Patents

Manufacturing method for lithium secondary cell Download PDF

Info

Publication number
KR20010103980A
KR20010103980A KR1020000025329A KR20000025329A KR20010103980A KR 20010103980 A KR20010103980 A KR 20010103980A KR 1020000025329 A KR1020000025329 A KR 1020000025329A KR 20000025329 A KR20000025329 A KR 20000025329A KR 20010103980 A KR20010103980 A KR 20010103980A
Authority
KR
South Korea
Prior art keywords
precursor
lithium secondary
secondary battery
manufacturing
plasticizer
Prior art date
Application number
KR1020000025329A
Other languages
Korean (ko)
Other versions
KR100362283B1 (en
Inventor
노형곤
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1020000025329A priority Critical patent/KR100362283B1/en
Priority to JP2001136494A priority patent/JP4629902B2/en
Priority to US09/852,843 priority patent/US6610109B2/en
Publication of KR20010103980A publication Critical patent/KR20010103980A/en
Application granted granted Critical
Publication of KR100362283B1 publication Critical patent/KR100362283B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

본 발명은 리튬 2차 전지의 제조방법에 관한 것으로서, (a) 전극 활물질, 고분자 바인더, 도전제 및 캐스팅 용매를 포함하며, 가소제를 포함하지 않는 전극 조성물을 집전체에 도포하여 애노드 전구체 및 캐소드 전구체를 제조하는 단계; (b) 전해액에 의해 겔화되지 않는 다공성 폴리머 필름의 양면에 비닐리덴플루오라이드(VdF)/헥사플루오로프로필렌(HFP) 공중합체, 가소제, 무기 충진제 및 코팅 용매를 포함하는 슬러리를 코팅하여 세퍼레이터 전구체를 제조하는 단계; (c) 상기 전극 전구체 및 세퍼레이터 전구체를 라미네이팅하여 전지 전구체를 제조하는 단계; 및(d) 상기 전지 전구체에 전해액을 주입하여 활성화시키는 단계를 포함하는 것을 특징으로 하는 리튬 2차 전지의 제조방법을 제공한다. 본 발명에 따른 리튬 2차 전지의 제조방법은 유기 용매에 의한 가소제 추출 공정없이도 리튬 2차 전지의 제조가 가능하므로 추출 공정에 따른 환경오염문제를 예방할 수 있으며, 전지의 제조 단가를 낮출 수 있는 장점이 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a lithium secondary battery, comprising: (a) an anode precursor and a cathode precursor by applying an electrode composition including an electrode active material, a polymer binder, a conductive agent and a casting solvent, and containing no plasticizer to a current collector; Preparing a; (b) coating a separator precursor by coating a slurry containing a vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, a plasticizer, an inorganic filler and a coating solvent on both sides of the porous polymer film which is not gelled by the electrolyte solution. Manufacturing; (c) laminating the electrode precursor and the separator precursor to prepare a battery precursor; And (d) injecting an electrolyte solution into the battery precursor to activate the lithium secondary battery. The method of manufacturing a lithium secondary battery according to the present invention enables the production of a lithium secondary battery without a plasticizer extraction process by an organic solvent, thereby preventing environmental pollution problems due to the extraction process, and lowering the manufacturing cost of the battery. There is this.

Description

리튬 2차 전지의 제조방법{Manufacturing method for lithium secondary cell}Manufacturing method for lithium secondary battery {Manufacturing method for lithium secondary cell}

본 발명은 리튬 2차 전지의 제조방법에 관한 것으로서, 상세하게는 리튬 2차 전지를 유기 용매에 의한 가소제 추출공정없이 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing a lithium secondary battery, and more particularly, to a method for producing a lithium secondary battery without a plasticizer extraction step by an organic solvent.

일반적으로 비수계 리튬 2차 전지는 애노드, 하나 이상의 유기용매에 용해된 리튬염으로부터 제조된 리튬 전해질 및 일반적으로 전이금속의 칼코제나이드(chalcogenide)인 전기화학적 활물질의 캐소드를 포함한다. 방전되는 동안에 애노드로부터 나온 리튬이온은 전기 에너지를 방출함과 동시에 리튬이온을 흡수하는 캐소드의 전기화학적 활물질로 액체 전해질을 통해 이동한다. 충전되는 동안에는 이온의 흐름이 역전되어 리튬이온은 전기화학적 캐소드 활물질로부터 나와 전해질을 통해 리튬 애노드내로 되돌아가 도금된다. 비수계 리튬 2차 전지는 미국 특허 제 4,472,487호, 제 4,668,595호, 제 5,028,500호, 제 5,441,830호, 제 5,460,904호 및 제 5,540,741호에 개시되어 있다.Non-aqueous lithium secondary batteries generally comprise an anode, a lithium electrolyte prepared from a lithium salt dissolved in one or more organic solvents, and a cathode of an electrochemically active material, which is typically a chalcogenide of a transition metal. During discharge, lithium ions from the anode travel through the liquid electrolyte to the electrochemically active material of the cathode that absorbs lithium ions while releasing electrical energy. During charging, the flow of ions is reversed so that lithium ions exit the electrochemical cathode active material and are plated back into the lithium anode through the electrolyte. Non-aqueous lithium secondary batteries are disclosed in US Pat. Nos. 4,472,487, 4,668,595, 5,028,500, 5,441,830, 5,460,904, and 5,540,741.

덴드라이트 및 스폰지 리튬 성장의 문제를 해결하기 위해 리튬 금속 애노드를 리튬이온이 삽입(intercalation)되어 LixC6가 형성되는 코크스 또는 흑연과 같은 카본 애노드로 대체되었다. 이러한 전지가 작동하는 경우에는 리튬 금속 애노드를 가진 전지에서와 같이 리튬은 카본 애노드로부터 나와 전해질을 통해 리튬이 흡수되는 캐소드로 이동한다. 재충전되는 동안에는 리튬은 애노드로 되돌아와서 카본 내로 다시 삽입된다. 전지 내에 리튬 금속이 존재하지 않기 때문에, 가혹한 조건에서 조차도 애노드가 녹는 일은 없다. 또한, 리튬이 도금되는 것이 아니라 삽입에 의해 애노드 내로 재통합되기 때문에 덴드라이트 및 스폰지 리튬 성장은 일어나지 않는다.To address the problem of dendrite and sponge lithium growth, lithium metal anodes were replaced with carbon anodes such as coke or graphite in which lithium ions were intercalated to form Li x C 6 . When such a cell is operating, lithium moves out of the carbon anode, as in a cell with a lithium metal anode, to the cathode where lithium is absorbed through the electrolyte. During recharging, lithium returns to the anode and is inserted back into the carbon. Since there is no lithium metal present in the cell, the anode does not melt even under severe conditions. In addition, no dendrite and sponge lithium growth occurs because lithium is not plated but is reintegrated into the anode by insertion.

최근에, 세퍼레이터로 다공성 폴리머 매트릭스로 사용하는 리튬 2차 전지가 등장하였는데, 다공성 폴리머 매트릭스의 사용에 의해 전도성이 향상될 수 있다는 것은 입증되었다. 이러한 다공성 폴리머 매트릭스의 제조방법 중 하나는 디부틸 프탈레이트와 같은 가소제를 함유하는 폴리머 구조체를 제조하고, 가소제를 제거하여 폴리머 내에 공극을 형성하는 단계를 포함한다. 가소제는 제거되기 전에 리튬 2차 전지에 약 50중량이하로 포함될 수 있다. 이러한 용매를 제거하는 현재의 방법은 디메틸에테르, 메탄올 및 싸이클로헥산과 같은 다른 유기 액체 용매를 이용한 추출이다. 일반적으로, 리튬 2차 전지의 조립에 있어서, 전해질 용매와 염을 포함하는 전해액은 가소제를 제거한 후에 리튬 2차 전지 전구체를 활성화하기 위해 부가된다.Recently, lithium secondary batteries have emerged that use a porous polymer matrix as a separator, and it has been demonstrated that conductivity can be improved by using a porous polymer matrix. One method of making such a porous polymer matrix includes preparing a polymer structure containing a plasticizer, such as dibutyl phthalate, and removing the plasticizer to form voids in the polymer. The plasticizer may be included in the lithium secondary battery at less than about 50 weights before it is removed. Current methods of removing such solvents are extraction with other organic liquid solvents such as dimethylether, methanol and cyclohexane. In general, in the assembly of a lithium secondary battery, an electrolyte solution containing an electrolyte solvent and a salt is added to activate the lithium secondary battery precursor after removing the plasticizer.

상술한 바와 같이 가소제를 사용하여 제조된 리튬 2차 전지는 전기화학적 작동능력이 우수할지라도, 가소제 추출에 사용되는 용매는 해로운 유기용매이어서 환경문제를 유발하는 문제가 있다. 또한, 추출단계를 거침으로서 제조 공정 시간에 길어지고 생산 수율이 저하되어 리튬 2차 전지의 제조원가를 상승시키는 문제가 있다. 본 발명이 속하는 기술분야에서는 더욱 경제적이고, 안정한 리튬 2차 전지의 제조방법, 특히 가소제 추출공정없이 제조하는 방법에 대한 연구가 진행되고 있다.As described above, although the lithium secondary battery manufactured using the plasticizer has excellent electrochemical operation ability, the solvent used for extracting the plasticizer is a harmful organic solvent, which causes a problem of environmental problems. In addition, there is a problem of increasing the manufacturing cost of the lithium secondary battery by lengthening the production process time and decreasing the production yield by going through the extraction step. In the technical field to which the present invention pertains, studies have been made on a method for producing a more economical and stable lithium secondary battery, in particular, without a plasticizer extraction process.

따라서, 본 발명이 이루고자하는 기술적 과제는 유기용매에 의한 가소제 추출공정 없는 리튬 2차 전지의 제조방법을 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to provide a method for producing a lithium secondary battery without a plasticizer extraction step by an organic solvent.

상기 기술적 과제를 달성하기 위하여, 본 발명은,In order to achieve the above technical problem, the present invention,

(a) 전극 활물질, 고분자 바인더, 도전제 및 캐스팅 용매를 포함하며, 가소제를 포함하지 않는 전극 조성물을 집전체에 도포하여 애노드 전구체 및 캐소드 전구체를 제조하는 단계;(a) preparing an anode precursor and a cathode precursor by applying an electrode composition including an electrode active material, a polymer binder, a conductive agent, and a casting solvent, and not including a plasticizer, to a current collector;

(b) 전해액에 의해 겔화되지 않는 다공성 폴리머 필름의 양면에 비닐리덴플루오라이드(VdF)/헥사플루오로프로필렌(HFP) 공중합체, 가소제, 무기 충진제 및 코팅 용매를 포함하는 슬러리를 코팅하여 세퍼레이터 전구체를 제조하는 단계;(b) coating a separator precursor by coating a slurry containing a vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, a plasticizer, an inorganic filler and a coating solvent on both sides of the porous polymer film which is not gelled by the electrolyte solution. Manufacturing;

(c) 상기 전극 전구체 및 세퍼레이터 전구체를 라미네이팅하여 전지 전구체를 제조하는 단계; 및(c) laminating the electrode precursor and the separator precursor to prepare a battery precursor; And

(d) 상기 전지 전구체에 전해액을 주입하여 활성화시키는 단계를 포함하는것을 특징으로 하는 리튬 2차 전지의 제조방법을 제공한다.(d) providing a method of manufacturing a lithium secondary battery, comprising the step of activating by injecting an electrolyte solution into the battery precursor.

본 발명에 따른 리튬 2차 전지의 제조방법에 있어서, 상기 전지 전구체는 캐소드 전구체, 세퍼레이터 전구체, 애노드 전구체, 세퍼레이터 전구체 및 캐소드 전구체가 순차적으로 적층되어 바이셀 구조인 것이 바람직하다.In the method of manufacturing a lithium secondary battery according to the present invention, it is preferable that the battery precursor has a bicell structure in which a cathode precursor, a separator precursor, an anode precursor, a separator precursor, and a cathode precursor are sequentially stacked.

본 발명에 따른 리튬 2차 전지의 제조방법에 있어서, 상기 전극 조성물은 메탄올, 에탄올, 이소프로판올 및 이들의 혼합물로 이루어진 군에서 선택되는 알콜류 용매를 더 포함하는 것이 바람직하다.In the method of manufacturing a lithium secondary battery according to the present invention, it is preferable that the electrode composition further comprises an alcohol solvent selected from the group consisting of methanol, ethanol, isopropanol and mixtures thereof.

본 발명에 따른 리튬 2차 전지의 제조방법에 있어서, 상기 전해액에 의해 겔화되지 않는 다공성 폴리머 필름이 다공성 폴리에틸렌 필름 또는 다공성 폴리프로필렌 필름이 양면에 적층된 다공성 폴리에틸렌 필름인 것이 바람직하다.In the method of manufacturing a lithium secondary battery according to the present invention, it is preferable that the porous polymer film not gelled by the electrolyte solution is a porous polyethylene film in which a porous polyethylene film or a porous polypropylene film is laminated on both sides.

본 발명에 따른 리튬 2차 전지의 제조방법에 있어서, 상기 가소제는 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에톡시에탄, 디부틸 프탈레이트, 디메톡시에탄, 디에틸 카보네이트, 디프로필 카보네이트 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하다.In the method of manufacturing a lithium secondary battery according to the present invention, the plasticizer is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethoxyethane, dibutyl phthalate, dimethoxyethane, diethyl carbonate, dipropyl carbonate and mixtures thereof It is preferably any one selected from the group consisting of.

본 발명에 따른 리튬 2차 전지의 제조방법에 있어서, 상기 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체의 두께는 1 내지 50㎛되도록 코팅하는 것이 바람직하다.In the method of manufacturing a lithium secondary battery according to the present invention, the vinylidene fluoride / hexafluoropropylene copolymer is preferably coated to have a thickness of 1 to 50㎛.

본 발명을 상세히 설명하기 전에 다음과 같이 용어들을 정의하기로 한다.Before describing the present invention in detail, terms will be defined as follows.

"전지 전구체"라는 용어는 활성화 되기 전의 전지를 의미하며, 일반적으로 이러한 전지 전구체는 애노드 전구체, 캐소드 전구체 및 세퍼레이터 전구체를 포함한다. 또한, "활성화"라는 용어는 전지 전구체 내로 비수계 유기용매와 상기 용매 중에 리튬 이온을 내는 리튬화합물로 이루어지는 전해액을 함침시키는 것을 의미한다. 활성화 후 전지는 사용하기 전에 외부 에너지원에 의해 충전된다.The term "cell precursor" refers to a cell prior to being activated, and generally such a cell precursor includes an anode precursor, a cathode precursor and a separator precursor. In addition, the term "activation" means impregnating a non-aqueous organic solvent and an electrolyte solution of a lithium compound that emits lithium ions in the solvent into the battery precursor. After activation, the battery is charged by an external energy source before use.

"단위 전지"라는 용어는 일반적으로 애노드, 캐소드 및 이것들 사이에 위치하며 비수계 유기용매와 상기 용매 중에 리튬이온을 내는 리튬화합물로 이루어지는 전해액을 포함하는 세퍼레이터를 함유하는 복합체를 의미하며, 이러한 복합체의 구조가 캐소드, 세퍼레이터, 애노드, 세페레이터 및 캐소드 순으로 위치하는 구조를 "바이셀 구조"라 한다. 또한, "전지"라는 용어는 요구되는 작동전압 및 전류 수준을 제공하도록 적절하게 직렬/병렬로 연결된 두 개 이상의 단위 전지를 의미한다.The term "unit cell" generally refers to a composite containing an anode, a cathode, and a separator, which contains a nonaqueous organic solvent and an electrolyte comprising a lithium compound which produces lithium ions in the solvent, the composite comprising A structure in which the structure is located in the order of cathode, separator, anode, separator, and cathode is called "bicell structure". The term "cell" also refers to two or more unit cells that are suitably connected in series / parallel to provide the required operating voltage and current levels.

이하, 본 발명에 따른 리튬 단위 2차 전지의 제조방법을 상세하게 살펴보기로 한다.Hereinafter, a method of manufacturing a lithium unit secondary battery according to the present invention will be described in detail.

일반적으로, 리튬 2차 전지의 제조방법은 애노드 전구체의 제조단계, 캐소드 전구체의 제조단계, 세퍼레이터 전구체의 제조단계, 전지 전구체의 제조단계 및 활성화 단계로 나눌 수 있는데, 이에 따라 설명하겠다.In general, a method of manufacturing a lithium secondary battery may be divided into an anode precursor manufacturing step, a cathode precursor manufacturing step, a separator precursor manufacturing step, a battery precursor manufacturing step, and an activation step, which will be described accordingly.

1. 애노드 전구체의 제조1. Preparation of Anode Precursor

애노드 전구체는, 캐스팅 용매에 고분자 바인더를 용해시키고, 이와 별도로 애노드 활물질과 도전제를 건식 혼합하여 얻은 혼합물에 상기의 용액을 가하고 균일하게 혼합하여 애노드 조성물을 제조하고, 이를 애노드 집전체 상에 캐스팅한 다음 건조시킴으로써 형성된다.The anode precursor is prepared by dissolving the polymer binder in a casting solvent, separately adding the above solution to a mixture obtained by dry mixing the anode active material and the conductive agent, and uniformly mixing to prepare an anode composition, which is cast on an anode current collector. It is then formed by drying.

또한, 상기 애노드 조성물은 메탄올, 에탄올, 이소프로판올 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 알콜류 용매를 더 포함할 수 있다. 여기에서 알콜류 용매는 상기 고분자 바인더에 대해서는 불용성이지만, 캐스팅 용매와는 혼합되는 물질로서, 후속의 건조공정중 제거되어 애노드 전구체에 기공을 형성하는 역할을 한다.In addition, the anode composition may further include any one alcohol solvent selected from the group consisting of methanol, ethanol, isopropanol and mixtures thereof. Here, the alcohol solvent is insoluble in the polymer binder, but is mixed with the casting solvent, and is removed during the subsequent drying process to form pores in the anode precursor.

상기 알콜류 용매와 캐스팅 용매의 혼합부피비는 1:3인 것이 바람직하다. 만약 알콜류 용매에 대한 캐스팅 용매의 혼합부피비가 상기 범위를 초과하는 경우에는 최종적으로 얻어진 애노드 전구체내의 기공률 특성이 불량하고, 캐스팅 용매의 혼합부피비가 상기 범위 미만인 경우에는 균일한 조성을 갖는 애노드 조성물을 얻는 것이 곤란하여 이 조성물을 집전체상에 균일하게 캐스팅하는 것 자체가 어렵게 되므로 바람직하지 못하다.The mixing volume ratio of the alcohol solvent and the casting solvent is preferably 1: 3. If the mixing volume ratio of the casting solvent to the alcohol solvent exceeds the above range, the porosity characteristic in the finally obtained anode precursor is poor, and if the mixing volume ratio of the casting solvent is less than the above range, obtaining an anode composition having a uniform composition is obtained. It is not preferable because it is difficult to uniformly cast this composition onto the current collector itself.

상기 애노드 활물질, 도전제, 고분자 바인더 및 캐스팅 용매는 본 발명이 속하는 기술분야에서 그 용도로 통상적으로 사용되는 물질을 사용할 수 있다. 예를 들어 애노드 활물질로는 카본, 그래파이트 등을 사용할 수 있다. 또한, 도전제로는 카본블랙 등이 사용되고, 고분자 바인더로는 폴리비닐알콜, 메틸 셀룰로오즈, 카르복시메틸 셀룰로오즈, 폴리에틸렌글리콜 및 폴리비닐리덴플루오라이드 등과 같은 불소계 폴리머중에서 선택된 하나 이상이 사용되며, 캐스팅 용매로는 N-메틸-2-피롤리돈, 아세톤 또는 그 혼합물을 사용할 수 있다.As the anode active material, the conductive agent, the polymer binder, and the casting solvent, a material commonly used for the purpose in the art to which the present invention pertains may be used. For example, carbon, graphite, or the like can be used as the anode active material. In addition, carbon black is used as the conductive agent, and at least one selected from fluorine-based polymers such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, polyethylene glycol and polyvinylidene fluoride is used as the polymer binder. N-methyl-2-pyrrolidone, acetone or mixtures thereof can be used.

또한, 애노드 집전체로는 구리로 이루어진 익스팬디드(expanded) 메탈, 펀치드(punched) 메탈, 호일이 사용된다.As the anode current collector, an expanded metal, a punched metal, and a foil made of copper is used.

2. 캐소드 전구체의 제조2. Preparation of Cathode Precursor

캐소드 전구체는, 캐스팅 용매에 고분자 바인더를 용해시키고, 이와 별도로 캐소드 활물질과 도전제를 건식 혼합하여 얻은 혼합물에 상기의 용액을 가하고 균일하게 혼합하여 캐소드 조성물을 제조하고, 이를 캐소드 집전체 상에 캐스팅한 다음 건조시킴으로써 형성된다.The cathode precursor is prepared by dissolving a polymer binder in a casting solvent, separately adding the above solution to a mixture obtained by dry mixing a cathode active material and a conductive agent, and uniformly mixing to prepare a cathode composition, which is cast on a cathode current collector. It is then formed by drying.

또한, 상기 캐소드 조성물은 메탄올, 에탄올, 이소프로판올 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 알콜류 용매를 더 포함할 수 있다. 여기에서 알콜류 용매는 상기 고분자 바인더에 대해서는 거의 불용성이지만, 캐스팅 용매와는 혼합되는 물질로서, 후속의 건조공정중 제거되어 캐소드 전구체에 기공을 형성을 형성하는 역할을 한다.In addition, the cathode composition may further include any one alcohol solvent selected from the group consisting of methanol, ethanol, isopropanol and mixtures thereof. Herein, the alcohol solvent is almost insoluble in the polymer binder, but is mixed with the casting solvent, and is removed during the subsequent drying process to form pores in the cathode precursor.

상기 알콜류 용매와 캐스팅 용매의 혼합부피비는 1:3인 것이 바람직하다. 만약 알콜류 용매에 대한 캐스팅 용매의 혼합부피비가 상기 범위를 초과하는 경우에는 최종적으로 얻어진 캐소드 전구체내의 기공률 특성이 불량하고, 캐스팅 용매의 혼합부피비가 상기 범위 미만인 경우에는 균일한 조성을 갖는 캐소드 조성물을 얻는 것이 곤란하여 이 조성물을 집전체상에 균일하게 캐스팅하는 것 자체가 어렵게 되므로 바람직하지 못하다.The mixing volume ratio of the alcohol solvent and the casting solvent is preferably 1: 3. If the mixing volume ratio of the casting solvent to the alcohol solvent exceeds the above range, the porosity characteristic in the finally obtained cathode precursor is poor, and if the mixing volume ratio of the casting solvent is less than the above range, obtaining a cathode composition having a uniform composition is obtained. It is not preferable because it is difficult to uniformly cast this composition onto the current collector itself.

상기 캐소드 활물질, 도전제, 고분자 바인더 및 캐스팅 용매는 본 발명이 속하는 기술분야에서 그 용도로 통상적으로 사용되는 물질을 사용할 수 있다. 예를 들어 양극 활물질로는, LiMn2O4, LiNiO2, LiCoO2등을 사용할 수 있고, 도전제로는 카본블랙 등이 사용되고, 고분자 바인더로는 폴리비닐알콜, 메틸 셀룰로오즈, 카르복시메틸 셀룰로오즈, 폴리에틸렌글리콜 및 폴리비닐리덴플루오라이드 등과 같은 불소계 폴리머중에서 선택된 하나 이상이 사용되며, 캐스팅 용매로는 캐스팅 용매로는 N-메틸-2-피롤리돈, 아세톤 또는 그 혼합물을 사용할 수 있다.The cathode active material, the conductive agent, the polymer binder, and the casting solvent may use a material that is commonly used in the art to which the present invention pertains. For example, LiMn 2 O 4 , LiNiO 2 , LiCoO 2, etc. may be used as the positive electrode active material, carbon black or the like is used as the conductive agent, and polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, polyethylene glycol as the polymer binder. And at least one selected from fluorine-based polymers such as polyvinylidene fluoride and the like, and N-methyl-2-pyrrolidone, acetone or a mixture thereof may be used as the casting solvent.

또한, 캐소드 집전체로는 알루미늄으로 이루어진 익스팬디드(expanded) 메탈, 펀치드(punched) 메탈, 호일이 사용된다.As the cathode current collector, an expanded metal, a punched metal, and a foil made of aluminum is used.

3. 세퍼레이터 전구체의 제조3. Preparation of Separator Precursor

세퍼레이터 전구체는 전해액에 의해 겔화되지 않는 다공성 폴리머 필름의 양면에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체, 가소제, 무기충진제 및 코팅 용매를 포함하는 슬러리를 코팅한 후 상온에서 건조하여 제조된다.The separator precursor is prepared by coating a slurry including a vinylidene fluoride / hexafluoropropylene copolymer, a plasticizer, an inorganic filler, and a coating solvent on both surfaces of a porous polymer film which is not gelled by an electrolyte solution and then drying at room temperature.

상기 전해액에 의해 겔화되지 않는 다공성 폴리머 필름은 나일론, 폴리올레핀 필름 등 본 발명에 속하는 기술분야에 널리 알려져 있는 것이라면 제한없이 사용가능하나 다공성 폴리에틸렌 필름 또는 양면에 다공성 폴리프로필렌 필름이 적층된 다공성 폴리에틸렌 필름인 것이 바람직하다.The porous polymer film which is not gelled by the electrolyte may be used without limitation as long as it is well known in the art, such as nylon and polyolefin film, but is a porous polyethylene film having a porous polyethylene film or a porous polypropylene film laminated on both sides. desirable.

상기 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체의 두께가 1 내지 50㎛가 되도록 코팅하는 것이 바람직한데, 그 두께가 1㎛ 미만일 경우에는 코팅하는데 난점이 있으며, 50㎛를 초과할 경우에는 전지의 성능을 저하시키는 문제점이 있다.It is preferable to coat the vinylidene fluoride / hexafluoropropylene copolymer so that the thickness is 1 to 50 μm. When the thickness is less than 1 μm, coating is difficult, and when the thickness exceeds 50 μm, There is a problem of degrading performance.

세퍼레이터 전구체의 제조에 사용하기 위한, 가소제는 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에톡시에탄, 디부틸 프탈레이트, 디메톡시에탄, 디에틸 카보네이트, 디메톡시에탄, 디프로필 카보네이트 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것 바람직하다.Plasticizers for use in the preparation of separator precursors, the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethoxyethane, dibutyl phthalate, dimethoxyethane, diethyl carbonate, dimethoxyethane, dipropyl carbonate and mixtures thereof It is preferable that it is any one selected from.

이러한 가소제는 유기용매에 의한 추출공정없이 기공의 형성을 가능하게 해주며, 또한 전해액 성분을 가소제로 사용함으로 전해액 주입시 화학평형에 도달하여 전지 성능을 발현하게 한다.These plasticizers enable the formation of pores without the extraction process by the organic solvent, and also by using the electrolyte component as a plasticizer to reach the chemical equilibrium during the injection of the electrolyte to express the battery performance.

또한, 상기 무기 충진제 및 코팅 용매는 본 발명이 속하는 기술분야에서 그 용도로서 통상 사용되는 물질이라면 특별하게 제한되지 않으며, 예를 들어 무기 충진제로는 실리카와 알루미나 등을 사용할 수 있고, 코팅 용매로는 N-메틸-2-피롤리돈, 아세톤 또는 그 혼합물을 사용할 수 있다.In addition, the inorganic filler and the coating solvent is not particularly limited as long as it is a material commonly used in the technical field to which the present invention belongs, for example, silica and alumina may be used as the inorganic filler, and as the coating solvent N-methyl-2-pyrrolidone, acetone or mixtures thereof can be used.

4. 전지 전구체의 제조4. Preparation of Battery Precursors

전지 전구체는 앞서 제조한 세퍼레이터 전구체를 애노드 전구체와 캐소드 전구체 사이에 위치하도록 라미네이팅하거나, 캐소드 전구체, 세퍼레이터 전구체, 애노드 전구체, 세퍼레이터 전구체 및 캐소드 전구체 순으로 라미네팅한 후에 가열 또는 가압하여 제조한다. 가열 또는 가압의 방법과 조건은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 잘 알려져 있는 방법 및 조건에 따른다.The battery precursor is prepared by laminating the separator precursor prepared above to be positioned between the anode precursor and the cathode precursor, or laminating in order of the cathode precursor, the separator precursor, the anode precursor, the separator precursor, and the cathode precursor, followed by heating or pressing. Methods and conditions of heating or pressurization are in accordance with methods and conditions well known to those skilled in the art.

5. 활성화 단계5. Activation Step

활성화 단계는 단위전지 전구체에 비수계 유기용매 및 무기염을 포함하는 전해액을 전극조립체에 주입함으로써 완료된다. 이렇게 활성화된 전지는 사용하기 전에 외부 에너지원에 의해 충전된다.The activation step is completed by injecting an electrolyte solution containing a non-aqueous organic solvent and an inorganic salt into the unit cell precursor in the electrode assembly. This activated cell is charged by an external energy source before use.

본 발명에 있어서 세퍼레이터 전구체의 제조시 사용한 가소제는 액체 상태로 세퍼레이터 전구체에 분산되어 있다. 이렇게 액체 상태로 분산된 가소제는 전해액에 사용된 용매가 동종의 유기액체이므로 액체 상태로 세퍼레이터 전구체내에 분산되어 있던 가소제가 전해액과 혼합되게 됨으로써 특별한 공정없이도 전해액이 세퍼레이터 전구체 내로 함침되는 효과를 얻을 수 있는 것이다.In the present invention, the plasticizer used in the production of the separator precursor is dispersed in the separator precursor in a liquid state. Since the plasticizer dispersed in the liquid state is the same organic liquid as the solvent used in the electrolyte, the plasticizer dispersed in the separator precursor in the liquid state is mixed with the electrolyte solution, so that the electrolyte solution can be impregnated into the separator precursor without any special process. will be.

상기 전해액에 포함되는 비수계 유기용매와 무기염은 본 발명이 속하는 기술분야에서 그 용도로서 통상 사용되는 것이라면 특별한 제한을 받지 않으며, 구체적으로는 비수계 유기용매로는 프로필렌 카보네이트, 에틸렌 카보네이트, γ-부티로락톤, 1,3-디옥소란, 디메톡시에탄, 디메틸 카보네이트, 디에틸카보네이트, 테트라하이드로퓨란, 디메틸설폭사이드 및 폴리에틸렌글리콜 디메틸에테르 중에서 선택된 적어도 1종의 용매를 사용할 수 있으며, 세퍼레이터 전구체 제조시 사용되는 가소제와 동일한 것을 사용하는 것이 바람직하다. 또한, 무기염으로는 용매중에서 해리되어 리튬 이온을 내는 리튬 화합물을 사용할 수 있다. 무기염의 구체적인 예로는 과염소산 리튬(lithium perchlorate, LiClO4), 사불화붕산 리튬(lithium tetrafluoroborate, LiBF4), 육불화인산 리튬(lithium hexafluorophosphate, LiPF6), 삼불화메탄술폰산 리튬(lithium trifluoromethansulfonate, LiCF3SO3) 및 리튬 비스트리플루오로메탄술포닐아미드(lithium bistrifluoromethansulfonylamide. LiN(CF3SO2)2)가 있다.The non-aqueous organic solvent and the inorganic salt contained in the electrolyte are not particularly limited as long as they are commonly used as the use in the technical field to which the present invention belongs. At least one solvent selected from butyrolactone, 1,3-dioxolane, dimethoxyethane, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, dimethyl sulfoxide and polyethylene glycol dimethyl ether may be used, and a separator precursor may be prepared. It is preferable to use the same plasticizer used in the case. In addition, as an inorganic salt, the lithium compound which dissociates in a solvent and produces | generates lithium ion can be used. Specific examples of the inorganic salts include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium trifluoromethansulfonate (LiCF 3). SO 3 ) and lithium bistrifluoromethansulfonylamide.LiN (CF 3 SO 2 ) 2 ).

이하, 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다. 다만, 본 발명의 범위가 하기 실시예로 한정되는 것이 아님은 물론이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it is a matter of course that the scope of the present invention is not limited to the following examples.

실시예Example

아세톤(삼전화학) 600ml과 키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체)(Elf-Atochem사) 65g을 혼합하고 볼 밀로 2시간 동안 교반하여 용액을 제조한 후 상기 용액에 메조카본 파이버(MCF)(Petoca사) 415g과 슈퍼-피(MMM. Carbon사) 20g을 더 부가하고 볼 밀로 5시간 동안 교반하였다. 이 용액에 에탄올 200㎖를 부가하고 24시간 동안 교반하여 애노드 조성물을 제조하였다.600 ml of acetone (Samjeon Chemical) and 65 g of Kinar 2801 (VdF 88wt / HFP 22wt copolymer) (Elf-Atochem) were mixed and stirred for 2 hours in a ball mill to prepare a solution, followed by mesocarbon in the solution. 415 g of Fiber (MCF) (Petoca) and 20 g of Super-P (MMM.Carbon) were added and stirred with a ball mill for 5 hours. 200 mL of ethanol was added to the solution and stirred for 24 hours to prepare an anode composition.

상기 애노드 조성물을 Cu 집전체상에 코팅한 다음, 30℃에서 건조하여 다공성 애노드 전구체를 제조하였다.The anode composition was coated on a Cu current collector and then dried at 30 ° C. to prepare a porous anode precursor.

이와 별도로, 아세톤(삼전화학) 600ml과 키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체)(Elf-Atochem사) 50g을 혼합하고 볼 밀로 2시간 동안 교반하여 용액을 제조한 후 상기 용액에 LiCoO2(Nippon Chem.사) 410g과 슈퍼-피(MMM. Carbon사) 40g을 더 부가하고 볼 밀로 5시간 동안 교반하였다. 이 용액에 에탄올 200㎖를 부가하고 24시간 동안 교반하여 캐소드 조성물을 제조하였다.Separately, 600 ml of acetone (Samjeon Chemical) and 50 g of Kinar 2801 (Kdnar 2801) (VdF 88wt / HFP 22wt copolymer) (Elf-Atochem) were mixed and stirred for 2 hours to prepare a solution. 410 g of LiCoO 2 (Nippon Chem.) And 40 g of Super-P (MMM.Carbon) were further added and stirred for 5 hours with a ball mill. To this solution was added 200 ml of ethanol and stirred for 24 hours to prepare a cathode composition.

상기 캐소드 조성물을 Al 집전체상에 코팅한 다음, 30℃에서 건조하여 다공성 캐소드 전구체를 제조하였다.The cathode composition was coated on an Al current collector and then dried at 30 ° C. to prepare a porous cathode precursor.

이어서, 키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체) 6g, 디부틸 프탈레이트 (Aldrich사) 8g 및 실리카(Carbot사) 6g을 아세톤(삼전화학) 50㎖를 혼합하고 볼 밀로 6시간 동안 교반하여 슬러리를 제조한 후, 상기 슬러리를 두께 25㎛의 다공성 폴리에틸렌 필름(Cellgard사)의 양면에 코팅하고 상온에서 건조하여 세퍼레이터 전구체를 제조하였다.Subsequently, 6 g of Kynar 2801 (VdF 88 wt / HFP 22 wt copolymer), 8 g of dibutyl phthalate (Aldrich) and 6 g of silica (Carbot) were mixed with 50 ml of acetone (trielectrochemical) and ball milled for 6 hours. After stirring to prepare a slurry, the slurry was coated on both sides of a porous polyethylene film (Cellgard) having a thickness of 25 ㎛ and dried at room temperature to prepare a separator precursor.

상술한 바와 같이 제조한 애노드 전구체, 캐소드 전구체 및 세퍼레이터 전구체를 바이셀 구조로 적층하고 145℃에서 라미네이션하여 전지 전구체를 제조하였다.An anode precursor, a cathode precursor, and a separator precursor prepared as described above were stacked in a bicell structure and laminated at 145 ° C. to prepare a battery precursor.

그 후, 얻어진 전지 전구체를 진공조건, 100℃의 온도에서 1시간 동안 건조하고 나서, 아르곤 가스 분위기하에서 전해액(1.15M LiPF6in EC:DMC:DEC=1:1:2)을 주입함으로써 리튬 2차 전지를 완성하였다.Thereafter, the obtained battery precursor was dried under vacuum conditions at a temperature of 100 ° C. for 1 hour, and then lithium 2 was injected by injecting an electrolyte solution (1.15M LiPF 6 in EC: DMC: DEC = 1: 1: 2) under an argon gas atmosphere. The primary battery was completed.

상술한 바와 같이 제조한 전지를 충전 용량 160.5mAh로 화성(formation)한 후 방전 용량 및 고율 특성을 측정하여 표 1에 나타냈다.The battery prepared as described above was formed in a charge capacity of 160.5 mAh, and then discharge capacity and high rate characteristics were measured and shown in Table 1 below.

비교예Comparative example

메조카본 파이버(MCF)(Petoca사) 65g, 키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체) 10g, 슈퍼-피(MMM. Carbon사) 9.25g, 디부틸 프탈레이트(Aldrich사) 21.75g 및 아세톤(삼전화학) 700㎖를 혼합하여 애노드 조성물을 준비하였다.65 g of mesocarbon fiber (MCF) (Petoca), 10 g of Kynar 2801 (Kdnar 2801) (22 wt copolymer of VdF 88 wt / HFP), 9.25 g of Super-P (MMM.Carbon), dibutyl phthalate (Aldrich) 21.75 An anode composition was prepared by mixing g and 700 ml of acetone (Samjeon Chemical).

상기 애노드 조성물을 Cu 집전체상에 코팅한 다음, 30℃에서 건조하여 다공성 애노드 전구체를 제조하였다.The anode composition was coated on a Cu current collector and then dried at 30 ° C. to prepare a porous anode precursor.

이와 별도로, LiCoO2(Nippon Chemical사) 65g, 키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체) 10g, 슈퍼-피(MMM. Carbon사) 6.5g, 디부틸 프탈레이트(Aldrich사) 18.5g 및 아세톤(삼전화학) 900㎖를 혼합하여 캐소드 조성물을 준비하였다.Separately, 65 g of LiCoO 2 (Nippon Chemical), 10 g of Kynar 2801 (22 wt copolymer of VdF 88 wt / HFP), 6.5 g of Super-P (MMM.Carbon), 1 g of dibutyl phthalate (Aldrich) 18.5 g and acetone 900 ml were mixed to prepare a cathode composition.

이 캐소드 조성물을 Al 집전체상에 코팅한 다음, 30℃에서 건조하여 다공성 캐소드 전구체를 제조하였다.The cathode composition was coated on an Al current collector and then dried at 30 ° C. to prepare a porous cathode precursor.

키나르 2801(Kynar 2801)(VdF 88wt/HFP 22wt공중합체) 32g, 실리카(Carbot사) 26g, 디부틸 프탈레이트(Aldrich사) 42g 및 아세톤(삼전화학) 300㎖를 혼합하여 세퍼레이터 형성용 조성물을 준비하였다. 이 세퍼레이타 조성물을 폴리에틸렌테레프탈레이트 지지체상에 캐스팅하고 30℃에서 건조한 다음, 지지체로부터 필름을 떼어냄으로써 세퍼레이터 전구체를 제조하였다.Prepare a composition for forming a separator by mixing 32 g of Kinar 2801 (22 wt copolymer of VdF 88 wt / HFP), 26 g of silica (Carbot), 42 g of dibutyl phthalate (Aldrich), and 300 ml of acetone (trielectric chemistry). It was. The separator precursor was prepared by casting the separator composition on a polyethylene terephthalate support, drying at 30 ° C., and then removing the film from the support.

상술한 바와 같이 제조한 애노드 전구체, 캐소드 전구체 및 세퍼레이터 전구체를 바이셀 구조로 적층하고 145℃에서 라미네이션하여 전지 전구체를 제조하였다.An anode precursor, a cathode precursor, and a separator precursor prepared as described above were stacked in a bicell structure and laminated at 145 ° C. to prepare a battery precursor.

그 후, 얻어진 전지 전구체를 진공조건, 100℃의 온도에서 1시간 동안 건조하고 나서, 아르곤 가스 분위기하에서 전해액(1.15M LiPF6in EC:DMC:DEC=1:1:2)을 주입함으로써 리튬 2차 전지를 완성하였다.Thereafter, the obtained battery precursor was dried under vacuum conditions at a temperature of 100 ° C. for 1 hour, and then lithium 2 was injected by injecting an electrolyte solution (1.15M LiPF 6 in EC: DMC: DEC = 1: 1: 2) under an argon gas atmosphere. The primary battery was completed.

상술한 바와 같이 제조한 전지를 충전 용량 160.5mAh로 화성(formation)한 후 방전 용량 및 고율 특성을 측정하여 표 1에 나타냈다.The battery prepared as described above was formed in a charge capacity of 160.5 mAh, and then discharge capacity and high rate characteristics were measured and shown in Table 1 below.

화성(formation)Formation 표준 방전Standard discharge 고율 특성High rate characteristics 충전 용량Charge capacity 방전 용량Discharge capacity 가역 용량Reversible capacity 0.2C0.2C 0.5C0.5C 1C1C 2C2C 실시예Example 160.5mAh160.5 mAh 124.0mAh124.0 mAh 77.377.3 113.6mAh113.6 mAh 106.1mAh106.1 mAh 98.6mAh98.6 mAh 65.0mAh65.0 mAh 비교예Comparative example 160.5mAh160.5 mAh 130.2mAh130.2 mAh 81.181.1 120.5mAh120.5 mAh 110.2mAh110.2 mAh 97.5mAh97.5 mAh 84.2mAh84.2 mAh

상술한 표 1에서 보는 것과 같이 유기용매에 의한 가소제 추출공정없이 제조된 실시예의 전지에서 측정된 결과와 종래의 방법으로 제조한 비교예의 전지에서측정된 결과가 거의 동일한 것으로 나타났다.As shown in Table 1 above, the results measured in the battery of the Example prepared without the plasticizer extraction process by the organic solvent was found to be almost the same as the result measured in the battery of the Comparative Example prepared by the conventional method.

상술한 바와 같이, 본 발명에 따른 리튬 2차 전지의 제조방법은 유기 용매에 의한 가소제 추출 공정없이도 리튬 2차 전지의 제조가 가능하므로 추출 공정에 따른 환경오염문제를 예방할 수 있으며, 전지의 제조 단가를 낮출 수 있는 장점이 있다.As described above, the method of manufacturing a lithium secondary battery according to the present invention enables the production of a lithium secondary battery without a plasticizer extraction process by an organic solvent, thereby preventing environmental pollution problems caused by the extraction process, and the manufacturing cost of the battery. There is an advantage that can be lowered.

본 발명의 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although described with reference to the embodiment shown in the drawings of the present invention, this is merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (7)

(a) 전극 활물질, 고분자 바인더, 도전제 및 캐스팅 용매를 포함하며, 가소제를 포함하지 않는 전극 조성물을 집전체에 도포하여 애노드 전구체 및 캐소드 전구체를 제조하는 단계;(a) preparing an anode precursor and a cathode precursor by applying an electrode composition including an electrode active material, a polymer binder, a conductive agent, and a casting solvent, and not including a plasticizer, to a current collector; (b) 전해액에 의해 겔화되지 않는 다공성 폴리머 필름의 양면에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체, 가소제, 무기 충진제 및 코팅 용매를 포함하는 슬러리를 코팅하여 세퍼레이터 전구체를 제조하는 단계;(b) coating a slurry comprising a vinylidene fluoride / hexafluoropropylene copolymer, a plasticizer, an inorganic filler and a coating solvent on both sides of the porous polymer film that is not gelled by the electrolyte solution to prepare a separator precursor; (c) 상기 전극 전구체 및 세퍼레이터 전구체를 라미네이팅하여 전지 전구체를 제조하는 단계; 및(c) laminating the electrode precursor and the separator precursor to prepare a battery precursor; And (d) 상기 전지 전구체에 전해액을 주입하여 활성화시키는 단계를 포함하는 것을 특징으로 하는 리튬 2차 전지의 제조방법.(D) a method of manufacturing a lithium secondary battery comprising the step of activating by injecting an electrolyte solution to the battery precursor. 제1항에 있어서, 상기 전지 전구체는 캐소드 전구체, 세퍼레이터 전구체, 애노드 전구체, 세퍼레이터 전구체 및 캐소드 전구체가 순차적으로 적층되어 바이셀 구조인 것을 특징으로 하는 리튬 2차 전지의 제조방법.The method of claim 1, wherein the battery precursor has a bi-cell structure in which a cathode precursor, a separator precursor, an anode precursor, a separator precursor, and a cathode precursor are sequentially stacked. 제1항에 있어서, 상기 전극 조성물이 메탄올, 에탄올, 이소프로판올 및 이들의 혼합물로 이루어진 군에서 선택되는 알콜류 용매를 더 포함하는 것을 특징으로 하는 리튬 2차 전지의 제조방법.The method of claim 1, wherein the electrode composition further comprises an alcohol solvent selected from the group consisting of methanol, ethanol, isopropanol and mixtures thereof. 제1항에 있어서, 상기 전해액에 의해 겔화되지 않는 다공성 폴리머 필름이 다공성 폴리에틸렌 필름인 것을 특징으로 하는 리튬 2차 전지의 제조방법.The method of manufacturing a lithium secondary battery according to claim 1, wherein the porous polymer film which is not gelled by the electrolyte solution is a porous polyethylene film. 제1항에 있어서, 상기 전해액에 의해 겔화되지 않는 다공성 폴리머 필름이 다공성 폴리프로필렌 필름이 양면에 적층된 다공성 폴리에틸렌 필름인 것을 특징으로 하는 리튬 2차 전지의 제조방법.The method of manufacturing a lithium secondary battery according to claim 1, wherein the porous polymer film which is not gelled by the electrolyte solution is a porous polyethylene film having a porous polypropylene film laminated on both sides. 제1항에 있어서, 상기 가소제가 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에톡시에탄, 디부틸 프탈레이트, 디메톡시에탄, 디에틸 카보네이트, 디프로필 카보네이트 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 리튬 2차 전지의 제조방법.The method of claim 1, wherein the plasticizer is any one selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethoxyethane, dibutyl phthalate, dimethoxyethane, diethyl carbonate, dipropyl carbonate, and mixtures thereof. Method for producing a lithium secondary battery, characterized in that. 제1항에 있어서, 상기 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체의 두께가 1 내지 50㎛되도록 코팅하는 것을 특징으로 리튬 2차 전지의 제조방법.The method of claim 1, wherein the vinylidene fluoride / hexafluoropropylene copolymer is coated to have a thickness of 1 to 50 μm.
KR1020000025329A 2000-05-12 2000-05-12 Manufacturing method for lithium secondary cell KR100362283B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020000025329A KR100362283B1 (en) 2000-05-12 2000-05-12 Manufacturing method for lithium secondary cell
JP2001136494A JP4629902B2 (en) 2000-05-12 2001-05-07 Method for manufacturing lithium secondary battery
US09/852,843 US6610109B2 (en) 2000-05-12 2001-05-11 Method of manufacturing lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000025329A KR100362283B1 (en) 2000-05-12 2000-05-12 Manufacturing method for lithium secondary cell

Publications (2)

Publication Number Publication Date
KR20010103980A true KR20010103980A (en) 2001-11-24
KR100362283B1 KR100362283B1 (en) 2002-11-23

Family

ID=19668461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000025329A KR100362283B1 (en) 2000-05-12 2000-05-12 Manufacturing method for lithium secondary cell

Country Status (3)

Country Link
US (1) US6610109B2 (en)
JP (1) JP4629902B2 (en)
KR (1) KR100362283B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
KR100530350B1 (en) * 2003-04-17 2005-11-22 주식회사 엘지화학 The lithium ion secondary battery comprising 2-side coating type of separator

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761744B1 (en) 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
DE10104988A1 (en) * 2001-02-03 2002-08-08 Varta Geraetebatterie Gmbh Process for the production of electrode foils
KR100440930B1 (en) * 2001-11-24 2004-07-21 삼성에스디아이 주식회사 Method for preparing a separator and lithium secondary battery using the same
US20030180624A1 (en) * 2002-03-22 2003-09-25 Bookeun Oh Solid polymer electrolyte and method of preparation
US20050019656A1 (en) * 2002-03-22 2005-01-27 Yoon Sang Young Method for fabricating composite electrodes
US7695860B2 (en) * 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US6887619B2 (en) * 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US8445137B1 (en) 2002-11-27 2013-05-21 Quallion Llc Primary battery having sloped voltage decay
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US20070065728A1 (en) * 2003-03-20 2007-03-22 Zhengcheng Zhang Battery having electrolyte with mixed solvent
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US7718321B2 (en) * 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
GB0318942D0 (en) * 2003-08-13 2003-09-17 Aea Technology Battery Systems Process for producing an electrode
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US20050274000A1 (en) * 2004-06-14 2005-12-15 The University Of Chicago Methods for fabricating lithium rechargeable batteries
US20060288547A1 (en) * 2005-06-23 2006-12-28 3M Innovative Properties Company Zoned stretching of a web
US8010889B2 (en) * 2006-10-20 2011-08-30 Oracle International Corporation Techniques for efficient loading of binary XML data
KR101173200B1 (en) * 2008-08-05 2012-08-10 주식회사 엘지화학 Method of preparing gel polymer electrolyte secondary battery and Gel polymer electrolyte secondary battery
US8715392B2 (en) * 2009-05-21 2014-05-06 Battelle Memorial Institute Catalyzed CO2-transport membrane on high surface area inorganic support
US8673067B2 (en) * 2009-05-21 2014-03-18 Battelle Memorial Institute Immobilized fluid membranes for gas separation
US20110059364A1 (en) * 2009-09-10 2011-03-10 Battelle Memorial Institute Air electrodes for high-energy metal air batteries and methods of making the same
US8481187B2 (en) 2009-09-10 2013-07-09 Battelle Memorial Institute High-energy metal air batteries
US9039788B2 (en) * 2009-11-18 2015-05-26 Battelle Memorial Institute Methods for making anodes for lithium ion batteries
WO2012137374A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
US9966591B1 (en) 2016-12-19 2018-05-08 StoreDot Ltd. Electrode stack production methods
US10033023B2 (en) 2016-12-19 2018-07-24 StoreDot Ltd. Surface activation in electrode stack production and electrode-preparation systems and methods
EP3355384A1 (en) * 2017-01-31 2018-08-01 Universite De Liege Flexible thin-films for battery electrodes
EP3780171B1 (en) * 2018-03-26 2023-07-26 Zeon Corporation Non-aqueous secondary battery layered-body manufacturing method, and non-aqueous secondary battery manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472487A (en) 1983-11-30 1984-09-18 Allied Corporation Battery having polymeric anode coated with reaction product of oxirane compound
EP0205856B1 (en) 1985-05-10 1991-07-17 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
US5028500A (en) 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
US5441830A (en) 1992-10-29 1995-08-15 Moulton; Russell D. Electrically-conducting adhesion-promoters on conductive plastic
US5460904A (en) 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5540741A (en) 1993-03-05 1996-07-30 Bell Communications Research, Inc. Lithium secondary battery extraction method
DE69700138T2 (en) * 1996-01-31 1999-09-02 Aea Technology Plc Polyvinylidene fluoride as a polymeric solid electrolyte for lithium-ion batteries
US5688293A (en) * 1996-05-15 1997-11-18 Motorola, Inc. Method of making a gel electrolyte bonded rechargeable electrochemical cell
US6692543B1 (en) * 1997-12-18 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing lithium ion secondary battery
JP2000090979A (en) * 1998-09-16 2000-03-31 Toshiba Corp Sealed battery
KR100303829B1 (en) * 1998-10-13 2001-10-19 김순택 Lithium polymer battery and method for manufacturing the same
US6235065B1 (en) * 1998-10-27 2001-05-22 Alcatel Room temperature lamination of Li-ion polymer electrodes
US6328770B1 (en) * 1999-11-23 2001-12-11 Valence Technology (Nevada), Inc. Method of making multi-layer electrochemical cell devices
US6391069B1 (en) * 2000-03-29 2002-05-21 Valence Technology (Nevada), Inc. Method of making bonded-electrode rechargeable electrochemical cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
KR100530350B1 (en) * 2003-04-17 2005-11-22 주식회사 엘지화학 The lithium ion secondary battery comprising 2-side coating type of separator

Also Published As

Publication number Publication date
JP4629902B2 (en) 2011-02-09
US20020050054A1 (en) 2002-05-02
JP2001357891A (en) 2001-12-26
KR100362283B1 (en) 2002-11-23
US6610109B2 (en) 2003-08-26

Similar Documents

Publication Publication Date Title
KR100362283B1 (en) Manufacturing method for lithium secondary cell
US9985326B2 (en) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
US8916297B2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
KR100399785B1 (en) Separators for winding-type lithium secondary batteries comprising gel-type polymer electrolytes and manufacturing method for the same
US6372386B1 (en) Electrode active material and polymer electrolyte matrix composition for lithium ion polymer battery
JP3665544B2 (en) Composition for forming separator of lithium secondary battery and method for producing lithium secondary battery using the same
US8603682B2 (en) Secondary battery and manufacturing method of the same
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
KR20020025677A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
KR102143100B1 (en) Non-aqueous liquid electrolyte, lithium secondary battery comprising the same and preparation method thereof
KR20050079232A (en) Organic electrolytic solution and lithium battery employing the same
KR20210120686A (en) Method for manufacturing negative electrode
KR100637120B1 (en) Method for preparing lithium secondary battery
KR100373728B1 (en) Electrode active material composition of lithium secondary battery and lithium secondary battery prepared using the same
KR100553737B1 (en) Electrode active material composition and separator composition for lithium ion polymer battery, and manufactring method of lithium ion polymer battery using the same
KR100456648B1 (en) Method of preparing lithium ion polymer secondary battery
KR100329569B1 (en) Lithium secondary battery
KR100558844B1 (en) Polymer electrolyte composition for lithium ion polymer battery and lithium battery using the same
KR101420757B1 (en) Electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR100325877B1 (en) Lithium secondary battery comprising polymer electrolyte of gel-type
KR100553736B1 (en) Composition of active material for lithium secondary batteries
JP6634648B2 (en) Lithium ion secondary battery
KR100456646B1 (en) Manufacturing method of lithium ion polymer battery
KR100354248B1 (en) Manufaturing method of lithium polymer batteries
KR100637121B1 (en) Electrode active material composition and separator composition for lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee