KR20010065810A - A process for preparing alkylhalosilane - Google Patents

A process for preparing alkylhalosilane Download PDF

Info

Publication number
KR20010065810A
KR20010065810A KR1019990065757A KR19990065757A KR20010065810A KR 20010065810 A KR20010065810 A KR 20010065810A KR 1019990065757 A KR1019990065757 A KR 1019990065757A KR 19990065757 A KR19990065757 A KR 19990065757A KR 20010065810 A KR20010065810 A KR 20010065810A
Authority
KR
South Korea
Prior art keywords
gas
alkyl halide
copper
alkyl
weight
Prior art date
Application number
KR1019990065757A
Other languages
Korean (ko)
Inventor
최병율
전윤수
최근묵
표명환
Original Assignee
김충세
고려화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충세, 고려화학 주식회사 filed Critical 김충세
Priority to KR1019990065757A priority Critical patent/KR20010065810A/en
Publication of KR20010065810A publication Critical patent/KR20010065810A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/16Preparation thereof from silicon and halogenated hydrocarbons direct synthesis

Abstract

PURPOSE: Provided is the method of preparing alkylhalosilane in high yield and with low content of by-products to make it industrially useful. CONSTITUTION: The preparation process includes feeding alkyl halide gas and inert gas or their mixture at 5-12cm/sec speed to silicone metal powder in the fluidized bed reactor and activating for 0.1-7 hours at 320-400°C under 0-5 atm. with mainly copper catalyst and zinc, Sb, phosphorous and cesium as additional catalysts; lowering the temperature to 240-320°C at 0-8 atm. and feeding alkyl halide gas at 7-12cm/sec into the above fluidized bed reactor and obtaining the product. The copper catalyst is composed of element copper, its halides or its oxides. 1-10 weight part of the active ingredient is used against the 100 weight part of silicone metal. For other catalysts used are 0.0l-3.0 wt. part of zinc, 0.001-0.1 wt. part of Sb, 0.01-0.5 wt. part of phosphorous and 0.05-2.0 wt. part of cesium against 100 wt. part of silicone metal. When the mixed gas of alkyl halide and inert gas is used, no less that 50% of alkyl halide gas is included.

Description

알킬할로실란의 제조방법{A process for preparing alkylhalosilane}A process for preparing alkylhalosilane

본 발명은 알킬할로실란의 제조방법에 관한 것으로서, 더욱 상세하게는 구리 촉매와 아연, 주석, 인 및 세슘의 조촉매로 구성되는 촉매계에서 금속 규소분말에 불활성기체 또는 알킬할라이드 기체를 활성화 기체로서 유입하여 유동화시키면서 촉매를 활성화한 후에, 알킬할라이드 기체를 반응성 기체로 유입하여 반응시킴으로써 알킬할로실란의 수율을 향상시킴은 물론이고 부생성물의 함량을 최소화하며, 유동화, 반응성 및 지속성이 우수하여 산업적으로 매우 유용한 알킬할로실란의 제조방법에 관한 것이다.The present invention relates to a method for preparing alkyl halosilane, and more particularly, to an inert gas or an alkyl halide gas in a metal silicon powder in a catalyst system composed of a copper catalyst and a cocatalyst of zinc, tin, phosphorus and cesium as an activating gas. After activating the catalyst by inflow and fluidization, the alkyl halide gas is introduced into the reactive gas to react to improve the yield of the alkyl halosilane, as well as to minimize the amount of by-products, and to provide excellent fluidization, reactivity and durability. It relates to a process for preparing alkyl halosilanes which is very useful.

본 발명에 따른 제조방법은 직접 합성법(Direct Synthesis) 또는 라카오 합성법(Rochow Synthesis)으로 지칭되어지며, 이러한 방법에서는 알킬할라이드와 금속 규소분말을 구리 촉매 존재하에서 반응시켜 다음 화학식 1로 표시되는 알킬할로실란을 얻고 있다[미국특허 제2,380,995호].The preparation method according to the present invention is referred to as Direct Synthesis or Rochow Synthesis. In this method, an alkyl halide and a metal silicon powder are reacted in the presence of a copper catalyst to represent an alkyl halide represented by the following Chemical Formula 1. Rosilane is obtained (US Pat. No. 2,380,995).

(R)nSi(X)4-n (R) n Si (X) 4-n

상기 화학식 1에서 : R은 C1∼ C4의 알킬기로서 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기이고; X는 할로겐원자로서 구체적으로는 클로로원자, 브로모원자, 플로로원자이고; n은 0 또는 1 내지 4의 정수이다.In Formula 1, R is an alkyl group having 1 to 4 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, a butyl group; X is a halogen atom, specifically, a chloro atom, a bromo atom, a fluoro atom; n is 0 or an integer of 1 to 4;

상기한 직접 합성법에서 얻어지는 알킬할로실란 화합물중 디알킬디할로실란은 실리콘 오일, 실리콘 폴리머, 실리콘 러버 등을 만드는 기초 원료로서 산업적으로 폭 넓게 적용되고 있는 주요 화합물이다. 이처럼 알킬할로실란 화합물중에서도 특히 디알킬디할로실란은 경제적 가치가 가장 높으므로, 이에 알킬할로실란의 합성법에서는 트리알킬할로실란(T)/디알킬디할로실란(D)의 비율 및 고비물 생성량을 낮추고, 반응성 및 지속성을 높게 하여 디알킬디할로실란의 수율을 높이기 위한 방법을 모색하고 있다.Among the alkyl halosilane compounds obtained by the above-described direct synthesis method, dialkyldihalosilane is a main compound widely applied industrially as a basic raw material for making silicone oil, silicone polymer, silicone rubber and the like. As described above, dialkyldihalosilane has the highest economic value among the alkylhalosilane compounds. Thus, in the synthesis method of alkylhalosilane, the ratio of trialkylhalosilane (T) / dialkyldihalosilane (D) is used. And a method for increasing the yield of dialkyldihalosilane by lowering the production amount of high fertilizers and increasing the reactivity and persistence.

디알킬디할로실란의 효율적인 생산을 위한 알킬할로실란 합성방법과 관련하여, 구리 또는 구리할로겐화물로 구성되는 구리 촉매와 그 밖의 조촉매를 사용한 기술들이 일부 공지되어 있다. 그 예로서, 알킬할로실란을 제조에 사용되는 접촉 혼합물의 화성화 방법이 알려져 있는 바[Organohalosilanes precursors to silicones", R.J.H. Voorhoeve, pp 160∼161, Elsevier Publishing Company, New York, 1967], 반응기 안에 접촉 혼합물을 투입한 후 불활성기체를 최소 유동화 속도 이하로 유입한 후 분당 5℃씩 서서히 350℃까지 승온하고 2 ∼ 3 시간 유지하여 접촉 혼합물을 활성화시키는 방법이다. 그러나, 활성화 과정에서 촉매로 사용된 구리가 뭉쳐 유동화, 반응성 및 지속성이 떨어지고, T/D 비율이 매우 높아지는 단점이 있다.Regarding the method for synthesizing alkylhalosilanes for the efficient production of dialkyldihalosilanes, some techniques using copper catalysts composed of copper or copper halides and other promoters are known. As an example, methods for the formation of contact mixtures used to prepare alkylhalosilanes are known [Organohalosilanes precursors to silicones ", RJH Voorhoeve, pp 160-161, Elsevier Publishing Company, New York, 1967, in reactors. After adding the contact mixture, the inert gas is introduced below the minimum fluidization rate, and the temperature is gradually raised to 350 ° C. at 5 ° C. per minute and maintained for 2 to 3 hours to activate the contact mixture. Agglomeration of copper has the disadvantage of poor fluidization, reactivity and persistence, and very high T / D ratio.

알킬할로실란의 제조방법과 관련하여, 미국특허 제5,783,721호에는 알킬할로실란 제조방법중 유동화 조건을 한정하는 기술이 개시되어 있고; 미국특허 제5,117,030호에는 아연 또는 아연할로겐화물, 주석 또는 주석할로겐화물, 세슘 또는 세슘염화물을 사용하는 기술이 개시되어 있으며; 미국특허 제5,654,460에는 알루미늄, 알루미늄합금 또는 알루미늄할로겐화물을 사용하는 기술이 개시되어 있으며; 미국특허 제4,602101호에는 인 또는 인계합금을 사용하는 기술이 개시되어 있고; 미국특허 제4,656,301에는 안티모니 또는 안티모니합금을 사용한 기술이 개시되어 있다.Regarding the process for preparing alkyl halosilanes, US Pat. No. 5,783,721 discloses a technique for limiting fluidization conditions in the process for preparing alkyl halosilanes; U.S. Patent 5,117,030 discloses the use of zinc or zinc halides, tin or tin halides, cesium or cesium chlorides; U. S. Patent No. 5,654, 460 discloses the use of aluminum, aluminum alloys or aluminum halides; US Patent No. 4,602101 discloses a technique using phosphorus or phosphorus alloy; U.S. Patent 4,656,301 discloses a technique using antimony or an antimony alloy.

이에, 본 발명에서는 상기한 바와 같은 종래 알킬할로실란의 제조방법에서의 T/D 비율 상승 그리고 유동화, 반응성 및 지속성이 떨어지는 문제를 해결하고자 노력하였다. 그 결과, 금속 규소분말과 알킬할라이드의 반응을 수행하기에 앞서 구리 촉매와 아연, 주석, 인 및 세슘의 조촉매로 구성되는 촉매계를 반응온도의 이상의 적정온도 조건하에서 활성화 기체로 전처리시킨 후에, 알킬할라이드와의 반응을 수행함으로써 본 발명을 완성하게 되었다.Thus, the present invention has been made to solve the problem of the increase in the T / D ratio and the fluidization, reactivity and persistence in the conventional method of producing an alkyl halosilane as described above. As a result, prior to carrying out the reaction of the metal silicon powder and the alkyl halide, the catalyst system composed of a copper catalyst and a cocatalyst of zinc, tin, phosphorus and cesium is pretreated with an activating gas under an appropriate temperature condition above the reaction temperature. The present invention has been completed by carrying out the reaction with halides.

따라서, 본 발명은 유동화, 반응성 및 지속성이 우수하고, 디알킬디할로실란(D)의 제조수율이 높아 공업적으로 유리한 알킬할로실란의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an industrially advantageous method for producing alkyl halosilanes, which has excellent fluidization, reactivity and durability, and has a high yield of dialkyldihalosilane (D).

본 발명은 금속 규소분말과 알킬할라이드를 반응시켜 알킬할로실란을 제조하는 방법에 있어서,The present invention is a method for producing an alkyl halosilane by reacting a metal silicon powder and an alkyl halide,

320 ∼ 400 ℃ 온도, 0 ∼ 5 atm 압력 및 구리 촉매와 아연, 주석, 인 및 세슘의 조촉매로 구성되는 촉매계하에, 유동층 반응기내에서 상기 금속 규소분말에 불활성기체, 알킬할라이드 또는 이들의 혼합기체로 구성된 활성화 기체를 5 ∼ 12 cm/sec 유동화 속도로 유입하여 0.1 ∼ 7 시간동안 활성화하는 과정; 240 ∼ 320 ℃ 온도 및 0 ∼ 8 atm 압력 조건하에서, 상기 유동층 반응기 내부로 알킬할라이드를 7 ∼ 15 cm/sec 유동화 속도로 유입하여 알킬할로실란을 제조하는 과정으로 구성되는 알킬할로실란의 제조방법을 그 특징으로 한다.Inert gas, alkyl halide or mixtures thereof in the metal silicon powder in a fluidized bed reactor under a catalyst system composed of 320 to 400 ° C. temperature, 0 to 5 atm pressure and a copper catalyst and a promoter of zinc, tin, phosphorus and cesium Activating gas consisting of 5 to 12 cm / sec at a fluidization rate to activate for 0.1 to 7 hours; Preparation of the alkyl halosilane consisting of a step of introducing an alkyl halide into the fluidized bed reactor at a 7 to 15 cm / sec fluidization rate under a 240 to 320 ℃ temperature and 0 to 8 atm pressure conditions to produce an alkyl halosilane The method is characterized by that.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명에서 사용하는 금속 규소분말은 그 순도가 적어도 97% 이상 바람직하기로는 98% 이상인 것을 사용하도록 한다. 금속 규소분말중에 함유되어 있는 불순물은 알킬할로실란을 합성하는 과정에서 반응성, 선택성, T/D 비율에 지대한 영향을 미치는 중요 인자이다. 흔히 함유될 수 있는 불순물으로는 알루미늄, 칼슘, 철, 티타늄 등이 있다. 상기한 바와 같은 고순도의 금속 규소분말의 입경은 10 ∼ 300 ㎛ 바람직하기로는 10 ∼ 250 ㎛가 적절하다. 금속 규소분말의 입경이 너무 작은 경우에는 입자끼리 응집력이 증가하여 반응 중 뭉침 현상이 발생하여 균일한 유동화 조건을 유지하는데 어려움은 있지만, 반응성 측면에서 볼 때 입경이 작은 금속 규소분말의 사용이 선호된다. 그 이유는 넓은 표면적을 가진 작은 입경의 규소분말은 반응하는 동안 입자와 입자 사이의 열 전달을 향상시켜 결국은 반응성을 향상시키 때문이다. 따라서, 지나치게 작은 입경의 금속 규소분말을 사용하게 되면 반응성은 우수하지만 부분 과열을 일으켜 T/D 비율을 상승시키므로 바람직하지 않다.The metal silicon powder used in the present invention has a purity of at least 97% or more and preferably 98% or more. Impurities contained in the metal silicon powder are important factors that greatly affect the reactivity, selectivity, and T / D ratio during the synthesis of alkyl halosilanes. Commonly contained impurities include aluminum, calcium, iron, titanium, and the like. The particle diameter of the high-purity metallic silicon powder as described above is preferably 10 to 300 µm, preferably 10 to 250 µm. If the particle size of the metal silicon powder is too small, it is difficult to maintain uniform fluidization conditions due to the cohesion between the particles and coagulation between the particles, but in view of reactivity, the use of metal silicon powder with a small particle size is preferred. . The reason is that the small particle size of the silicon powder with the large surface area improves the heat transfer between the particles during the reaction and ultimately the reactivity. Therefore, the use of metal silicon powder having an excessively small particle size is not preferable because the reactivity is excellent but causes partial overheating to increase the T / D ratio.

본 발명은 구리 촉매와 특정의 금속이 포함된 조촉매로 구성되는 촉매계를 사용하는 것을 그 특징으로 하며, 본 발명의 촉매계를 구성하는 각종 원소는 금속 또는 금속이온 형태로 포함될 수 있다. 따라서, 다음에서 정의하는 촉매계를 구성하는 각종 원소의 사용량은 활성원소의 양을 기준으로 나타낸 것이다.The present invention is characterized by using a catalyst system composed of a copper catalyst and a cocatalyst containing a specific metal, and various elements constituting the catalyst system of the present invention may be included in a metal or metal ion form. Therefore, the amount of use of various elements constituting the catalyst system defined below is based on the amount of active elements.

촉매로 사용되는 구리는 여러 종류로서 사용이 가능하다. 예를 들면, 미세구리분말, 편상형 구리, 구리산화물, 구리할로겐화물 등이다. 이러한 구리 촉매는 금속 규소분말 100 중량부를 기준으로 1 ∼ 10 중량부 바람직하기로는 2 ∼ 8 중량부를 사용하도록 한다.Copper used as a catalyst can be used in various kinds. For example, they are microcopper powder, flaky copper, a copper oxide, a copper halide. Such a copper catalyst is used in an amount of 1 to 10 parts by weight, preferably 2 to 8 parts by weight, based on 100 parts by weight of the metal silicon powder.

조촉매로는 아연, 주석, 인 및 세슘이 포함된다. 아연은 아연원소, 아연할로겐화물(예컨대 아연염화물), 아연합금, 아연산화물 등이 사용되며, 금속 규소분말 100 중량부를 기준으로 0.01 ∼ 3.0 중량부를 사용한다. 주석은 주석원소, 주석할로겐화물(주석염화물), 주석합금, 주석산화물 등이 사용되며, 금속 규소분말 100 중량부를 기준으로 0.001 ∼ 0.1 중량부를 사용한다. 인은 인원소, 인합금 등이 사용되며, 금속 규소분말 100 중량부를 기준으로 0.01 ∼ 0.5 중량부를 사용한다. 그리고, 세슘은 세슘금속, 세슘할로겐화물(예컨대 세슘염화물) 등이 사용되며, 금속 규소분말 100 중량부를 기준으로 0.05 ∼ 2.0 중량부를 사용한다.Cocatalysts include zinc, tin, phosphorus and cesium. Zinc is used for zinc element, zinc halide (eg zinc chloride), zinc alloy, zinc oxide and the like, 0.01 to 3.0 parts by weight based on 100 parts by weight of the metal silicon powder. Tin is used for tin element, tin halide (tin chloride), tin alloy, tin oxide and the like, and 0.001 to 0.1 parts by weight based on 100 parts by weight of the metal silicon powder. Phosphorus element, phosphorus alloy etc. are used, 0.01-0.5 weight part based on 100 weight part of metal silicon powders. As the cesium, cesium metal, cesium halide (eg cesium chloride), and the like are used, and 0.05 to 2.0 parts by weight based on 100 parts by weight of the metal silicon powder is used.

또한, 본 발명이 사용하는 알킬할라이드를 구체화하면 메틸클로라이드, 에틸클로라이드, 메틸브로마이드, 에틸브로마이드 등이다. 이러한 알킬할라이드는 반응기 내부로 유입시킬 때 50 ∼ 350 ℃로 가열하여 투입하도록 하는 바, 그 이유는 알킬할라이드의 온도가 50 ℃ 미만이면 반응기의 온도를 떨어뜨려 반응에 적절한 온도를 유지할 수 없어 유동성 및 반응성이 떨어지며, 320 ℃를 초과하면 반응시 발생하는 반응열의 제어가 어려워 부산물의 양이 크게 증가하는 문제점이 있기 때문이다.In addition, specific examples of the alkyl halide used in the present invention include methyl chloride, ethyl chloride, methyl bromide, ethyl bromide and the like. When the alkyl halide is introduced into the reactor to be heated to 50 to 350 ° C., the reason is that if the temperature of the alkyl halide is less than 50 ° C., the temperature of the reactor may be lowered to maintain an appropriate temperature for the reaction. This is because the reactivity decreases, and if the temperature exceeds 320 ° C., it is difficult to control the heat of reaction generated during the reaction, thereby greatly increasing the amount of by-products.

한편, 본 발명에 따른 알킬할로실란의 제조방법은 직접 합성 공정에 의하며, 그 제조방법은 크게 금속 규소분말 및 촉매계로 구성되는 접촉 혼합물을 활성화시키는 단계와, 상기 활성화된 접촉 혼합물을 알킬할라이드와 반응시켜 알킬할로실란을 생성시키는 단계로 구분 되어진다.On the other hand, the production method of the alkyl halosilane according to the present invention is by a direct synthesis process, the method of activating the contact mixture consisting largely of the metal silicon powder and catalyst system, and the activated contact mixture with the alkyl halide Reaction is divided into steps to produce alkyl halosilane.

첫 번째 과정으로서, 접촉 혼합물을 활성화시키는 단계는 고체-기체 반응으로, 금속 규소분말과 알킬할라이드의 본 반응을 수행하기에 앞서서 접촉 혼합물을 활성화시키는 과정이다.As a first step, the step of activating the contact mixture is a solid-gas reaction, in which the contact mixture is activated prior to carrying out the present reaction of the metal silicon powder and the alkyl halide.

본 발명자들의 실험 결과에 따르면, 접촉 혼합물의 활성화 단계에서 사용되는 활성화 기체의 종류는 촉매로 사용되는 구리의 종류에 따라 다소 차이가 있다.According to the experimental results of the present inventors, the type of activating gas used in the activation step of the contact mixture is somewhat different depending on the type of copper used as a catalyst.

즉, 구리 촉매가 구리할로겐화물로서 사용된 경우에는 활성화 기체로는 불활성기체, 알킬할라이드 기체 또는 이들의 혼합기체가 모두 사용 가능하며, 특히 바람직하기로는 불활성기체를 사용하는 것이다.That is, when a copper catalyst is used as a copper halide, an inert gas, an alkyl halide gas, or a mixed gas thereof can be used as the activation gas, and particularly preferably an inert gas is used.

한편, 사용되는 구리촉매가 구리원소 또는 구리산화물인 경우에는 활성화 기체로서 알킬할라이드 기체를 필수적으로 사용하며, 필요에 따라 불활성기체와의 혼합기체를 사용하도록 한다. 이때, 활성화 기체로서 혼합기체를 사용하는 경우, 알킬할라이드 기체는 전체 혼합기체 중에 50 부피% 이상 함유되는 것이 바람직하다. 그 이유는 접촉혼합물의 활성화를 위해서는 할로겐원자가 필수적으로 필요하고, 구리 촉매로서 구리할로겐화물을 사용한 경우에는 굳이 알킬할라이드를 유입하지 않더라도 활성화가 가능하나, 구리원소 또는 구리산화물의 경우에는 활성화에 필요한 최소량 이상의 알킬할라이드를 유입시켜 주어야하기 때문이다. 접촉혼합물의 활성화 조건으로서 온도는 320 ∼ 400℃, 압력은 0 ∼ 8 atm 바람직하기로는 0 ∼ 5 atm, 유동화 속도는 1 ∼ 15 cm/sec 바람직하기로는 5 ∼ 12 cm/sec 범위를 유지하도록 한다. 특히, 활성화 온도는 알킬할로실란 생성온도(240 ∼ 320℃) 이상을 유지하는 것이 매우 중요한 바, 활성화 온도가 320℃ 미만으로 유지되면 부산물이 과량 생성되어 바람직하지 못하다.On the other hand, when the copper catalyst used is a copper element or a copper oxide, an alkyl halide gas is essentially used as an activating gas, and a mixed gas with an inert gas is used as necessary. In this case, when using a mixed gas as the activating gas, the alkyl halide gas is preferably contained at least 50% by volume in the total mixed gas. The reason is that the halogen atom is necessary for the activation of the contact mixture, and if the copper halide is used as the copper catalyst, it can be activated even without introducing an alkyl halide, but in the case of the copper element or the copper oxide, the minimum amount required for activation is required. This is because the above alkyl halide should be introduced. As the activation condition of the contact mixture, the temperature is 320 to 400 ° C., the pressure is 0 to 8 atm, preferably 0 to 5 atm, and the fluidization rate is 1 to 15 cm / sec, preferably 5 to 12 cm / sec. . In particular, the activation temperature is very important to maintain the alkyl halosilane production temperature (240 ~ 320 ° C) or more, if the activation temperature is maintained below 320 ° C by-products are excessively generated is undesirable.

또한, 본 발명에 따른 제조방법에 있어 활성화 반응이 매우 주요한 바, 만약, 접촉 혼합물을 활성화시키는 단계를 거치지 않거나, 또는 균일하게 충분히 활성화되지 않은 상태에서 알킬할로실란 생성과정을 수행하게 되면, 촉매로 사용된 구리원소, 구리산화물 또는 구리염화물이 구리로 석출되어 뭉치는 현상이 발생한다. 이로써, 활성화되지 못하고 뭉쳐진 구리는 유동화되지 못하고 반응기 밑부분으로 가라앉아 반응기 내부 전체의 유동화를 저해하여 부분 과열을 초래하게 되고, 반응 중에 발생하는 부분 과열은 알킬할라이드를 과도하게 분해시켜 카본 및 기타 불순물이 생성되어 금속 규소분말 표면을 감싸게 되어 반응 면적을 떨어뜨리게 되며, 결국은 T/D의 비율이 증가하고 반응성이 떨어지며 반응의 지속성도 현저하게 저하되게 된다. 상기한 이유를 근거로 하면, 본 발명에서의 접촉 혼합물의 활성화 단계는 매우 중요하다.In addition, in the preparation method according to the present invention, the activation reaction is very important. If the alkylhalosilane production process is performed without the step of activating the contact mixture or the uniformly not sufficiently activated catalyst, Copper elements, copper oxides or copper chlorides used as precipitates with copper, agglomeration occurs. As a result, inactivated and agglomerated copper is not fluidized and sinks to the bottom of the reactor, which inhibits fluidization of the entire reactor, resulting in partial overheating. This is generated to surround the surface of the metal silicon powder to reduce the reaction area, eventually increasing the ratio of T / D, decreases the reactivity and the persistence of the reaction is also significantly reduced. On the basis of the above reasons, the activation step of the contact mixture in the present invention is very important.

상기한 활성화 과정이 충분히 진행되다면, 다음에 수행되는 활성화된 접촉혼합물과 알킬할라이드의 반응은 다소 합성조건이 나쁘더라도 T/D의 비율, 반응성, 고비물 등의 반응 결과가 양호하다. 그러나 접촉혼합물을 적절하게 활성화시키지 못하였을 경우 접촉혼합물과 알킬할라이드를 반응시키는 조건이 최적을 유지하더라도 T/D의 비율, 반응성, 고비물 등의 반응 결과가 저조하다.If the above activation process proceeds sufficiently, the reaction of the activated contact mixture and alkyl halide performed next is good even if the synthesis conditions are poor, such as the ratio of T / D, reactivity, and high fertilizer. However, if the contact mixture is not properly activated, the reaction results such as the ratio of T / D, reactivity, and high fertilization are low even though the conditions for reacting the contact mixture with the alkyl halide remain optimal.

두 번째 과정으로서, 활성화된 접촉 혼합물을 알킬할라이드와 반응시키는 단계이다. 이 과정 역시 균일하게 유동화되지 않으면 상기한 활성화 과정에서와 마찬가지로 촉매 입자의 뭉침 현상과 부분 과열현상이 일어난다. 이러한 요인들은 촉매들의 활성도를 떨어뜨리고 알킬할라이드와 알킬할로실란을 분해하여 불순물인 카본의 생성을 증가시키며, 카본이 반응기 안에 쌓이게 되면 선택성이 크게 떨어지고 이는 알킬할로실란의 수율을 저하시키는 요인으로 작용함은 물론이고, 지속성을 떨어뜨리는 주요인으로 작용한다. 균일한 유동화 조건을 조성하기 위해서는 접촉 혼합물 입자의 크기와 입자 분포도가 결정적인 인자이다. 평균 입경이 작은 접촉 혼합물은 유동화가 저조한 경향을 나타내게 되는데, 그 이유는 적은입자들은 뭉치는 경향을 나타내며, 채널링 현상을 일으키기 때문이다.As a second step, the activated contact mixture is reacted with an alkyl halide. If this process is not uniformly fluidized, the catalyst particles may be agglomerated and partially overheated as in the above activation process. These factors reduce the activity of the catalysts and decompose alkyl halides and alkyl halosilanes to increase the production of impurity carbon, and when carbon accumulates in the reactor, the selectivity decreases significantly, which lowers the yield of alkyl halosilanes. As well as functioning, it acts as a major factor to reduce the persistence. The size and particle distribution of the contact mixture particles are decisive factors in order to create uniform fluidization conditions. Contact mixtures with a small average particle diameter tend to have poor fluidization because small particles tend to clump and cause channeling.

이때, 반응기체로서의 알킬할라이드는 단독으로 유입할 수도 있으나, 불활성기체와의 혼합기체로서 유입할 수도 있다. 본 발명에서는 불활성기체로서 헬륨, 알곤, 질소가 사용될 수 있고, 경제적 측면을 고려한다면 질소를 사용하는 것이 가장 유리하다. 알킬할라이드의 유입량은 알킬할로실란를 생성하기 위한 이론적인 양과 같거나 다소 과량을 투입하도록 하고, 유입속도는 접촉 혼합물이 유동화되는 속도와 동일하거나 그 이상을 유지하도록 하며 바람직하기로는 7 ∼ 15 cm/sec 이다.At this time, the alkyl halide as the reactive gas may be introduced alone, or may be introduced as a mixed gas with an inert gas. In the present invention, helium, argon, nitrogen may be used as the inert gas, and considering the economic aspect, it is most advantageous to use nitrogen. The inflow of alkyl halides is to be charged at or above the theoretical amount to produce alkyl halosilanes, the inflow rate is maintained at or equal to or higher than the rate at which the contact mixture is fluidized, preferably 7-15 cm / is sec.

활성화된 접촉혼합물과 알킬할라이드의 반응 조건으로서 온도는 240 ∼ 320℃, 압력은 0 ∼ 8 atm, 유동화 속도 7 ∼ 15 cm/sec 범위를 유지하도록 한다.As the reaction conditions of the activated contact mixture and the alkyl halide, the temperature is 240 to 320 ° C., the pressure is 0 to 8 atm, and the fluidization rate is maintained to be 7 to 15 cm / sec.

한편, 이상의 알킬할로실란 제조반응을 수행하기에 적합한 반응기는 높은 수율과 선택성, 에너지의 효율적인 이용 측면 등을 고려해볼 때 유동층상 반응기를 사용하는 것이 가장 적절하다. 유동층상 반응기는 접촉 혼합물의 양호한 유동화와 미세 규소분말이 반응기 밖으로 유출되는 것을 방지하기 위해 길이/폭(L/D)의 비가 매우 중요한 바, L/D는 7 ∼ 15인 것이 적당하다.On the other hand, a reactor suitable for carrying out the above alkylhalosilane preparation reaction is most suitable to use a fluidized bed reactor in view of high yield, selectivity, efficient use of energy, and the like. The fluidized bed reactor has a length / width (L / D) ratio of very important in order to provide good fluidization of the contact mixture and to prevent the fine silicon powder from flowing out of the reactor.

이상에서 설명한 바와 같은 본 발명은 다음의 실시에에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following embodiments, but the present invention is not limited thereto.

실시예 1 및 비교예 1-1, 1-2Example 1 and Comparative Examples 1-1, 1-2

길이(L)가 25.4 cm 이고, 폭(D)이 2.54 cm 인 유리 유동층상 반응기에 유리필터, 유리 응축기를 설치한 후 질소를 공급하면서 200 ℃에서 2시간 가열하여 반응기 안의 수분을 제거하였다. 2시간 후 온도를 상온으로 낮춘 후, 응축기에 에틸렌글리콜을 공급하여 온도를 -25℃로 낮추었다. 접촉 혼합물을 제조하기 위하여, 금속 규소분말(평균 입경 170 ㎛, ELEKEM사 제품) 100 g, 염화구리 3.5 g, 주석 0.004 g, 아연 0.1 g, 염화세슘 0.1 g을 골고루 섞어 제조하였다.A glass filter and a glass condenser were installed in a glass fluidized bed reactor having a length L of 25.4 cm and a width D of 2.54 cm, and then heated at 200 ° C. for 2 hours while supplying nitrogen to remove moisture in the reactor. After 2 hours, the temperature was lowered to room temperature, and then the ethylene glycol was fed to the condenser to lower the temperature to -25 ° C. In order to prepare the contact mixture, 100 g of a metallic silicon powder (average particle diameter: 170 µm, manufactured by ELEKEM), 3.5 g of copper chloride, 0.004 g of tin, 0.1 g of zinc, and 0.1 g of cesium chloride were evenly mixed.

반응기 내부온도를 340 ℃까지 승온시킨 다음, 상기한 접촉 혼합물을 반응기 안에 투입한 후 질소를 다음 표 1에 나타낸 속도로 공급하여 접촉 혼합물을 활성화하였다. 이때의 압력은 대기압이었다. 반응기의 온도가 340 ℃로 안정화되었을 때 부터 1시간 동안 유지시켜 접촉 혼합물이 충분히 활성화시켰다. 접촉 혼합물을 1시간 동안 충분히 활성화시킨 다음, 온도를 280 ℃로 낮추고 질소 대신에 메틸클로라이드로 바꾸어 8 cm/sec의 유동화 속도로 유입하여 충분히 반응을 진행시켰다.After the reactor internal temperature was raised to 340 ° C., the contact mixture was introduced into the reactor and nitrogen was supplied at a rate shown in Table 1 to activate the contact mixture. The pressure at this time was atmospheric pressure. The contact mixture was sufficiently activated by maintaining for 1 hour from when the temperature of the reactor was stabilized at 340 ° C. The contact mixture was sufficiently activated for 1 hour, and then the temperature was lowered to 280 ° C. and changed into methyl chloride instead of nitrogen to flow at a fluidization rate of 8 cm / sec to proceed sufficiently.

다음 표 1은 상기와 동일한 원료 및 방법으로 반응을 수행하되, 다만 접촉 혼합물의 활성화 조건을 달리한 경우이다.The following Table 1 is a case in which the reaction is performed using the same raw materials and methods as above, except that the activation conditions of the contact mixture are changed.

실시예 2 및 비교예 2-1, 2-2Example 2 and Comparative Examples 2-1, 2-2

사용원료, 실험 장치 및 실험 방법은 상기 실시예 1에서 사용한 것과 동일하 것을 사용하였다. 접촉 혼합물을 제조하기 위하여, 금속 규소분말(평균 입경 170 ㎛, ELEKEM사 제품) 100 g, 염화구리 3.5 g, 아연합금 1.0 g, 주석합금 1.0 g 및 인합금 0.4 g을 골고루 섞어 제조하였다.The raw materials, the experimental apparatus, and the experimental method were the same as those used in Example 1 above. In order to prepare the contact mixture, 100 g of metal silicon powder (average particle size: 170 µm, manufactured by ELEKEM Co., Ltd.), 3.5 g of copper chloride, 1.0 g of zinc alloy, 1.0 g of tin alloy, and 0.4 g of phosphorus alloy were evenly mixed.

반응기 내부온도를 340 ℃까지 승온시킨 다음, 상기한 접촉 혼합물을 반응기 안에 투입한 후 질소를 다음 표 2에 나타낸 속도로 공급하여 접촉 혼합물을 활성화하였다. 이때의 압력은 대기압이었다. 반응기의 온도가 340 ℃로 안정화되었을 때 부터 1시간 동안 유지시켜 접촉 혼합물이 충분히 활성화시켰다. 접촉 혼합물을 1시간 동안 충분히 활성화시킨 다음, 온도를 280 ℃로 낮추고 질소 대신에 메틸클로라이드로 바꾸어 8 cm/sec의 유동화 속도로 유입하여 충분히 반응을 진행시켰다.After the reactor internal temperature was raised to 340 ° C., the contact mixture was introduced into the reactor, and nitrogen was supplied at a rate shown in Table 2 to activate the contact mixture. The pressure at this time was atmospheric pressure. The contact mixture was sufficiently activated by maintaining for 1 hour from when the temperature of the reactor was stabilized at 340 ° C. The contact mixture was sufficiently activated for 1 hour, and then the temperature was lowered to 280 ° C. and changed into methyl chloride instead of nitrogen to flow at a fluidization rate of 8 cm / sec to proceed sufficiently.

다음 표 2는 상기와 동일한 원료 및 방법으로 반응을 수행하되, 다만 접촉 혼합물의 활성화 조건을 달리한 경우이다.The following Table 2 is the case of performing the reaction with the same raw materials and methods as above, except that the activation conditions of the contact mixture are different.

실시예 3-1, 3-2 및 비교예 3Example 3-1, 3-2 and Comparative Example 3

사용원료, 실험 장치 및 실험 방법은 상기 실시예 1에서 사용한 것과 동일하 것을 사용하였다. 접촉 혼합물을 제조하기 위하여, 금속 규소분말(평균 입경 170 ㎛, ELEKEM사 제품) 100 g, 구리산화물 3.5 g, 아연합금 1.0 g, 주석합금 1.0 g 및 인합금 0.4 g을 골고루 섞어 제조하였다.The raw materials, the experimental apparatus, and the experimental method were the same as those used in Example 1 above. In order to prepare the contact mixture, 100 g of a metallic silicon powder (average particle diameter: 170 µm, manufactured by ELEKEM Co., Ltd.), 3.5 g of copper oxide, 1.0 g of zinc alloy, 1.0 g of tin alloy, and 0.4 g of phosphorus alloy were evenly mixed.

반응기 내부온도를 340 ℃까지 승온시킨 다음, 상기한 접촉 혼합물을 반응기 안에 투입한 후 질소와 메틸클로라이드 혼합물을 다음 표 3에 나타낸 중량비로 선속도 8 cm/sec로 공급하여 접촉 혼합물을 활성화하였다. 이때의 압력은 대기압이었다. 반응기의 온도가 340 ℃로 안정화되었을 때 부터 1시간 동안 유지시켜 접촉 혼합물이 충분히 활성화시켰다. 접촉 혼합물을 1시간 동안 충분히 활성화시킨 다음, 온도를 280 ℃로 낮추고 질소와 메틸클로라이드 혼합물 대신에 메틸클로라이드로 바꾸어 8 cm/sec의 유동화 속도로 유입하여 충분히 반응을 진행시켰다.After the reactor internal temperature was raised to 340 ° C., the contact mixture was introduced into the reactor, and the nitrogen and methyl chloride mixtures were supplied at a linear speed of 8 cm / sec at a weight ratio shown in Table 3 to activate the contact mixture. The pressure at this time was atmospheric pressure. The contact mixture was sufficiently activated by maintaining for 1 hour from when the temperature of the reactor was stabilized at 340 ° C. The contact mixture was sufficiently activated for 1 hour, and then the temperature was lowered to 280 ° C. and changed to methyl chloride instead of the nitrogen and methyl chloride mixture to flow at a fluidization rate of 8 cm / sec to proceed sufficiently.

비교예 3은 실시예 3-1, 3-2와 질소와 메틸클로라이드의 혼합비만 다르고 접촉 혼합물의 조성, 활성화 기체의 유입속도, 온도, 압력 등의 조건은 동일하게 하여 실험하였다.In Comparative Example 3, only the mixing ratio of Examples 3-1 and 3-2 and nitrogen and methyl chloride was different, and the composition of the contact mixture, the inflow rate of the activating gas, the temperature, the pressure, and the like were tested under the same conditions.

이상에서 설명한 바와 같이, 본 발명에 따른 제조방법은 새로운 촉매계 선정 및 이러한 촉매계와 금속 규소분말로 구성되는 접촉 혼합물에 대한 반응전 활성화 과정을 특이성 있게 구성함으로써 알킬할로실란 특히, 디알킬디할로실란에 대한 수율을 크게 향상시키고, 유동화, 반응성 및 지속성이 우수하므로 디알킬디할로실란(D)의 공업적 생산에 매우 유용하다.As described above, the production method according to the present invention specifically selects a new catalyst system and specifically configures a pre-reaction activation process for a contact mixture composed of such a catalyst system and a metal silicon powder, thereby providing an alkylhalosilane, in particular, a dialkyldihalo. It is very useful for the industrial production of dialkyldihalosilanes (D) because it greatly improves the yield for silanes and is excellent in fluidization, reactivity and persistence.

Claims (5)

금속 규소분말과 알킬할라이드를 반응시켜 알킬할로실란을 제조하는 방법에 있어서,In the method for producing an alkyl halosilane by reacting a metal silicon powder and an alkyl halide, 320 ∼ 400 ℃ 온도, 0 ∼ 5 atm 압력 및 구리 촉매와 아연, 주석, 인 및 세슘의 조촉매로 구성되는 촉매계하에, 유동층 반응기내에서 상기 금속 규소분말에 불활성기체, 알킬할라이드 기체 또는 이들의 혼합기체로 구성된 활성화 기체를 5 ∼ 12 cm/sec 유동화 속도로 유입하여 0.1 ∼ 7 시간동안 활성화하는 과정,Inert gas, alkyl halide gas or mixtures thereof in a fluidized bed reactor under a catalyst system consisting of a temperature of 320 to 400 ° C., a pressure of 0 to 5 atm and a catalyst of a copper catalyst and zinc, tin, phosphorus and cesium A process of activating the gas composed of gas at a flow rate of 5 to 12 cm / sec and activating for 0.1 to 7 hours, 240 ∼ 320 ℃ 온도 및 0 ∼ 8 atm 압력 조건하에서, 상기 유동층 반응기 내부로 알킬할라이드를 7 ∼ 12 cm/sec 유동화 속도로 유입하여 알킬할로실란을 제조하는 과정으로 구성되는 것을 특징으로 하는 알킬할로실란의 제조방법.Alkyl halide, characterized in that the alkyl halide silane is introduced into the fluidized bed reactor at a temperature of 240 ~ 320 ℃ and 0 ~ 8 atm pressure at 7 to 12 cm / sec fluidization rate to prepare an alkyl halosilane Method for producing rosilane. 제 1 항에 있어서, 상기 촉매를 구성하는 구리는 구리원소, 구리할로겐화물 또는 구리산화물 형태로 도입되고, 금속규소 100 중량부에 대하여 1 ∼ 10 중량부(활성원소 기준) 함유되는 것을 특징으로 하는 알킬할로실란의 제조방법.The method of claim 1, wherein the copper constituting the catalyst is introduced in the form of a copper element, a copper halide or a copper oxide, characterized in that contained 1 to 10 parts by weight (based on the active element) with respect to 100 parts by weight of metal silicon. Method for preparing alkyl halosilanes. 제 1 항에 있어서, 상기 조촉매로는 활성원소를 기준으로 하여 금속규소 100 중량부에 대하여 아연 0.01 ∼ 3.0 중량부, 주석 0.001 ∼ 0.1 중량부, 인 0.01 ∼0.5 중량부 및 세슘 0.05 ∼ 2.0 중량부가 함유되어 있는 것을 특징으로 하는 알킬할로실란의 제조방법.The method according to claim 1, wherein the cocatalyst is 0.01 to 3.0 parts by weight of zinc, 0.001 to 0.1 parts by weight of tin, 0.01 to 0.5 parts by weight of phosphorus and 0.05 to 2.0 parts by weight of cesium based on 100 parts by weight of the metallic silicon based on the active element. A method for producing an alkyl halosilane, which contains addition. 제 1 항 또는 제 2 항에 있어서, 상기 구리촉매가 구리원소 또는 구리산화물인 경우 활성화 기체로는 알킬할라이드 기체 단독 또는 알킬할라이드 기체와 불활성기체의 혼합기체를 사용하는 것을 특징으로 하는 알킬할로실란의 제조방법.The alkyl halosilane according to claim 1 or 2, wherein when the copper catalyst is a copper element or a copper oxide, an activating gas is an alkyl halide gas alone or a mixed gas of an alkyl halide gas and an inert gas. Manufacturing method. 제 4 항에 있어서, 상기 활성화 기체로서 알킬할라이드 기체와 불활성기체의 혼합기체를 사용하는 경우 전체 혼합기체 중에 알킬할라이드 기체가 50 부피% 이상 포함되는 것을 특징으로 하는 알킬할로실란의 제조방법.The method according to claim 4, wherein when the mixed gas of the alkyl halide gas and the inert gas is used as the activating gas, 50% by volume or more of the alkyl halide gas is included in the total mixed gas.
KR1019990065757A 1999-12-30 1999-12-30 A process for preparing alkylhalosilane KR20010065810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990065757A KR20010065810A (en) 1999-12-30 1999-12-30 A process for preparing alkylhalosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990065757A KR20010065810A (en) 1999-12-30 1999-12-30 A process for preparing alkylhalosilane

Publications (1)

Publication Number Publication Date
KR20010065810A true KR20010065810A (en) 2001-07-11

Family

ID=19632934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990065757A KR20010065810A (en) 1999-12-30 1999-12-30 A process for preparing alkylhalosilane

Country Status (1)

Country Link
KR (1) KR20010065810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785673B1 (en) * 2002-12-09 2007-12-14 로디아 쉬미 Catalytic system and method for the direct synthesis of alkylhalogenosilanes
KR20160043153A (en) * 2008-06-04 2016-04-20 다우 코닝 코포레이션 Improvements in the preparation of organohalosilanes and halosilanes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117030A (en) * 1990-07-31 1992-05-26 Rhone-Poulenc Chimie Catalyst/promoter for direct synthesis of dimethyldichlorosilane
US5625088A (en) * 1995-08-17 1997-04-29 Wacker-Chemie Gmbh Process for preparing dimethyldichlorosilane
JP2000063389A (en) * 1998-04-21 2000-02-29 Wacker Chemie Gmbh Direct synthesis of methylchlorosilane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117030A (en) * 1990-07-31 1992-05-26 Rhone-Poulenc Chimie Catalyst/promoter for direct synthesis of dimethyldichlorosilane
US5625088A (en) * 1995-08-17 1997-04-29 Wacker-Chemie Gmbh Process for preparing dimethyldichlorosilane
JP2000063389A (en) * 1998-04-21 2000-02-29 Wacker Chemie Gmbh Direct synthesis of methylchlorosilane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785673B1 (en) * 2002-12-09 2007-12-14 로디아 쉬미 Catalytic system and method for the direct synthesis of alkylhalogenosilanes
KR20160043153A (en) * 2008-06-04 2016-04-20 다우 코닝 코포레이션 Improvements in the preparation of organohalosilanes and halosilanes

Similar Documents

Publication Publication Date Title
US4500724A (en) Method for making alkylhalosilanes
US4762940A (en) Method for preparation of alkylhalosilanes
US6506923B2 (en) Preparation of organohalosilanes
USRE33452E (en) Method for making alkylhalosilanes
US6090966A (en) Preparation of contract mass for alkylhalosilane production and process for producing alkylhalosilanes
US5783721A (en) Preparation of silanes
JP2003531007A (en) Manufacturing method of contact body
US5312948A (en) Particle size distribution for fluidized-bed process for making alkylhalosilanes
US6258970B1 (en) Method for promoting dialkyldihalosilane formation during direct method alkylhalosilane production
US5596119A (en) Method for controlling the direct process product distribution
US7521574B2 (en) Making of contact mass for organohalosilane preparation and preparation of organohalosilanes
US6365766B1 (en) Metallic copper catalyst and process for the synthesis of organohalosilanes
GB2153697A (en) Catalysts for the production of organohalosilanes
EP0436233B1 (en) Method for preparing organohalosilanes
JPH03148287A (en) Method of increasing the yield rate of methyldichlorosilane
EP0893448B1 (en) Preparation of alkylhalosilanes
US7179933B2 (en) Preparation of organohalosilanes
US5847181A (en) Preparation of alkylhalosilanes
US5981784A (en) Process for preparing organochlorosilanes
KR20010065810A (en) A process for preparing alkylhalosilane
EP0028057A1 (en) Process for preparing dimethylaminosilanes
US5625088A (en) Process for preparing dimethyldichlorosilane
CN100378110C (en) Process for preparing methylchlorosilanes
US5986123A (en) Preparation of alkylhalosilanes
JPH04297483A (en) Method of preparing organohalosilanes

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application