KR20010062837A - Method for the coordinated controlling of an engine and a servo-clutch during reduction of torque during gearshift - Google Patents

Method for the coordinated controlling of an engine and a servo-clutch during reduction of torque during gearshift Download PDF

Info

Publication number
KR20010062837A
KR20010062837A KR1020000085159A KR20000085159A KR20010062837A KR 20010062837 A KR20010062837 A KR 20010062837A KR 1020000085159 A KR1020000085159 A KR 1020000085159A KR 20000085159 A KR20000085159 A KR 20000085159A KR 20010062837 A KR20010062837 A KR 20010062837A
Authority
KR
South Korea
Prior art keywords
clutch
torque
engine
output torque
soll
Prior art date
Application number
KR1020000085159A
Other languages
Korean (ko)
Inventor
뢰플러위르겐
볼츠마틴-페터
휠저홀거
Original Assignee
클라우스 포스, 게오르그 뮐러
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 클라우스 포스, 게오르그 뮐러, 로베르트 보쉬 게엠베하 filed Critical 클라우스 포스, 게오르그 뮐러
Publication of KR20010062837A publication Critical patent/KR20010062837A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

PURPOSE: An integrated control method of a servo clutch and a vehicle engine in reducing torque is provided to change transmission gear ratio promptly and comfortably despite of reduction of torque in changing gears by presetting the desired torque of the engine. CONSTITUTION: An engine(10) of a vehicle and a servo clutch(12) are arranged in a power train of the vehicle, and controlled with a power train control unit(14). The vehicle engine and the servo clutch have an engine output electronic unit and a clutch electronic unit. The desired variable is established in both control units through the power train control unit. The desired gradient to output torque of the clutch is preset in the servo clutch with the power train control unit, and the desired gradient to the output torque of the engine is decided corresponding to the output torque of the clutch. Torque is reduced comfortably and promptly to change transmission gear ratio with setting the desired gradient in advance. Parts are controlled at torque reduction phase in changing speed.

Description

기어단 변경시 토크가 감소되는 동안 서보 클러치와 차량 엔진을 통합 제어하기 위한 방법 {METHOD FOR THE COORDINATED CONTROLLING OF AN ENGINE AND A SERVO-CLUTCH DURING REDUCTION OF TORQUE DURING GEARSHIFT}METHOD FOR THE COORDINATED CONTROLLING OF AN ENGINE AND A SERVO-CLUTCH DURING REDUCTION OF TORQUE DURING GEARSHIFT}

본 발명은 구동 트레인의 변속기에서 기어단 변경시 토크가 감소되는 동안, 엔진 출력 전자 제어부를 구비한 차량 엔진 및 클러치 전자 제어부를 구비한 서보 클러치와 같은 차량의 구동 트레인(power train)에 배열된 부품들을 통합 제어하기 위한 방법에 관한 것이다.The invention relates to a component arranged in a drive train of a vehicle, such as a vehicle engine with an engine output electronic control and a servo clutch with a clutch electronic control, while the torque of the gear stage changes in the transmission of the drive train is reduced. The present invention relates to a method for integrated control.

차량의 구동 트레인에 배열된 부품들의 진보된 자동화에서, 소정의 상황에서 상기 부품들을 통합 제어하는 것이 필요하다. 차량은 예를 들어 자동화 수동 변속기(ASG)를 갖기 때문에 차량 엔진 및 클러치는 새로운 변속비 설정을 위해 이에 상응되게 조정되야 한다. 이런 유형의 변속기는 토크 감소 단계, 기어단 변경 단계 그리고 토크 형성 단계의 전체 세 단계로 분리될 수 있다. 특히 토크 감소는 실제적으로 상당한 문제를 발생시킨다. 이렇게, 클러치가 너무 빨리 개방되는 것은 엔진 회전수가 바람직하지 못하게 상승되나, 클러치가 너무 늦게 개방되는 것은 변속 시간을 불필요하게 연장시킨다. 종래 기술에서 이런 유형의 오류 제어에 대한 즉각적인 보상은 없었고 변속 진행을 약간 지연시키는 것이 최선의 방책이었다. 변속 진행의 제어는 실질적으로 변속 제어부 및 엔진 출력 제어부에 의한 신호들을 교체시키는 클러치 제어부를 통해 달성된다. 그러므로, 엔진 토크에 대한 영향은 상응되는 엔진 작동을 통한 클러치 제어에 의해 달성된다.In the advanced automation of the components arranged in the drive train of the vehicle, it is necessary to integrate control the components in certain situations. Since the vehicle has, for example, an automated manual transmission (ASG), the vehicle engine and clutch have to be adjusted accordingly for the new transmission ratio setting. This type of transmission can be divided into three stages: torque reduction, gear stage change and torque formation. In particular, torque reduction actually causes significant problems. In this way, opening the clutch too quickly undesirably raises the engine speed, while opening the clutch too late unnecessarily extends the shift time. There was no immediate compensation for this type of error control in the prior art and it was best to delay the shifting slightly. The control of the shift progression is substantially achieved through the clutch controller which replaces signals by the shift controller and the engine output controller. Therefore, the influence on engine torque is achieved by clutch control through corresponding engine operation.

청구항 제1항의 특징을 갖는 구동 트레인 제어를 이용하여, 서보 클러치 및 차량 엔진의 통합 제어를 위한 본 발명에 따른 방법을 통해 기어단 변경시 토크가 감소되는 동안 원리적으로 제한된 제어의 타성(inertia)은 극복될 수 있다. 먼저, 클러치 출력 토크에 대한 목표 기울기가 서보 클러치에 미리 설정된다. 이어서 클러치 출력 토크의 목표 기울기에 상응하는 엔진 출력 토크에 대한 목표 기울기가 결정된다. 목표 기울기들을 미리 설정함으로써 변속비 변경을 위해 요구되는 토크 감소는 신속하고 안락하게 실행될 수 있다.Inertia of principle limited control during torque reduction during gear stage change through the method according to the invention for integrated control of the servo clutch and the vehicle engine, using the drive train control with the features of claim 1. Can be overcome. First, the target slope with respect to the clutch output torque is preset in the servo clutch. The target slope is then determined for the engine output torque corresponding to the target slope of the clutch output torque. By presetting the target slopes, the torque reduction required for shift ratio change can be executed quickly and comfortably.

토크 감소 위상을 위한 클러치 출력 토크의 목표 기울기는 예를 들어 변속-ID, 주행 상황, 운전자 유형 또는 변속 상황과 같은 선택된 작동 인자에 따라 양호하게 결정된다. 토크 감소 위상의 지속 시간이 동일한 작동 인자에 의해 결정될 수 있다. 전반적으로, 클러치 토크의 기울기가 쌍곡탄젠트(hyperbloical tangent) 함수로 달성되면 유익한 것으로 증명되었다.The target slope of the clutch output torque for the torque reduction phase is well determined according to the selected operating factors such as shift-ID, driving situation, driver type or shift situation. The duration of the torque reduction phase can be determined by the same operating factor. Overall, it has proven beneficial if the slope of the clutch torque is achieved as a hyperbloical tangent function.

본 발명에 따르는 방법에 따라, 엔진 토크 및 클러치 토크의 기울기는 부합된다. 그러나, 목표 엔진 출력 토크와 실제 엔진 출력 토크 사이의 전환 작동이 고려되는 것은 유익한 것으로 증명되었다. 또한, 구동 트레인 제어에서, 출력 변수로서 평가 엔진 토크를 제공하는 엔진 모델이 설정된다. 상기 토크는 클러치 제어에 대한 입력 변수이다.According to the method according to the invention, the slopes of the engine torque and the clutch torque are matched. However, it has proved beneficial to consider the switching operation between the target engine output torque and the actual engine output torque. Also in the drive train control, an engine model is provided which provides the evaluation engine torque as an output variable. The torque is an input variable for clutch control.

또한, 목표 엔진 출력 토크의 결정을 위해, 예를 들어 변속-ID, 주행 상황, 운전자 유형 및 변속 상황과 같은 작동 변수가 고려되는 것은 유익하다. 이와 같은 조치는 예를 들어 상응되는 특성 곡선을 통해 구현될 수 있다.It is also advantageous for the determination of the target engine output torque to take into account operating variables such as shift-ID, driving situation, driver type and shift situation, for example. Such measures can be implemented, for example, via corresponding characteristic curves.

본 발명의 다른 양호한 구성은 종속 청구항에 기재된 특징에서 설명된다.Other preferred configurations of the invention are described in the features described in the dependent claims.

도1은 목표 클러치 출력 토크의 기울기의 개략적인 그래프.1 is a schematic graph of the slope of a target clutch output torque.

도2는 차량 엔진 및 차량 클러치를 위한 목표 변수를 결정하기 위한 구동 트레인 제어부의 개략적인 블록 선도.2 is a schematic block diagram of a drive train controller for determining target variables for a vehicle engine and a vehicle clutch.

도3은 목표 엔진 출력 토크를 결정하기 위한 개략적인 블록 선도.3 is a schematic block diagram for determining a target engine output torque.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 엔진10: engine

12: 클러치12: clutch

14: 구동 트레인 제어부14: drive train control unit

16: 계산 블록16: counting block

mdka,soll(t): 클러치 출력 토크md ka, soll (t): clutch output torque

mdma,soll(t): 엔진 출력 토크md ma, soll (t): engine output torque

mdma,soll: 목표 엔진 출력 토크md ma, soll : target engine output torque

KLmd,ma(t'): 특성 곡선KL md, ma (t '): characteristic curve

이하, 본 발명은 도면을 참조로 상세히 설명된다.Hereinafter, the present invention will be described in detail with reference to the drawings.

도2에서, 구동 트레인 제어부를 이용하여 차량 엔진(10) 및 서보 클러치(12)를 제어하기 위해 실질적으로 필요한 부품들이 도시된다. 차량 엔진(10) 및 서보 클러치(12)는 차량의 구동 트레인 내에 배치되며 엔진 출력 전자 제어부 엔진-SG 및 클러치 전자 제어부 클러치-SG를 가지고, 상응되는 목표 변수가 구동 트레인 제어부(14)를 통해 상기 양 제어부에 설정된다. 상기 부품(10, 12)에 대한 이런 유형의 제어는 본 발명에 따라 소정의 위상, 즉 자동 변속기에서 기어단 변경 중 토크 감소 위상에서 실행된다.In Fig. 2, the components substantially necessary for controlling the vehicle engine 10 and the servo clutch 12 using the drive train control unit are shown. The vehicle engine 10 and the servo clutch 12 are disposed in a drive train of the vehicle and have an engine output electronic controller engine-SG and a clutch electronic controller clutch-SG, the corresponding target variables being communicated via the drive train controller 14. It is set in both control parts. This type of control on the components 10, 12 is carried out in accordance with the invention at a certain phase, ie at the torque reduction phase during the gear stage change in the automatic transmission.

토크 감소(제1 위상) 위상은 이하와 같은 특징을 가진다.The torque reduction (first phase) phase has the following characteristics.

시작(시점 ta)은 새로운 기어단 요구를 통해, 예를 들어 기어단 선택에 대한 적합한 알고리즘에 의해 유도된다. 단계 변경의 불가피함의 결정은 공지되어 있으므로 본원에서는 상세히 설명되지 않는다.The start (time ta) is derived through a new gear stage request, for example by a suitable algorithm for gear stage selection. Determination of the inevitable step change is well known and therefore not described in detail herein.

토크 감소 위상 중에 클러치(12)는 개방되고 엔진 토크(mdma)가 적절히 설정된다. 기어단 진행 위상의 종료는 클러치(12)로부터 회전 토크가 더 이상 전달되지 않는 것을 특징으로 한다. 클러치 출력 토크의 변수(mdka)는 0 Nm의 값을 가진다. 제1 위상의 종료부에서 시점(te)에 대한 기어단 진행이 도달되면, 제1 조건은 이하와 같게 된다.During the torque reduction phase the clutch 12 is opened and the engine torque md ma is set appropriately. The end of the gear stage propagation phase is characterized in that no rotational torque is transmitted from the clutch 12 anymore. The variable md ka of the clutch output torque has a value of 0 Nm. When the gear stage progression to the time point te is reached at the end of the first phase, the first condition becomes as follows.

mdka(te) = 0 Nm (I)md ka (t e ) = 0 Nm (I)

이전 기어단이 적은 힘으로 해제될 수 있도록 상기 조건은 충족되야 한다.The condition must be met so that the previous gear stage can be released with less force.

또한, 제1 기어단 진행의 제1 위상 종료부에서 클러치는 토크를 더 이상 전달하지 못하도록 넓게 개방되야 한다. 즉, 클러치(12)로부터의 전달 가능한 최대 토크(mdk,max)는 마찬가지로 0 Nm의 값을 가진다. 토크(mdk,max)는 클러치 액츄에이터의 제어를 통해 설정되며, 클러치(12)로부터 실제로 전달되는 토크(mdka)는 전달 가능한 최대 토크(mdk,max)보다 같거나 작다. 제2 조건은 다음과 같다.In addition, the clutch at the first phase end of the first gear stage progression must be wide open to no longer transmit torque. In other words, the maximum torque m dk, max that can be transmitted from the clutch 12 has a value of 0 Nm as well. The torque m dk, max is set through the control of the clutch actuator, and the torque md ka actually transmitted from the clutch 12 is equal to or smaller than the maximum torque m dk, max that can be transmitted. The second condition is as follows.

mdk,max(te) = 0 Nm (II)md k, max (t e ) = 0 Nm (II)

상기 조건은 클러치 입력축과 클러치 출력축 사이에 힘의 연결이 발생되지 않는 것을 의미한다. 이를 통해 변속기는 클러치 입력축의 회전수를 새로운 기어단의 동기 회전수에 적응시킬 수 있다.The above condition means that no force connection is generated between the clutch input shaft and the clutch output shaft. This allows the transmission to adapt the rotational speed of the clutch input shaft to the synchronous rotational speed of the new gear.

엔진(10)은 시점(ta)으로부터 이하에서 상세히 설명되는 방법으로 제어된다. 하나의 시점(tb≥ ta)으로부터, 클러치(12)는 모멘트(mdk,max)가 감소되고, 시간 간격(tb≤ t ≤ te)이 "클러치 해제"로 표시되도록 제어된다.The engine 10 is controlled from the time point t a in a manner described in detail below. From one time point t b ≥ t a , the clutch 12 is controlled such that the moment m dk, max is reduced and the time interval t b ≤ t ≤ t e is indicated as "clutch release".

특히 변속비가 높은 단계로의 변속에서, 엔진(10) 및 클러치(12) 제어에 대한 다른 조건이 클러치 해제 중에 달성된다. 이에 의해, 클러치 입력 회전수(nke)는 클러치 출력 회전수(nka)와 항상 동일하다. 이때, 제3 조건은 이하와 같다.In particular, in shifting to a step in which the speed ratio is high, other conditions for controlling the engine 10 and the clutch 12 are achieved during clutch release. Thereby, the clutch input rotation speed n ke is always the same as the clutch output rotation speed n ka . At this time, the third condition is as follows.

nke(t) = nka(t), tb≤ t ≤ te(III)n ke (t) = n ka (t), t b ≤ t ≤ t e (III)

변속비가 높은 단계로의 변속에서, 새로운 기어단에 상응하는 엔진 회전수는 실제 엔진 회전수보다 작다. 이로써, 클러치 해제 중에 엔진 회전수와 클러치 입력 회전수(nke)가 동일하게 상승되는 것은 의미가 없으며 운전자에게 방해가될 뿐이다. 다른 한편으로, 클러치 해제 중에 클러치 입력 회전수(nke)는 클러치 출력 회전수(nka)보다 작지 않도록 되는데, 이는 그다음에 발생되는 슬립에서 양의 클러치 출력 토크가 더 이상 전달되지 않기 때문이다.In shifting to a step of high speed ratio, the engine speed corresponding to the new gear stage is smaller than the actual engine speed. As a result, it is not meaningful that the engine speed and the clutch input speed n ke are equally increased during the clutch release, which only disturbs the driver. On the other hand, during the clutch release, the clutch input speed n ke is not less than the clutch output speed n ka because the positive clutch output torque is no longer transmitted at the next slip that occurs.

시간 간격(ta, te) 내의 클러치 출력 토크에 대한 목표 기울기(mdka)가 토크 감소 중에 결정된다. 토크(mdka,soll(t))의 예시적인 기울기가 도1에 도시된다. 전술된 바와 같이, 시점(ta)으로부터, 토크(mdma,soll)가 구동 트레인(14)을 통해 엔진(10)에, 클러치 해제를 제어하기 위한 목표 출력 모멘트(mdk,soll)가 클러치에 미리 설정된다. 클러치 출력 토크(mdka,soll(t))의 목표 기울기는 이하의 방정식에 따른 함수 F(τ)를 통해 소정될 수 있다.The target slope mdka with respect to the clutch output torque in the time interval t a , t e is determined during torque reduction. An exemplary slope of the torque m dka, soll (t) is shown in FIG. 1. As described above, from the time point ta, the torque md ma, soll is transmitted to the engine 10 via the drive train 14, and the target output moment md k, soll for controlling the clutch release to the clutch. It is set in advance. The target slope of the clutch output torque md ka, soll (t) can be determined through the function F (τ) according to the following equation.

mdka,soll(t) = mdred,start· F(τ)md ka, soll (t) = md red , startF (τ)

여기서 τ는, τ = (t - tb) / tred(VI)Where τ is τ = (t-tb) / t red (VI)

tred= te- tb(VIII)t red = t e -t b (VIII)

에 따라 결정되며, tred는 클러치 해제 지속 시간을 나타내고, 토크(mdred,start)는 클러치 해제 초기의 클러치 출력 모멘트를 나타낸다. 클러치 해제 진행의 종료에서, 즉 시점(te)에서 τ= 0이된다. 변속비가 고정되고 주행 저항이 미리 설정되었을 때, 차량 가속은 전달된 클러치 출력 토크(mdka)에 비례한다. 클러치 해제 지속 시간(tred) 중에 주행 저항은 거의 일정하게 유지될 수 있기 때문에, 클러치 출력 토크 기울기(mdka)는 클러치 해제시 차량 가속 기울기를 결정한다.T red represents the clutch release duration, and torque (md red, start ) represents the clutch output moment at the beginning of the clutch release. At the end of the clutch release progression, that is, at time t e , τ = 0. When the speed ratio is fixed and the running resistance is set in advance, the vehicle acceleration is proportional to the transmitted clutch output torque md ka . Since the running resistance can be kept almost constant during the clutch release duration t red , the clutch output torque slope md ka determines the vehicle acceleration slope upon clutch release.

함수 F(τ) 및 지속 시간(tred)은 소정 가능한 변수에 따라 유익하게 결정될 수 있다. 이들 변수로는 예를 들어 소정의 기어단들 사이에서의 전환시에 변속기의 변속비 변경에 대한 평가 변수를 나타내는 변속-ID, 또는 예를 들어 경사로 주행 또는 반복되는 주행과 정차(stop & go)와 같은 소정의 작동 모드에서의 주행 상황이 고려될 수 있다. 또한, 예를 들어 스포츠적인 또는 경제적인 주행 방법 중 어느 하나를 선호하는 운전자 유형, 또는 함수 F(τ) 및 지속 시간(tred)의 결정을 위한 변속 상황(예를 들어, 변속 특성 곡선으로부터의 기어단 선택)이 또한 고려될 수도 있다.The function F (τ) and the duration t red can be advantageously determined according to some possible variable. These variables include, for example, a shift-ID representing an evaluation variable for the transmission ratio change of the transmission at the time of switching between predetermined gear stages, or for example ramp and stop and stop & go and Driving conditions in the same predetermined operating mode may be considered. Also, for example, from a driver's type that prefers either a sporting or economical driving method, or a shift situation (e.g. from a shift characteristic curve) for the determination of the function F (τ) and duration t red . Gear stage selection) may also be considered.

함수 F(τ)는 설명되는 바와 같이, 이하의 방정식에 따르는 특히 쌍곡탄젠트로서 달성될 수 있다.The function F (?) Can be achieved, in particular, as a hyperbolic tangent according to the following equation, as explained.

F(τ) = 1 / 2 (tanh(-α·τ + β)+ 1) (IX)F (τ) = 1/2 (tanh (-α · τ + β) + 1) (IX)

여기서 α 및 β는 자유롭게 사용될 수 있으며, 작동 시스템에 개별적인 적응을 허용하는 인자를 나타낸다.Where α and β can be used freely and represent factors that allow individual adaptation to the operating system.

엔진(10) 및 클러치(12)의 통합 제어를 위해 목표 엔진 출력 토크(mdma,soll)가 결정되야 하는 것이 도2에 따른 도면에 명확히 도시된다. 이는 계산 블록(16)에서 상세히 설명된다. 토크(mdma)는 한편으로 엔진 모델(18) 내의 입력부에 있고, 다른 한편으로 엔진 출력 제어부인 엔진-SG에 대한 입력 변수로서 사용된다.It is clearly shown in the drawing according to FIG. 2 that the target engine output torque md ma, soll has to be determined for the integrated control of the engine 10 and the clutch 12. This is described in detail in calculation block 16. The torque md ma is on the one hand at the input in the engine model 18 and on the other hand is used as an input variable for the engine-SG which is the engine output control.

엔진 모델(18)은 클러치 제어부인 클러치-SG에 대한 입력 변수를 나타내는 평가된 엔진 출력 토크(mdma,est)를 전송한다.Engine model 18 transmits an estimated engine output torque md ma, est representing the input variable for clutch-SG, the clutch control.

mdk,soll= mdma,est(X)md k, soll = md ma, est (X)

평가된 엔진 출력 토크(mdma,est)는 데드 타임(Tt) 및 전달 함수( φ)의 고려하에 엔진 모델(18)에 의해 실제 시간에서 결정된다. 클러치(12)는, 클러치가 토크(mdk,soll)를 항상 최대로 전달시킬 수 있도록 설정된다. 그러므로, 실제 클러치 출력 토크(mdka)는 mdma이나, 최대로는 mdk,soll이다.The estimated engine output torque md ma, est is determined at actual time by the engine model 18 under consideration of the dead time T t and the transfer function φ. The clutch 12 is set so that the clutch can always transmit the torque md k, soll at maximum. Therefore, the actual clutch output torque md ka is md ma , but at most md k, soll .

목표 엔진 출력 토크(mdma,soll)는 계산 블록(16)에서 결정되며, 이하와 같이 실행된다.The target engine output torque md ma, soll is determined in calculation block 16, and is executed as follows.

전술된 바와 같이, 토크 감소 위상을 위해 시간 간격(ta,te)으로, 엔진 출력 토크(mdma(t))의 기울기가 클러치 출력 토크(mdka,soll(t))에 상응되도록 목표 엔진 출력 토크(mdma,soll(t))의 기울기가 미리 설정된다. 이로써 다음 관계식이 성립된다.As described above, at a time interval t a , t e for the torque reduction phase, the slope of the engine output torque md ma (t) corresponds to the clutch output torque md ka, soll (t). The slope of the engine output torque md ma, soll (t) is preset. This establishes the following relationship.

mdma(t) = mdka,soll(t) (XI)md ma (t) = md ka, soll (t) (XI)

전달 함수(φ) 및 데드 타임(Tt)은 전환 작동을 고려하기 위해 이하의 방정식에 따라 수행되며, 요구된 엔진 출력 토크는 상기 전환 작동을 이용하여 엔진에 의해 동적(dynamic)으로 설정된다.The transfer function φ and dead time T t are carried out according to the following equation in order to consider the switching operation, and the required engine output torque is set dynamically by the engine using the switching operation.

mdma(t) = φ{mdma,soll(t-Tt)} (XII)md ma (t) = φ {md ma, soll (tT t )} (XII)

방정식 (XI) 및 (XIII)을 이용하여 엔진 출력 토크를 위한 설정값이 식Using equations (XI) and (XIII) the setpoint for engine output torque

φ{mdma,soll(t-Tt)} = mdka,soll(t) (XIII)φ {md ma, soll (tT t )} = md ka, soll (t) (XIII)

에 따라 결정된다. 전달 함수(φ)의 반전에 따라 이하의 식이 성립된다.It depends on. The following formula holds according to the inversion of the transfer function φ.

mdma,soll(t-Tt) = φ-1{mdka,soll(t)} (XIV)md ma, soll (tT t ) = φ -1 {md ka, soll (t)} (XIV)

클러치 출력 토크(mdka,soll(t))에 대한 소정의 목표 기울기로부터 엔진(10)의 전환 작동의 인식하에, 토크 감소 위상 중에 전술된 조건들을 충족시키는 목표 엔진 출력(mdma,soll(t))에 대한 기울기가 결정될 수 있다. 소정의 기울기(mdka,soll(t))를 위해 mdma,soll(t)에 대한 목표 기울기가 생성된다.Recognizing the switching operation of the engine 10 from a predetermined target slope with respect to the clutch output torque md ka, soll (t), the target engine output md ma, soll (t to satisfy the conditions described above during the torque reduction phase The slope for)) can be determined. A target slope for md ma, soll (t) is generated for a predetermined slope (md ka, soll (t)).

토크(mdma,soll)에 대한 목표 기울기의 표준화는 특성 곡선(KLimd,ma)에 따라 달성된다(도3 참조). 상기 특성 곡선의 입력 변수는 변속 과정의 제1 위상의 초기로부터 경과된 시간(t')이다.Normalization of the target slope with respect to torque md ma, soll is achieved according to the characteristic curve KLi md, ma (see FIG. 3). The input variable of the characteristic curve is the time t 'elapsed from the beginning of the first phase of the shifting process.

t' = t - ta(XV)t '= t-t a (XV)

엔진(10)의 상응되는 제어에 의해 시점Viewpoint by the corresponding control of the engine 10

ta= tb- Tt(XVI)t a = t b -T t (XVI)

에서 시작된다. 목표 엔진 출력 토크(mdma,soll)의 결정은 이하의 식에 의해 달성된다.Starts from. The determination of the target engine output torque md ma, soll is achieved by the following equation.

mdma,soll= KLimd,ma(t') · mdred,start(XVII)md ma, soll = KLi md, ma (t ') md md red, start (XVII)

특성 곡선(KLimd,ma)은 변속-ID, 주행 상황, 운전자 유형 및 변속 상황과 같은 소정의 작동 변수에 따를 수 있다.The characteristic curve KLi md, ma may depend on certain operating variables such as shift-ID, driving situation, driver type and shift situation.

본 발명에 따르면, 목표 엔진 토크가 미리 설정되어 기어단 변경 중에 토크가 감소되더라고 안락하고 신속한 변속비 변경이 달성된다.According to the present invention, a comfortable and fast shift ratio change is achieved even if the target engine torque is preset so that the torque is reduced during the gear stage change.

Claims (8)

구동 트레인의 변속기에서 기어단 변경시 토크가 감소되는 동안, 엔진 출력 전자 제어부를 구비한 차량 엔진 및 클러치 전자 제어부를 구비한 서보 클러치와 같은 차량의 구동 트레인에 배열된 부품들을 통합 제어하기 위한 방법에 있어서,In a method for integrally controlling parts arranged in a drive train of a vehicle, such as a vehicle engine with an engine output electronic control and a servo clutch with a clutch electronic control, while the torque is reduced when the gear stage is changed in the transmission of the drive train. In 구동 트레인 제어부(14)에 의해By the drive train control unit 14 (a) 클러치 출력 토크(mdka,soll(t))에 대한 목표 기울기가 서보 클러치(12)에 미리 설정되며,(a) The target slope for the clutch output torque (md ka, soll (t)) is preset in the servo clutch 12, (b) 이에 상응되도록, 엔진 출력 토크(mdma,soll(t))에 대한 목표 기울기가 클러치 출력 토크(mdka,soll(t))에 결정되는 것을 특징으로 하는 방법.(b) correspondingly, the target slope with respect to the engine output torque md ma, soll (t) is determined in the clutch output torque md ka, soll (t). 제1항에 있어서, 토크 감소 위상에 대한 클러치 출력 토크(mdka,soll(t))의 목표 기울기가, 예를 들어 변속-ID, 주행 상황, 운전자 유형 또는 변속 상황과 같은 선택된 작동 인자에 따라 결정되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the target slope of the clutch output torque (md ka, soll (t)) with respect to the torque reduction phase depends on the selected operating factor such as, for example, shift-ID, driving situation, driver type or shift situation. Which method is determined. 상기 항 중 어느 한 항에 있어서, 토크 감소 위상의 지속 시간(tred)은 변속-ID, 주행 상황, 운전자 유형 또는 변속 상황과 같은 선택된 작동 인자에 따라 결정되는 것을 특징으로 하는 방법.Method according to any of the preceding claims, characterized in that the duration of the torque reduction phase (t red ) is determined in accordance with the selected operating factor such as shift-ID, driving situation, driver type or shift situation. 제1항에 있어서, 클러치 출력 토크(mdka,soll(t))의 기울기는 쌍곡탄젠트 함수로 성립되는 것을 특징으로 하는 방법.The method of claim 1 wherein the slope of the clutch output torque (md ka, soll (t)) is established as a hyperbolic tangent function. 상기 항 중 어느 한 항에 있어서, 평가된 엔진 출력 토크(mdma,est)를 출력 변수로서 제공하는 엔진 모델(18)이 구동 트레인(14)내에 제공됨으로써, 목표 엔진 출력 토크(mdma,soll)와 실제 엔진 출력 토크(mdma) 사이의 전환 작동이 고려되는 것을 특징으로 하는 방법.An engine model 18 is provided in the drive train 14 which provides the estimated engine output torque md ma, est as an output variable, thereby providing a target engine output torque md ma, soll. ) And the actual engine output torque (md ma ) is considered. 제5항에 있어서, 평가된 엔진 출력 토크(mdma,est)는 클러치 제어부(클러치-SG)에 대한 입력 변수인 것을 특징으로 하는 방법.6. Method according to claim 5, characterized in that the estimated engine output torque (md ma, est ) is an input variable to the clutch control (clutch-SG). 상기 항 중 어느 한 항 또는 다수의 항에 있어서, 목표 엔진 출력 토크(mdma,soll)는 변속-ID, 주행 상황, 운전자 유형 또는 변속 상황과 같은 선택된 작동 인자에 따라 결정되는 것을 특징으로 하는 방법.Method according to any of the preceding claims, characterized in that the target engine output torque (md ma, soll ) is determined in accordance with the selected operating factor such as shift-ID, driving situation, driver type or shift situation. . 제7항에 있어서, 목표 엔진 출력 토크(mdma,soll)가 특성 곡선(KLmd,ma(t'))으로부터 결정되며, 특성 곡선의 입력 변수는 토크 감소의 초기로부터 경과된 시간(t')인 것을 특징으로 하는 방법.A target engine output torque (md ma, soll ) is determined from the characteristic curve (KL md, ma (t '), and the input variable of the characteristic curve is the time elapsed from the beginning of the torque reduction. ).
KR1020000085159A 1999-12-30 2000-12-29 Method for the coordinated controlling of an engine and a servo-clutch during reduction of torque during gearshift KR20010062837A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963746.6 1999-12-30
DE19963746A DE19963746A1 (en) 1999-12-30 1999-12-30 Method for coordinated control of vehicle engine and servo clutch during torque reduction resulting from gear change based on matching reference characteristics for clutch torque and engine torque

Publications (1)

Publication Number Publication Date
KR20010062837A true KR20010062837A (en) 2001-07-07

Family

ID=7934974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000085159A KR20010062837A (en) 1999-12-30 2000-12-29 Method for the coordinated controlling of an engine and a servo-clutch during reduction of torque during gearshift

Country Status (5)

Country Link
KR (1) KR20010062837A (en)
BR (1) BR0006316A (en)
DE (1) DE19963746A1 (en)
FR (1) FR2803254B1 (en)
IT (1) IT1319578B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108791297A (en) * 2017-05-03 2018-11-13 罗伯特·博世有限公司 Method and apparatus for manipulating driving system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318772C (en) * 2001-08-06 2007-05-30 卢克摩擦片和离合器两合公司 Method for assembling clutch system
FR2829816B1 (en) * 2001-09-14 2003-12-05 Renault EARLY RE-CLUTCH STRATEGY DURING SHIFT CHANGES AMOUNTING AUTOMATED TRANSMISSIONS
FR2832198B1 (en) * 2001-11-09 2004-01-23 Renault DOWNSTREAM SHIFT CHANGE METHOD ON AN AUTOMATED TRANSMISSION
FR2857915B1 (en) * 2003-07-24 2006-03-03 Renault Sa DEVICE FOR CONTROLLING THE SLIDING OF THE CLUTCH OF AN AUTOMATED TRANSMISSION
JP3724491B2 (en) 2004-02-06 2005-12-07 いすゞ自動車株式会社 Engine control device for vehicle power transmission device
DE102009029741B4 (en) 2008-07-16 2023-03-30 Schaeffler Technologies AG & Co. KG Method and device for controlling an automated clutch and computer program product
FR2955547B1 (en) * 2010-01-28 2012-03-09 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING AN ENGINE AND A PILOT CLUTCH DURING A FIRST CONTROL PHASE OF A TRANSMISSION RATIO CHANGE OF A MECHANICAL GEARBOX
DE102015203622A1 (en) 2015-03-02 2016-09-08 Robert Bosch Gmbh Method and device for the method for determining a shift request of a driver of a motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591038A (en) * 1983-06-16 1986-05-27 Fujitsu Limited Automatic clutch control system
US5634867A (en) * 1994-09-19 1997-06-03 Eaton Corporation Main clutch reengagement control for a double clutch downshift
DE19632939B4 (en) * 1996-04-29 2007-11-08 Robert Bosch Gmbh Method and device for adjusting a drive torque
DE19841856C1 (en) * 1998-09-14 1999-12-23 Mannesmann Sachs Ag Method of conducting switching procedures for drive system of motor vehicle with automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108791297A (en) * 2017-05-03 2018-11-13 罗伯特·博世有限公司 Method and apparatus for manipulating driving system

Also Published As

Publication number Publication date
FR2803254A1 (en) 2001-07-06
IT1319578B1 (en) 2003-10-20
BR0006316A (en) 2001-07-31
FR2803254B1 (en) 2006-07-28
ITMI20002744A1 (en) 2002-06-19
DE19963746A1 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
US4942787A (en) Apparatus for and method of controlling hydraulic clutch operation in an automatic transmission
US5480363A (en) Apparatus for controlling slip of lock-up clutch on motor vehicle during deceleration of the vehicle
EP0231059B1 (en) Control system for a continuously variable transmission
EP0559342A3 (en) A method and an apparatus for controlling a car equipped with an automatic transmission having a lockup clutch
US4730712A (en) System for controlling a clutch for a motor vehicle
EP0242127B1 (en) System for controlling a clutch for a vehicle
US5009129A (en) Transmission ratio control system for a continuously variable transmission
US5413542A (en) Clutch control system
US5782710A (en) Automatic clutch control
US5009127A (en) Transmission ratio control system for a continuously variable transmission
US5759131A (en) Control of an automatic clutch
EP0276022B2 (en) Control system for a clutch for a vehicle
KR20010062837A (en) Method for the coordinated controlling of an engine and a servo-clutch during reduction of torque during gearshift
US7370548B2 (en) Method for controlling and regulating a transmission brake in an automatic motor vehicle transmission
US6729999B2 (en) Drive arrangement
EP0297819A2 (en) Transmission ratio control system for a continuously variable transmission
EP0244223B1 (en) Control system for a clutch for a vehicle
EP0251571B1 (en) Control system for a clutch for a vehicle
JP2876324B2 (en) Control device for continuously variable transmission
EP0240281B1 (en) Control system for an electromagnetic clutch for a vehicle
US4848544A (en) Control system for a clutch for a vehicle
JPH0155693B2 (en)
JP2805148B2 (en) Slip control device for torque converter
JPH0211646Y2 (en)
KR100476224B1 (en) Method of controlling damper clutch for a automatic transmission for vehicles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application