KR20010061641A - A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method - Google Patents

A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method Download PDF

Info

Publication number
KR20010061641A
KR20010061641A KR1019990064139A KR19990064139A KR20010061641A KR 20010061641 A KR20010061641 A KR 20010061641A KR 1019990064139 A KR1019990064139 A KR 1019990064139A KR 19990064139 A KR19990064139 A KR 19990064139A KR 20010061641 A KR20010061641 A KR 20010061641A
Authority
KR
South Korea
Prior art keywords
grain size
ferrite
ultrasonic
measured
carbon steel
Prior art date
Application number
KR1019990064139A
Other languages
Korean (ko)
Other versions
KR100797281B1 (en
Inventor
홍순택
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990064139A priority Critical patent/KR100797281B1/en
Publication of KR20010061641A publication Critical patent/KR20010061641A/en
Application granted granted Critical
Publication of KR100797281B1 publication Critical patent/KR100797281B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Algebra (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A non-destructive measuring method is provided to measure the crystal grain size of a ferrite from a damping change and the correlation of the average crystal grain size by using an ultrasonic damping coefficient. CONSTITUTION: A damping coefficient(alpha) of a carbon steel is measured by using an ultrasonic probe. Herein, the carbon steel has a two-phase complex structure with ferrite and perlite. The measured damping coefficient is put into a formula to calculate the crystal grain size of the ferrite. The formula is as follow. D = "1.79" + 22.97 * alpha¬1/b. Herein, the b is 2.02 to 2.04. A standard deviation is 0.95.

Description

초음파법에 의한 탄소강 페라이트 결정립 크기의 비파괴적 측정방법{A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method}A nondestructive measurement method for grain size of ferrite crystal by ultrasonic method

본 발명은 강판의 냉각후 상온에서 페라이트 결정립을 비파괴적으로 측정하는 방법으로써, 보다 상세하게는 페라이트 평균 결정립의 크기를 초음파 감쇠계수의 측정에 의해 감쇠 변화와 탄소강에서 페라이트 평균결정립크기의 상관관계로부터 비파괴적으로 측정할 수 있는 방법에 관한 것이다.The present invention is a method for non-destructively measuring the ferrite grains at room temperature after cooling the steel sheet, and more specifically, the size of the ferrite average grain size is determined from the correlation between the attenuation change and the ferrite average grain size in carbon steel by measuring the ultrasonic attenuation coefficient. It relates to a method that can be measured nondestructively.

종래에는 강판의 페라이트 평균결정립 크기를 측정하기 위해서 강판의 기계적 절단, 마운팅, 폴리싱 등의 일련공정을 거친후 광학현미경 또는 주사전자 현미경을 이용하여 그 미세조직을 관찰하고 영상분석기를 동원하여 그 결정립 크기를 산출하였다. 따라서, 시편의 준비 및 페라이트 결정립 크기의 측정에 소요되는 인력과 시간이 다량 소요되어 비효율적 특성을 가지며, 제품의 손상없이 강판내 원하는 지점의 페라이트 평균결정립크기를 측정할 수 없었다.Conventionally, in order to measure the ferrite average grain size of a steel sheet, the microstructure is subjected to a series of processes such as mechanical cutting, mounting, and polishing of the steel sheet, followed by observing the microstructure using an optical microscope or a scanning electron microscope, and mobilizing an image analyzer. Was calculated. Therefore, a large amount of manpower and time required for preparation of the specimen and measurement of the ferrite grain size have inefficient characteristics, and the ferrite average grain size of the desired point in the steel sheet cannot be measured without damaging the product.

이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 페라이트 평균 결정립의 크기를 초음파 감쇠계수를 측정함으로서, 감쇠의 변화와 탄소강에서 페라이트 평균결정립크기의 상관관계로부터 비파괴적으로 페라이트 결정립 크기를 측정할수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the above problems, and proposed the present invention based on the results. The present invention measures the size of the ferrite average grain size by measuring the ultrasonic attenuation coefficient, It is an object of the present invention to provide a method for non-destructively measuring ferrite grain size from the correlation between the change and the ferrite average grain size in carbon steel.

도 1은 감쇠계수와 페라이트로 평균 결정립크기와의 관계를 자연대수-자연대수 형태로 나타낸 그래프1 is a graph showing a natural logarithmic-natural logarithmic relationship between attenuation coefficient and ferrite average grain size.

도 2는 본 발명의 방법에 의해 산출된 페라이트 평균 결정립크기와의 광학현미경으로 측정된 페라이트 평균 결정립 크기의 상관관계를 나타낸 그래프Figure 2 is a graph showing the correlation between the ferrite average grain size measured by an optical microscope with the ferrite average grain size calculated by the method of the present invention

상기 목적을 달성하기 위한 본 발명은, 페라이트 + 퍼얼라이트의 2상 혼합조직을 갖는 탄소강의 감쇠계수(α)를 초음파 탐촉자를 사용하여 측정한 후, 측정된 α를 하기 식(1)에 대입하여 페라이트 결정립 크기를 계산하여 얻는 것을 특징으로 하는 초음파법에 의한 탄소강 페라이트 결정립 크기의 비파괴적 측정방법에 관한 것이다.The present invention for achieving the above object, after measuring the attenuation coefficient (α) of the carbon steel having a two-phase mixed structure of ferrite + pearlite by using an ultrasonic probe, by substituting the measured α in the following formula (1) Non-destructive measurement method of carbon steel ferrite grain size by the ultrasonic method, characterized in that obtained by calculating the ferrite grain size.

Dav= 1.79 + 22.97×α1/b D av = 1.79 + 22.97 x α 1 / b

[b:2.02-2.04, R2: 96.31%, σ(standard deviation): 0.95][b: 2.02-2.04, R 2 : 96.31%, σ (standard deviation): 0.95]

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 초음파 탐촉자를 사용하여 감쇠계수를 측정하고 이를 이용하여 비파괴적으로 페라이트의 결정입 크기를 계측하는 것이다. 다음에서는 본 발명을 제안하게 된 이론적 배경을 설명한 후, 그 같은 배경에 의해 제안된 본 발명의 구성을 상세히 설명한다. 상기 초음파 탐촉자는 수침형이 바람직하지만 여기에 한정되는 것은 아니다.The present invention is to measure the attenuation coefficient using the ultrasonic transducer and to measure the grain size of the ferrite non-destructively by using it. Next, after explaining the theoretical background to which the present invention has been proposed, the configuration of the present invention proposed by such a background will be described in detail. The ultrasonic probe is preferably immersion type, but is not limited thereto.

초음파가 재료를 전파할 때 결정입계에서 초음파의 산란에 의해 그 에너지가 지수적으로 감소하게 된다는 것은 이미 알려진 사실이다. 작은 진폭으로 주어진 평면파는 초음파 원으로 부터 거리 x에서 에너지 강도(I)는 하기 수학식(2)로 주어진다.It is already known that the energy decreases exponentially by the scattering of ultrasonic waves at grain boundaries when ultrasonic waves propagate the material. Given a small amplitude plane wave, the energy intensity I at the distance x from the ultrasonic source is given by the following equation (2).

I= Io exp(-αx)I = Io exp (-αx)

여기서, Io는 초기 에너지 강도를 나타내며, α는 감쇠계수를 각각 나타낸다. 감쇠는 주파수와 상관관계에 있고, 위상속도 보다 주파수에 의존하므로 쉽게 측정 가능하다. 일반적으로 감쇠측정은 주파수 의존성이 재료물성에 밀접하게 연결되므로 적정 주파수 범위 상에서 이루어질 때 유용하게 적용될수 있다. 그리고, 이러한 초음파의 감쇠계수는 초음파의 파장(λ)과 결정립크기(D)에 의존한다. λ<<D인 경우를 갖는 레일리(Rayleigh)산란 영역이라 부르며 이 영역에서 동일주파수를 갖는 초음파 탐촉자를 사용할 경우 결정립크기와 감쇠계수와 상관관계는 하기 수학식(3)로 표현되며, 수학식(3)를 이용하면 결정립 크기를 산출할 수 있게 된다.Where Io represents the initial energy intensity and α represents the attenuation coefficient, respectively. Attenuation correlates with frequency and is more easily measured since it depends on frequency rather than phase velocity. In general, attenuation measurements can be usefully applied when the frequency dependence is closely related to material properties. The attenuation coefficient of the ultrasonic wave depends on the wavelength λ and the crystal grain size D of the ultrasonic wave. It is called Rayleigh scattering region having the case of λ << D. In case of using ultrasonic transducer having the same frequency in this region, the correlation between grain size and attenuation coefficient is expressed by the following equation (3). 3), it is possible to calculate the grain size.

ADn AD n

[여기서, A는 비례상수이며, n은 3의 값으로 주어진다.]Where A is a proportionality constant and n is given a value of 3.

그러나, 상기 수학식(3)는 다음의 조건들을 만족할 때 적용가능하며, 실제 현장에서 생산된 강판에서 다음의 가정을 만족시키기 어려운 조건이기 때문에 실제 수학식(3)를 적용할 수 없다.However, the above Equation (3) is applicable when the following conditions are satisfied, and the actual Equation (3) cannot be applied because it is difficult to satisfy the following assumption in the steel sheet produced in the actual field.

1) 결정립들의 이방성이 존재하지 않아야 한다.1) There should be no anisotropy of grains.

2) 우선방위가 존재하지 않아야 한다.2) Priority defenses should not exist.

3) 결정립이 등축정이어야 한다.3) The grain should be equiaxed.

4) 공공이나 개재물을 갖지 않는 단일상의 결정입자를 가져야 한다.4) have a single phase determinant with no public or inclusions.

따라서, 본 발명자는 탄소강 강판의 다양한 결정립 크기를 갖도록 열처리를 통해서 실험실적 및 현장 생산된 강판을 통하여, 다음과 같은 결과를 얻을 수 있었다.Therefore, the present inventors have obtained the following results through laboratory and field-produced steel sheets through heat treatment to have various grain sizes of carbon steel sheets.

즉, 하기 표1과 같은 탄소강의 조성을 갖는 강판을 압연조건 및 열처리조건을 다양하게 변화시켜 페라이트의 평균결정립 크기를 변화시킨 후, 중심주파수 15MHz의 수침식 종파용 탐측자를 사용하여 감쇠계수를 측정하고 결정립크기와 감쇠계수와의 상관관계를 도 1에 나타내었다. 초음파 중심주파수가 15MHz일때 파장은 약 400μm이고 페라이트 결정립의 크기는 50μm이하이므로 레일리 산란(λ<<D) 영역에 속한다.That is, the steel sheet having the composition of carbon steel as shown in Table 1 was changed in various rolling conditions and heat treatment conditions to change the average grain size of ferrite, and then the damping coefficient was measured using a submerged longitudinal wave probe having a center frequency of 15 MHz. The correlation between grain size and attenuation coefficient is shown in FIG. 1. When the ultrasonic center frequency is 15MHz, the wavelength is about 400μm and the size of ferrite grains is 50μm or less, so it belongs to Rayleigh scattering (λ << D) region.

화학성분(wt%)Chemical composition (wt%) CC MnMn SiSi PP SS TiTi NbNb sol. Alsol. Al N2 N 2 DD 0.160.16 1.111.11 0.260.26 0.0190.019 0.0040.004 0.0110.011 -- 0.0300.030 0.00350.0035 NN 0.160.16 1.101.10 0.260.26 0.0190.019 0.0040.004 0.0120.012 0.0100.010 0.0280.028 0.00290.0029 EE 0.100.10 1.401.40 0.220.22 0.0150.015 0.0060.006 0.0110.011 -- 0.0420.042 0.00250.0025

실제 공업용 탄소강은 페라이트와 퍼얼라이트의 복합상을 가지므로 단일상도 아니며 결정립 크기가 등축상도 아니므로 새로운 형태의 관계식을 얻어야 평균 결정립 크기를 측정할 수 있다.In fact, the industrial carbon steel has a complex phase of ferrite and perlite, so it is not a single phase and its grain size is not equiaxed, so it is necessary to obtain a new relational relationship to measure the average grain size.

도 1에서 감쇠계수와 페라이트 평균 결정립 크기와의 관계를 자연대수-자연대수 형태의 그래프에서 얻어진 기울기는 수학식(3)에서 n값을 나타내며, 이 값이 약2.03임을 알 수 있으며, 이같은 작업을 여러번 행한 결과 그 값이 2.02-2.04정도의 값을 보였고, 2.03이 가장 근사값이었다. 그리고, 도 1에서 얻은 기울기 값과 측정된 초음파 감쇠계수(α)와 페라이트 결정립 크기와 (Dav)의 상관식을 다음 수학식(1)으로 주어진다.In Fig. 1, the slope of the relationship between the attenuation coefficient and the average size of the ferrite grains from the natural logarithm-natural logarithmic graph shows the n value in Equation (3), which is about 2.03. As a result of several times, the value was about 2.02-2.04, and 2.03 was the best approximation. The correlation between the gradient value obtained in FIG. 1, the measured ultrasonic attenuation coefficient α, the ferrite grain size, and (D av ) is given by the following Equation (1).

[수학식 1][Equation 1]

Dav= 1.79 + 22.97×α1/b D av = 1.79 + 22.97 x α 1 / b

[(R2: 96.31%),((R 2 : 96.31%),

σ(standard deviation): 0.95,σ (standard deviation): 0.95,

b:2.02-2.04, 감쇠계수 α의 단위는 Nepers/cm 이고, 페라이트 결정립의 단위는 μm이다.]b: 2.02-2.04, unit of attenuation coefficient α is Nepers / cm, and unit of ferrite grain is μm.]

따라서, 감쇠계수 초음파에 의해 측정된 α값을 상기 수학식(1)에 대입함으로서, 페라이트 결정립의 크기를 계산할 수 있는 것이다.Therefore, the magnitude of the ferrite grains can be calculated by substituting the α value measured by the attenuation coefficient ultrasonic wave into the above equation (1).

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

현장에서 생산된 인장강도 40~60kg/㎟급을 갖는 대표적인 일반압연 및 가속냉각 강재 28중을 채취하여 초음파 감쇠계수 측정을 하여, 상기 수학식(1)을 이용하여 결정립크기를 산출하였고자 하였다. 본 실시예에서는 상기 수학식(1)에 있어 b값을 2.03으로 하였다.The typical attenuated and accelerated-cooled steels having a tensile strength of 40-60kg / mm2 produced in the field were taken from 28 to measure ultrasonic attenuation coefficients, and the grain size was calculated using Equation (1). In the present Example, b value was set to 2.03 in the said Formula (1).

상기 현장에서 채취된 강판의 강종 및 화학조성은 하기 표2에 나타내었다. 하기 표2에서 SS400은 인장강도 40kgf/㎟ 급 일반구조용 탄소강을 나타내며, SM41B 및SM50B와 SM490 강재는 인장강도 40~60kgf/㎟급 용접구조용강을 나타낸다. 그리고, NVA, LRA, AH & EH강은 40~60kgf/㎟ 급 조선용 강재를 의미하며, API X65는 항복강도 65ksi급 강판용 강판이며, S45C는 탄소함량 0.45%를 포함하는 기계구조용 탄소강을 의미한다.Steel grades and chemical compositions of the steel sheets collected at the site are shown in Table 2 below. In Table 2, SS400 represents a carbon steel for general structural strength of 40kgf / mm2, and SM41B, SM50B, and SM490 steels represent 40 ~ 60kgf / mm2 of welded steel for tensile strength. NVA, LRA, AH & EH steel refers to 40 ~ 60kgf / mm2 shipbuilding steel, API X65 is yield strength 65ksi steel sheet, and S45C refers to mechanical structural carbon steel containing 0.45% of carbon content. .

이들 강판의 C 함량은 0.1%에서 0.49%까지 분포되어 있는 강판임을 볼 수 있다. 본 실시예에 사용된 강판의 두께는 6~40mm의 두께 범위를 가졌고 초음파 탐촉자는 수침용 중심주파수 15MHz를 사용하였다.The C content of these steel sheets can be seen that the steel sheet is distributed from 0.1% to 0.49%. The thickness of the steel sheet used in the present embodiment had a thickness range of 6 to 40 mm and the ultrasonic probe used a central frequency of 15 MHz for immersion.

상기 조건으로 상기 현장 생산 강재를 사용하여 초음파 감쇠계수를 측정하였고, 또한 광학현미경으로 페라이트 평균 결정립 크기와 상분율을 측정하였다. 이같이 측정된 값들은 하기 표3에 나타내었으며, 퍼얼라이트 분율의 분포는 약 7%에서 73%를 보이고 있었다.Under the above conditions, ultrasonic attenuation coefficients were measured using the field-produced steel, and ferrite average grain size and phase fraction were measured by an optical microscope. The measured values are shown in Table 3 below, and the distribution of the pearlite fraction was about 7% to 73%.

또한, 상기 측정된 초음파 감쇠계수를 상기 식(1)에 대입하여, 페라이트 평균결정립의 크기를 계산하였다. 이같이 계산된 값과 상기 광학현미경으로 측정된 페라이트 평균 결정립크기를 이용하여 도 2에 나타내었다.In addition, the measured ultrasonic attenuation coefficient was substituted into Equation (1) to calculate the size of the ferrite average grain size. It is shown in Figure 2 using the calculated value and the ferrite average grain size measured by the optical microscope.

순번turn 강종Steel grade 화학조성(wt%)Chemical composition (wt%) CC MnMn SiSi CrCr MoMo NiNi NbNb CuCu TiTi VV 1One SS400SS400 0.1260.126 0.700.70 0.240.24 0.0240.024 0.0090.009 0.0200.020 -- 0.0160.016 22 SS400SS400 0.1620.162 0.540.54 0.270.27 0.0260.026 0.0070.007 0.0250.025 -- 0.0160.016 33 SS400SS400 0.1500.150 0.810.81 0.250.25 0.0210.021 0.0110.011 0.0190.019 -- 0.0200.020 44 SS400SS400 0.1990.199 0.680.68 0.230.23 0.0120.012 0.0070.007 0.0130.013 -- 0.0190.019 55 SS400SS400 0.1930.193 0.850.85 0.260.26 0.0250.025 0.0130.013 0.0250.025 -- 0.0370.037 -- 66 SS490SS490 0.1810.181 1.451.45 0.270.27 0.0210.021 0.0180.018 0.0180.018 0.0170.017 0.0200.020 0.0010.001 77 SM41BSM41B 0.1460.146 1.051.05 0.260.26 0.0370.037 0.0140.014 0.0200.020 -- 0.0190.019 0.0150.015 88 SM41BSM41B 0.2040.204 1.131.13 0.260.26 0.0260.026 0.0150.015 0.0310.031 0.0260.026 0.0040.004 0.0050.005 99 SM50BSM50B 0.1300.130 1.421.42 0.400.40 0.0210.021 0.0200.020 0.0410.041 0.0060.006 0.0280.028 0.0010.001 1010 SM50BSM50B 0.1350.135 1.321.32 0.390.39 0.0150.015 0.0160.016 0.0180.018 0.0210.021 0.0090.009 0.0010.001 -- 1111 API X65API X65 0.1040.104 1.581.58 0.280.28 0.0420.042 0.0170.017 0.0290.029 0.0410.041 0.0320.032 0.0010.001 0.0560.056 1212 NVANVA 0.1560.156 1.501.50 0.410.41 0.0210.021 0.0200.020 0.0310.031 -- 0.0210.021 0.0130.013 0.0050.005 1313 NVANVA 0.1620.162 0.570.57 0.250.25 0.0160.016 0.0080.008 0.0180.018 0.0140.014 0.0020.002 -- 1414 NVANVA 0.1270.127 0.630.63 0.240.24 0.0150.015 0.0090.009 0.0300.030 -- 0.0220.022 -- 1515 NVANVA 0.1840.184 0.700.70 0.240.24 0.0170.017 0.0100.010 0.0310.031 -- 0.0210.021 -- 1616 LRALRA 0.1660.166 1.491.49 0.400.40 0.0200.020 0.0210.021 0.0310.031 0.0190.019 -- 1717 LRALRA 0.1520.152 1.521.52 0.400.40 0.0170.017 0.0190.019 0.0300.030 -- 0.0110.011 0.0020.002 1818 LRALRA 0.1170.117 0.640.64 0.250.25 0.0130.013 0.0100.010 0.0230.023 0.0220.022 -- -- 1919 LRALRA 0.1400.140 1.011.01 0.250.25 0.0180.018 0.0130.013 0.0240.024 -- 0.0390.039 0.0010.001 -- 2020 AH32AH32 0.1150.115 1.371.37 0.280.28 0.0270.027 0.0150.015 0.0370.037 -- 0.0280.028 0.0130.013 -- 2121 SM490SM490 0.1660.166 0.290.29 0.310.31 0.0230.023 0.0160.016 0.0210.021 0.0050.005 0.0460.046 0.0010.001 0.0050.005 2222 API X65API X65 0.0800.080 1.401.40 0.220.22 0.0310.031 0.0180.018 0.0280.028 0.0420.042 0.0210.021 0.0100.010 0.0050.005 2323 S45CS45C 0.4850.485 0.690.69 0.240.24 0.0200.020 0.0070.007 0.0120.012 0.0050.005 0.0070.007 0.0010.001 0.0050.005 2424 S45CS45C 0.4720.472 0.670.67 0.230.23 0.0200.020 0.0070.007 0.0160.016 0.0050.005 0.0070.007 0.0010.001 0.0050.005 2525 S45CS45C 0.4740.474 0.700.70 0.240.24 0.0200.020 0.0080.008 0.0150.015 0.0050.005 0.0070.007 0.0020.002 0.0500.050 2626 EH32EH32 0.1470.147 1.451.45 0.380.38 0.0200.020 0.0180.018 0.0210.021 0.0050.005 0.0200.020 0.0010.001 0.0480.048 2727 AH32AH32 0.1120.112 0.900.90 0.260.26 0.0220.022 0.0110.011 0.0220.022 0.0050.005 0.0190.019 0.0010.001 0.0050.005 2828 S45CS45C 0.5000.500 0.810.81 0.240.24 0.0220.022 0.0090.009 0.0160.016 0.0050.005 0.0120.012 0.0020.002 0.0050.005

순번turn 감쇠계수(Nepers/cm)Attenuation Coefficient (Nepers / cm) Dav(μm)D av (μm) 상분율(%)_Percentage of% FerriteFerrite PearlitePearlite 1One 0.06440.0644 7.937.93 88.988.9 11.111.1 22 0.06990.0699 8.808.80 86.486.4 13.613.6 33 0.11050.1105 10.4610.46 85.185.1 14.914.9 44 0.30100.3010 15.3215.32 83.083.0 17.017.0 55 0.24560.2456 13.8113.81 82.182.1 17.017.0 66 0.12010.1201 10.8310.83 77.677.6 22.422.4 77 0.22960.2296 13.8113.81 84.684.6 15.415.4 88 0.28530.2853 14.8014.80 68.868.8 31.231.2 99 0.14450.1445 11.2111.21 75.575.5 24.524.5 1010 0.10300.1030 10.1010.10 81.581.5 18.518.5 1111 0.10000.1000 3.833.83 87.987.9 12.112.1 1212 0.09810.0981 9.439.43 78.178.1 21.921.9 1313 0.21940.2194 13.3413.34 86.186.1 13.913.9 1414 0.12990.1299 11.2111.21 90.290.2 9.89.8 1515 0.50950.5095 18.8618.86 82.882.8 17.217.2 1616 0.27190.2719 14.2914.29 74.974.9 25.125.1 1717 0.12500.1250 11.2111.21 78.078.0 22.022.0 1818 0.19800.1980 12.8812.88 89.889.8 10.210.2 1919 0.39270.3927 17.0017.00 86.086.0 14.014.0 2020 0.02650.0265 6.226.22 91.891.8 8.28.2 2121 0.10010.1001 10.1010.10 80.280.2 19.819.8 2222 0.04030.0403 6.906.90 92.892.8 7.27.2 2323 0.35200.3520 15.8615.86 26.626.6 73.473.4 2424 0.23310.2331 13.3413.34 30.030.0 70.070.0 2525 0.05100.0510 7.667.66 33.833.8 66.266.2 2626 0.05600.0560 7.937.93 87.787.7 12.312.3 2727 0.04900.0490 7.937.93 94.794.7 5.35.3 2828 0.12050.1205 10.4610.46 29.729.7 70.370.3

상기 표3에는 광학현미경 및 영상분석기를 이용하여 측정된 페라이트 평균 결정립크기와 상기 초음파 감쇠계수의 측정에 의해 수학식(1)로 산출된 페라이트 평균 결정립크기가 비교되어 나타나 있다. 또한, 도 2에는 본 발명에 의해 계산된 페라이트 결정립크기와 측정된 페라이트 결정립크기의 상관관계가 나타나 있다.Table 3 shows a comparison between the ferrite average grain size measured using an optical microscope and an image analyzer and the ferrite average grain size calculated by Equation (1) by measuring the ultrasonic attenuation coefficient. 2 shows the correlation between the ferrite grain size calculated by the present invention and the measured ferrite grain size.

상기 표3 및 도 2에서 알 수 있는 바와 같이, 파괴적인 방법인 광학현미경 측정값과 초음파 감쇠계수로부터 계산된 값을 직선적인 관계를 잘 만족시키고 있음을 볼 수 있었다. 한편, 상기 표3에 보인 강종의 퍼얼라이트 분율이 5-75%이었다.As can be seen from Table 3 and Figure 2, it can be seen that satisfactory linear relationship between the optical microscope measurement value and the value calculated from the ultrasonic attenuation coefficient, which is a destructive method. In addition, the pearlite fraction of the steel grade shown in the said Table 3 was 5-75%.

따라서, 본 발명에 의한 비파괴적 방법은 강판의 절단, 마운팅, 연마, 현미경 및 영상분석기를 이용하는 파괴적인 종래의 방법에 비해 경제적으로 아주 정도가 높은 페라이트 결정립을 측정할수 있는 방법임을 알 수 있었다.Therefore, it can be seen that the non-destructive method according to the present invention is a method capable of measuring ferrite grains with a very high degree of economy compared to the conventional methods of destructive use of cutting, mounting, polishing, microscopy and an image analyzer.

상술한 바와 같은 본 발명에 의하면, 강판의 강도, 파괴인성, 피로 및 크립특성에 지대한 영향을 주는 금속학적 인자인 페라이트 평균 결정립의 크기를, 초음파 감쇠계수를 측정하여 이를 이용함으로서, 비파괴적으로 손쉽게 측정할 수 있는 것이다.According to the present invention as described above, by using the ultrasonic attenuation coefficient by measuring the size of the ferrite average grain size, which is a metallurgical factor that greatly affects the strength, fracture toughness, fatigue and creep properties of the steel sheet, It can be measured.

Claims (2)

페라이트 + 퍼얼라이트의 2상 혼합조직을 갖는 탄소강의 감쇠계수(α)를 초음파 탐촉자를 사용하여 측정한 후, 측정된 α를 하기 식(1)에 대입하여 페라이트 결정립 크기를 계산하여 얻는 것을 특징으로 하는 초음파법에 의한 탄소강 페라이트 결정립 크기의 비파괴적 측정방법After the attenuation coefficient (α) of the carbon steel having the two-phase mixed structure of ferrite + perlite is measured by using an ultrasonic probe, the measured α is substituted into the following formula (1) to calculate the ferrite grain size. Nondestructive Measurement of Carbon Steel Ferrite Grain Size by Ultrasonic Method [수학식 1][Equation 1] Dav= 1.79 + 22.97×α1/b D av = 1.79 + 22.97 x α 1 / b (b:2.02-2.04)(b: 2.02-2.04) 제 1 항에 있어서,The method of claim 1, 상기 b는 2.03인 것임을 특징으로 하는 초음파법에 의한 탄소강 페라이트 결정립 크기의 비파괴적 측정방법B is a non-destructive measurement method of carbon steel ferrite grain size by ultrasonic method, characterized in that 2.03.
KR1019990064139A 1999-12-28 1999-12-28 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method KR100797281B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990064139A KR100797281B1 (en) 1999-12-28 1999-12-28 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990064139A KR100797281B1 (en) 1999-12-28 1999-12-28 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method

Publications (2)

Publication Number Publication Date
KR20010061641A true KR20010061641A (en) 2001-07-07
KR100797281B1 KR100797281B1 (en) 2008-01-23

Family

ID=19631455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064139A KR100797281B1 (en) 1999-12-28 1999-12-28 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method

Country Status (1)

Country Link
KR (1) KR100797281B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008028B1 (en) * 2004-03-11 2011-01-13 니뽄스틸코포레이션 Method and apparatus for measuring crystal grain size distribution
CN104749251A (en) * 2015-04-09 2015-07-01 中南大学 Grain size ultrasonic evaluation method without influence of underwater sound distance
KR20160021336A (en) * 2014-08-14 2016-02-25 주식회사 포스코 Device and method for monitoring slab quality

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140244B2 (en) * 1993-03-04 2001-03-05 川崎製鉄株式会社 Grain size measurement method
JPH0735734A (en) * 1993-07-23 1995-02-07 Sumitomo Metal Ind Ltd Ultrasonic measuring method
JPH0843363A (en) * 1994-08-03 1996-02-16 Kawasaki Steel Corp Ultrasonic method and device for measuring crystal grain diameter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008028B1 (en) * 2004-03-11 2011-01-13 니뽄스틸코포레이션 Method and apparatus for measuring crystal grain size distribution
KR20160021336A (en) * 2014-08-14 2016-02-25 주식회사 포스코 Device and method for monitoring slab quality
CN104749251A (en) * 2015-04-09 2015-07-01 中南大学 Grain size ultrasonic evaluation method without influence of underwater sound distance

Also Published As

Publication number Publication date
KR100797281B1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
Vijayalakshmi et al. Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel
Aghaie-Khafri et al. Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements
Sagar et al. Non-linear ultrasonic technique to assess fatigue damage in structural steel
Klinman et al. Ultrasonic prediction of grain size, strength, and toughness in plain carbon steel
US4539848A (en) Method of determining grain size using ultrasonic waves
Palanichamy et al. Ultrasonic velocity measurements for characterizing the annealing behaviour of cold worked austenitic stainless steel
Argandona et al. Detection of secondary phases in UNS S32760 superduplex stainless steel by destructive and non-destructive techniques
EP3656886A1 (en) Steel plate
El Rayes et al. Ultrasonic characterization of heat-treatment effects on SAE-1040 and-4340 steels
Wang et al. Damage assessment in Q690 high strength structural steel using nonlinear Lamb waves
Alekseeva et al. A study of hydrogen cracking in metals by the acoustoelasticity method
Gao et al. Anisotropy and microstructural evolutions of X70 pipeline steel during tensile deformation
Kumar et al. Ultrasonic spectral analysis for microstructural characterization of austenitic and ferritic steels
KR20120011341A (en) Method for evaluation of dynamic deformation property of steel at low temperature using dynamic torsional bar test
KR100797281B1 (en) A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method
Ünal et al. The mean grain size determination of boron carbide (B4C)–aluminium (Al) and boron carbide (B4C)–nickel (Ni) composites by ultrasonic velocity technique
Mukhopadhyay et al. The influence of notch on the acoustic emission generated during tensile testing of nuclear grade AISI type 304 stainless steel
JPS5831867B2 (en) Measuring method of steel grain size using ultrasonic waves
Shankar et al. Nitrogen redistribution, microstructure, and elastic constant evaluation using ultrasonics in aged 316LN stainless steels
JPH09329593A (en) Detecting method for embrittlement degree of two-phase stainless steel
Nam et al. Evaluation of fracture appearance transition temperature to forged 3Cr–1Mo–0.25 V steel using ultrasonic characteristics
KR100448599B1 (en) Nondestructive Method for Measurement of the Effective Grain size in Lath Martensitic Steel
Vazquez et al. A comparative experimental study on the fatigue crack closure behavior under cyclic loading for steels and aluminum alloys
Shlyakhova et al. Effect of X46Cr13 Microstructure on the Ultrasound Rate Propagation under Plastic Deformation
Vasudev Ultrasonic Testing of ML80 and Grade 483 Q&T Steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140115

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150109

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170111

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 12