KR20010061641A - A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method - Google Patents
A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method Download PDFInfo
- Publication number
- KR20010061641A KR20010061641A KR1019990064139A KR19990064139A KR20010061641A KR 20010061641 A KR20010061641 A KR 20010061641A KR 1019990064139 A KR1019990064139 A KR 1019990064139A KR 19990064139 A KR19990064139 A KR 19990064139A KR 20010061641 A KR20010061641 A KR 20010061641A
- Authority
- KR
- South Korea
- Prior art keywords
- grain size
- ferrite
- ultrasonic
- measured
- carbon steel
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4472—Mathematical theories or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0234—Metals, e.g. steel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Algebra (AREA)
- Acoustics & Sound (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 강판의 냉각후 상온에서 페라이트 결정립을 비파괴적으로 측정하는 방법으로써, 보다 상세하게는 페라이트 평균 결정립의 크기를 초음파 감쇠계수의 측정에 의해 감쇠 변화와 탄소강에서 페라이트 평균결정립크기의 상관관계로부터 비파괴적으로 측정할 수 있는 방법에 관한 것이다.The present invention is a method for non-destructively measuring the ferrite grains at room temperature after cooling the steel sheet, and more specifically, the size of the ferrite average grain size is determined from the correlation between the attenuation change and the ferrite average grain size in carbon steel by measuring the ultrasonic attenuation coefficient. It relates to a method that can be measured nondestructively.
종래에는 강판의 페라이트 평균결정립 크기를 측정하기 위해서 강판의 기계적 절단, 마운팅, 폴리싱 등의 일련공정을 거친후 광학현미경 또는 주사전자 현미경을 이용하여 그 미세조직을 관찰하고 영상분석기를 동원하여 그 결정립 크기를 산출하였다. 따라서, 시편의 준비 및 페라이트 결정립 크기의 측정에 소요되는 인력과 시간이 다량 소요되어 비효율적 특성을 가지며, 제품의 손상없이 강판내 원하는 지점의 페라이트 평균결정립크기를 측정할 수 없었다.Conventionally, in order to measure the ferrite average grain size of a steel sheet, the microstructure is subjected to a series of processes such as mechanical cutting, mounting, and polishing of the steel sheet, followed by observing the microstructure using an optical microscope or a scanning electron microscope, and mobilizing an image analyzer. Was calculated. Therefore, a large amount of manpower and time required for preparation of the specimen and measurement of the ferrite grain size have inefficient characteristics, and the ferrite average grain size of the desired point in the steel sheet cannot be measured without damaging the product.
이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 페라이트 평균 결정립의 크기를 초음파 감쇠계수를 측정함으로서, 감쇠의 변화와 탄소강에서 페라이트 평균결정립크기의 상관관계로부터 비파괴적으로 페라이트 결정립 크기를 측정할수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the above problems, and proposed the present invention based on the results. The present invention measures the size of the ferrite average grain size by measuring the ultrasonic attenuation coefficient, It is an object of the present invention to provide a method for non-destructively measuring ferrite grain size from the correlation between the change and the ferrite average grain size in carbon steel.
도 1은 감쇠계수와 페라이트로 평균 결정립크기와의 관계를 자연대수-자연대수 형태로 나타낸 그래프1 is a graph showing a natural logarithmic-natural logarithmic relationship between attenuation coefficient and ferrite average grain size.
도 2는 본 발명의 방법에 의해 산출된 페라이트 평균 결정립크기와의 광학현미경으로 측정된 페라이트 평균 결정립 크기의 상관관계를 나타낸 그래프Figure 2 is a graph showing the correlation between the ferrite average grain size measured by an optical microscope with the ferrite average grain size calculated by the method of the present invention
상기 목적을 달성하기 위한 본 발명은, 페라이트 + 퍼얼라이트의 2상 혼합조직을 갖는 탄소강의 감쇠계수(α)를 초음파 탐촉자를 사용하여 측정한 후, 측정된 α를 하기 식(1)에 대입하여 페라이트 결정립 크기를 계산하여 얻는 것을 특징으로 하는 초음파법에 의한 탄소강 페라이트 결정립 크기의 비파괴적 측정방법에 관한 것이다.The present invention for achieving the above object, after measuring the attenuation coefficient (α) of the carbon steel having a two-phase mixed structure of ferrite + pearlite by using an ultrasonic probe, by substituting the measured α in the following formula (1) Non-destructive measurement method of carbon steel ferrite grain size by the ultrasonic method, characterized in that obtained by calculating the ferrite grain size.
[b:2.02-2.04, R2: 96.31%, σ(standard deviation): 0.95][b: 2.02-2.04, R 2 : 96.31%, σ (standard deviation): 0.95]
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 초음파 탐촉자를 사용하여 감쇠계수를 측정하고 이를 이용하여 비파괴적으로 페라이트의 결정입 크기를 계측하는 것이다. 다음에서는 본 발명을 제안하게 된 이론적 배경을 설명한 후, 그 같은 배경에 의해 제안된 본 발명의 구성을 상세히 설명한다. 상기 초음파 탐촉자는 수침형이 바람직하지만 여기에 한정되는 것은 아니다.The present invention is to measure the attenuation coefficient using the ultrasonic transducer and to measure the grain size of the ferrite non-destructively by using it. Next, after explaining the theoretical background to which the present invention has been proposed, the configuration of the present invention proposed by such a background will be described in detail. The ultrasonic probe is preferably immersion type, but is not limited thereto.
초음파가 재료를 전파할 때 결정입계에서 초음파의 산란에 의해 그 에너지가 지수적으로 감소하게 된다는 것은 이미 알려진 사실이다. 작은 진폭으로 주어진 평면파는 초음파 원으로 부터 거리 x에서 에너지 강도(I)는 하기 수학식(2)로 주어진다.It is already known that the energy decreases exponentially by the scattering of ultrasonic waves at grain boundaries when ultrasonic waves propagate the material. Given a small amplitude plane wave, the energy intensity I at the distance x from the ultrasonic source is given by the following equation (2).
여기서, Io는 초기 에너지 강도를 나타내며, α는 감쇠계수를 각각 나타낸다. 감쇠는 주파수와 상관관계에 있고, 위상속도 보다 주파수에 의존하므로 쉽게 측정 가능하다. 일반적으로 감쇠측정은 주파수 의존성이 재료물성에 밀접하게 연결되므로 적정 주파수 범위 상에서 이루어질 때 유용하게 적용될수 있다. 그리고, 이러한 초음파의 감쇠계수는 초음파의 파장(λ)과 결정립크기(D)에 의존한다. λ<<D인 경우를 갖는 레일리(Rayleigh)산란 영역이라 부르며 이 영역에서 동일주파수를 갖는 초음파 탐촉자를 사용할 경우 결정립크기와 감쇠계수와 상관관계는 하기 수학식(3)로 표현되며, 수학식(3)를 이용하면 결정립 크기를 산출할 수 있게 된다.Where Io represents the initial energy intensity and α represents the attenuation coefficient, respectively. Attenuation correlates with frequency and is more easily measured since it depends on frequency rather than phase velocity. In general, attenuation measurements can be usefully applied when the frequency dependence is closely related to material properties. The attenuation coefficient of the ultrasonic wave depends on the wavelength λ and the crystal grain size D of the ultrasonic wave. It is called Rayleigh scattering region having the case of λ << D. In case of using ultrasonic transducer having the same frequency in this region, the correlation between grain size and attenuation coefficient is expressed by the following equation (3). 3), it is possible to calculate the grain size.
[여기서, A는 비례상수이며, n은 3의 값으로 주어진다.]Where A is a proportionality constant and n is given a value of 3.
그러나, 상기 수학식(3)는 다음의 조건들을 만족할 때 적용가능하며, 실제 현장에서 생산된 강판에서 다음의 가정을 만족시키기 어려운 조건이기 때문에 실제 수학식(3)를 적용할 수 없다.However, the above Equation (3) is applicable when the following conditions are satisfied, and the actual Equation (3) cannot be applied because it is difficult to satisfy the following assumption in the steel sheet produced in the actual field.
1) 결정립들의 이방성이 존재하지 않아야 한다.1) There should be no anisotropy of grains.
2) 우선방위가 존재하지 않아야 한다.2) Priority defenses should not exist.
3) 결정립이 등축정이어야 한다.3) The grain should be equiaxed.
4) 공공이나 개재물을 갖지 않는 단일상의 결정입자를 가져야 한다.4) have a single phase determinant with no public or inclusions.
따라서, 본 발명자는 탄소강 강판의 다양한 결정립 크기를 갖도록 열처리를 통해서 실험실적 및 현장 생산된 강판을 통하여, 다음과 같은 결과를 얻을 수 있었다.Therefore, the present inventors have obtained the following results through laboratory and field-produced steel sheets through heat treatment to have various grain sizes of carbon steel sheets.
즉, 하기 표1과 같은 탄소강의 조성을 갖는 강판을 압연조건 및 열처리조건을 다양하게 변화시켜 페라이트의 평균결정립 크기를 변화시킨 후, 중심주파수 15MHz의 수침식 종파용 탐측자를 사용하여 감쇠계수를 측정하고 결정립크기와 감쇠계수와의 상관관계를 도 1에 나타내었다. 초음파 중심주파수가 15MHz일때 파장은 약 400μm이고 페라이트 결정립의 크기는 50μm이하이므로 레일리 산란(λ<<D) 영역에 속한다.That is, the steel sheet having the composition of carbon steel as shown in Table 1 was changed in various rolling conditions and heat treatment conditions to change the average grain size of ferrite, and then the damping coefficient was measured using a submerged longitudinal wave probe having a center frequency of 15 MHz. The correlation between grain size and attenuation coefficient is shown in FIG. 1. When the ultrasonic center frequency is 15MHz, the wavelength is about 400μm and the size of ferrite grains is 50μm or less, so it belongs to Rayleigh scattering (λ << D) region.
실제 공업용 탄소강은 페라이트와 퍼얼라이트의 복합상을 가지므로 단일상도 아니며 결정립 크기가 등축상도 아니므로 새로운 형태의 관계식을 얻어야 평균 결정립 크기를 측정할 수 있다.In fact, the industrial carbon steel has a complex phase of ferrite and perlite, so it is not a single phase and its grain size is not equiaxed, so it is necessary to obtain a new relational relationship to measure the average grain size.
도 1에서 감쇠계수와 페라이트 평균 결정립 크기와의 관계를 자연대수-자연대수 형태의 그래프에서 얻어진 기울기는 수학식(3)에서 n값을 나타내며, 이 값이 약2.03임을 알 수 있으며, 이같은 작업을 여러번 행한 결과 그 값이 2.02-2.04정도의 값을 보였고, 2.03이 가장 근사값이었다. 그리고, 도 1에서 얻은 기울기 값과 측정된 초음파 감쇠계수(α)와 페라이트 결정립 크기와 (Dav)의 상관식을 다음 수학식(1)으로 주어진다.In Fig. 1, the slope of the relationship between the attenuation coefficient and the average size of the ferrite grains from the natural logarithm-natural logarithmic graph shows the n value in Equation (3), which is about 2.03. As a result of several times, the value was about 2.02-2.04, and 2.03 was the best approximation. The correlation between the gradient value obtained in FIG. 1, the measured ultrasonic attenuation coefficient α, the ferrite grain size, and (D av ) is given by the following Equation (1).
[수학식 1][Equation 1]
Dav= 1.79 + 22.97×α1/b D av = 1.79 + 22.97 x α 1 / b
[(R2: 96.31%),((R 2 : 96.31%),
σ(standard deviation): 0.95,σ (standard deviation): 0.95,
b:2.02-2.04, 감쇠계수 α의 단위는 Nepers/cm 이고, 페라이트 결정립의 단위는 μm이다.]b: 2.02-2.04, unit of attenuation coefficient α is Nepers / cm, and unit of ferrite grain is μm.]
따라서, 감쇠계수 초음파에 의해 측정된 α값을 상기 수학식(1)에 대입함으로서, 페라이트 결정립의 크기를 계산할 수 있는 것이다.Therefore, the magnitude of the ferrite grains can be calculated by substituting the α value measured by the attenuation coefficient ultrasonic wave into the above equation (1).
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예Example
현장에서 생산된 인장강도 40~60kg/㎟급을 갖는 대표적인 일반압연 및 가속냉각 강재 28중을 채취하여 초음파 감쇠계수 측정을 하여, 상기 수학식(1)을 이용하여 결정립크기를 산출하였고자 하였다. 본 실시예에서는 상기 수학식(1)에 있어 b값을 2.03으로 하였다.The typical attenuated and accelerated-cooled steels having a tensile strength of 40-60kg / mm2 produced in the field were taken from 28 to measure ultrasonic attenuation coefficients, and the grain size was calculated using Equation (1). In the present Example, b value was set to 2.03 in the said Formula (1).
상기 현장에서 채취된 강판의 강종 및 화학조성은 하기 표2에 나타내었다. 하기 표2에서 SS400은 인장강도 40kgf/㎟ 급 일반구조용 탄소강을 나타내며, SM41B 및SM50B와 SM490 강재는 인장강도 40~60kgf/㎟급 용접구조용강을 나타낸다. 그리고, NVA, LRA, AH & EH강은 40~60kgf/㎟ 급 조선용 강재를 의미하며, API X65는 항복강도 65ksi급 강판용 강판이며, S45C는 탄소함량 0.45%를 포함하는 기계구조용 탄소강을 의미한다.Steel grades and chemical compositions of the steel sheets collected at the site are shown in Table 2 below. In Table 2, SS400 represents a carbon steel for general structural strength of 40kgf / mm2, and SM41B, SM50B, and SM490 steels represent 40 ~ 60kgf / mm2 of welded steel for tensile strength. NVA, LRA, AH & EH steel refers to 40 ~ 60kgf / mm2 shipbuilding steel, API X65 is yield strength 65ksi steel sheet, and S45C refers to mechanical structural carbon steel containing 0.45% of carbon content. .
이들 강판의 C 함량은 0.1%에서 0.49%까지 분포되어 있는 강판임을 볼 수 있다. 본 실시예에 사용된 강판의 두께는 6~40mm의 두께 범위를 가졌고 초음파 탐촉자는 수침용 중심주파수 15MHz를 사용하였다.The C content of these steel sheets can be seen that the steel sheet is distributed from 0.1% to 0.49%. The thickness of the steel sheet used in the present embodiment had a thickness range of 6 to 40 mm and the ultrasonic probe used a central frequency of 15 MHz for immersion.
상기 조건으로 상기 현장 생산 강재를 사용하여 초음파 감쇠계수를 측정하였고, 또한 광학현미경으로 페라이트 평균 결정립 크기와 상분율을 측정하였다. 이같이 측정된 값들은 하기 표3에 나타내었으며, 퍼얼라이트 분율의 분포는 약 7%에서 73%를 보이고 있었다.Under the above conditions, ultrasonic attenuation coefficients were measured using the field-produced steel, and ferrite average grain size and phase fraction were measured by an optical microscope. The measured values are shown in Table 3 below, and the distribution of the pearlite fraction was about 7% to 73%.
또한, 상기 측정된 초음파 감쇠계수를 상기 식(1)에 대입하여, 페라이트 평균결정립의 크기를 계산하였다. 이같이 계산된 값과 상기 광학현미경으로 측정된 페라이트 평균 결정립크기를 이용하여 도 2에 나타내었다.In addition, the measured ultrasonic attenuation coefficient was substituted into Equation (1) to calculate the size of the ferrite average grain size. It is shown in Figure 2 using the calculated value and the ferrite average grain size measured by the optical microscope.
상기 표3에는 광학현미경 및 영상분석기를 이용하여 측정된 페라이트 평균 결정립크기와 상기 초음파 감쇠계수의 측정에 의해 수학식(1)로 산출된 페라이트 평균 결정립크기가 비교되어 나타나 있다. 또한, 도 2에는 본 발명에 의해 계산된 페라이트 결정립크기와 측정된 페라이트 결정립크기의 상관관계가 나타나 있다.Table 3 shows a comparison between the ferrite average grain size measured using an optical microscope and an image analyzer and the ferrite average grain size calculated by Equation (1) by measuring the ultrasonic attenuation coefficient. 2 shows the correlation between the ferrite grain size calculated by the present invention and the measured ferrite grain size.
상기 표3 및 도 2에서 알 수 있는 바와 같이, 파괴적인 방법인 광학현미경 측정값과 초음파 감쇠계수로부터 계산된 값을 직선적인 관계를 잘 만족시키고 있음을 볼 수 있었다. 한편, 상기 표3에 보인 강종의 퍼얼라이트 분율이 5-75%이었다.As can be seen from Table 3 and Figure 2, it can be seen that satisfactory linear relationship between the optical microscope measurement value and the value calculated from the ultrasonic attenuation coefficient, which is a destructive method. In addition, the pearlite fraction of the steel grade shown in the said Table 3 was 5-75%.
따라서, 본 발명에 의한 비파괴적 방법은 강판의 절단, 마운팅, 연마, 현미경 및 영상분석기를 이용하는 파괴적인 종래의 방법에 비해 경제적으로 아주 정도가 높은 페라이트 결정립을 측정할수 있는 방법임을 알 수 있었다.Therefore, it can be seen that the non-destructive method according to the present invention is a method capable of measuring ferrite grains with a very high degree of economy compared to the conventional methods of destructive use of cutting, mounting, polishing, microscopy and an image analyzer.
상술한 바와 같은 본 발명에 의하면, 강판의 강도, 파괴인성, 피로 및 크립특성에 지대한 영향을 주는 금속학적 인자인 페라이트 평균 결정립의 크기를, 초음파 감쇠계수를 측정하여 이를 이용함으로서, 비파괴적으로 손쉽게 측정할 수 있는 것이다.According to the present invention as described above, by using the ultrasonic attenuation coefficient by measuring the size of the ferrite average grain size, which is a metallurgical factor that greatly affects the strength, fracture toughness, fatigue and creep properties of the steel sheet, It can be measured.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990064139A KR100797281B1 (en) | 1999-12-28 | 1999-12-28 | A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990064139A KR100797281B1 (en) | 1999-12-28 | 1999-12-28 | A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010061641A true KR20010061641A (en) | 2001-07-07 |
KR100797281B1 KR100797281B1 (en) | 2008-01-23 |
Family
ID=19631455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990064139A KR100797281B1 (en) | 1999-12-28 | 1999-12-28 | A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100797281B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101008028B1 (en) * | 2004-03-11 | 2011-01-13 | 니뽄스틸코포레이션 | Method and apparatus for measuring crystal grain size distribution |
CN104749251A (en) * | 2015-04-09 | 2015-07-01 | 中南大学 | Grain size ultrasonic evaluation method without influence of underwater sound distance |
KR20160021336A (en) * | 2014-08-14 | 2016-02-25 | 주식회사 포스코 | Device and method for monitoring slab quality |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3140244B2 (en) * | 1993-03-04 | 2001-03-05 | 川崎製鉄株式会社 | Grain size measurement method |
JPH0735734A (en) * | 1993-07-23 | 1995-02-07 | Sumitomo Metal Ind Ltd | Ultrasonic measuring method |
JPH0843363A (en) * | 1994-08-03 | 1996-02-16 | Kawasaki Steel Corp | Ultrasonic method and device for measuring crystal grain diameter |
-
1999
- 1999-12-28 KR KR1019990064139A patent/KR100797281B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101008028B1 (en) * | 2004-03-11 | 2011-01-13 | 니뽄스틸코포레이션 | Method and apparatus for measuring crystal grain size distribution |
KR20160021336A (en) * | 2014-08-14 | 2016-02-25 | 주식회사 포스코 | Device and method for monitoring slab quality |
CN104749251A (en) * | 2015-04-09 | 2015-07-01 | 中南大学 | Grain size ultrasonic evaluation method without influence of underwater sound distance |
Also Published As
Publication number | Publication date |
---|---|
KR100797281B1 (en) | 2008-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vijayalakshmi et al. | Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel | |
Aghaie-Khafri et al. | Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements | |
Sagar et al. | Non-linear ultrasonic technique to assess fatigue damage in structural steel | |
Klinman et al. | Ultrasonic prediction of grain size, strength, and toughness in plain carbon steel | |
US4539848A (en) | Method of determining grain size using ultrasonic waves | |
Palanichamy et al. | Ultrasonic velocity measurements for characterizing the annealing behaviour of cold worked austenitic stainless steel | |
Argandona et al. | Detection of secondary phases in UNS S32760 superduplex stainless steel by destructive and non-destructive techniques | |
EP3656886A1 (en) | Steel plate | |
El Rayes et al. | Ultrasonic characterization of heat-treatment effects on SAE-1040 and-4340 steels | |
Wang et al. | Damage assessment in Q690 high strength structural steel using nonlinear Lamb waves | |
Alekseeva et al. | A study of hydrogen cracking in metals by the acoustoelasticity method | |
Gao et al. | Anisotropy and microstructural evolutions of X70 pipeline steel during tensile deformation | |
Kumar et al. | Ultrasonic spectral analysis for microstructural characterization of austenitic and ferritic steels | |
KR20120011341A (en) | Method for evaluation of dynamic deformation property of steel at low temperature using dynamic torsional bar test | |
KR100797281B1 (en) | A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method | |
Ünal et al. | The mean grain size determination of boron carbide (B4C)–aluminium (Al) and boron carbide (B4C)–nickel (Ni) composites by ultrasonic velocity technique | |
Mukhopadhyay et al. | The influence of notch on the acoustic emission generated during tensile testing of nuclear grade AISI type 304 stainless steel | |
JPS5831867B2 (en) | Measuring method of steel grain size using ultrasonic waves | |
Shankar et al. | Nitrogen redistribution, microstructure, and elastic constant evaluation using ultrasonics in aged 316LN stainless steels | |
JPH09329593A (en) | Detecting method for embrittlement degree of two-phase stainless steel | |
Nam et al. | Evaluation of fracture appearance transition temperature to forged 3Cr–1Mo–0.25 V steel using ultrasonic characteristics | |
KR100448599B1 (en) | Nondestructive Method for Measurement of the Effective Grain size in Lath Martensitic Steel | |
Vazquez et al. | A comparative experimental study on the fatigue crack closure behavior under cyclic loading for steels and aluminum alloys | |
Shlyakhova et al. | Effect of X46Cr13 Microstructure on the Ultrasound Rate Propagation under Plastic Deformation | |
Vasudev | Ultrasonic Testing of ML80 and Grade 483 Q&T Steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130103 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140115 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150109 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160113 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170111 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180111 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20190115 Year of fee payment: 12 |