KR20010060509A - Producing method of the folding filter with excellent antibacterial property for liquid purification - Google Patents

Producing method of the folding filter with excellent antibacterial property for liquid purification Download PDF

Info

Publication number
KR20010060509A
KR20010060509A KR1019990062904A KR19990062904A KR20010060509A KR 20010060509 A KR20010060509 A KR 20010060509A KR 1019990062904 A KR1019990062904 A KR 1019990062904A KR 19990062904 A KR19990062904 A KR 19990062904A KR 20010060509 A KR20010060509 A KR 20010060509A
Authority
KR
South Korea
Prior art keywords
filter
glass fiber
media
average pore
medium
Prior art date
Application number
KR1019990062904A
Other languages
Korean (ko)
Inventor
김순식
윤성로
Original Assignee
한형수
주식회사 새 한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한형수, 주식회사 새 한 filed Critical 한형수
Priority to KR1019990062904A priority Critical patent/KR20010060509A/en
Publication of KR20010060509A publication Critical patent/KR20010060509A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/016Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements with corrugated, folded or wound filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters

Abstract

PURPOSE: A manufacturing method of a bent-up filter for purifying liquid having excellent antibacterial property is provided. The filter is excellent in antibacterial property as well as in removal efficiency of impurities and so is very useful for purifying liquid. CONSTITUTION: The manufacturing method is as follows: (i) prepare master batch by mixing general purpose polypropylene resin and antibacterial agent; (ii) prepare a supporting material using general purpose polypropylene for non-woven fabric and using long-fiber non-woven fabric of polypropylene that is prepared by mixing, melt spinning and web forming; (iii) prepare bent up filter of glass fiber by bending glass fiber media in multi layers, cutting and cladding on the supporting material of step (ii), the first media of glass fiber filter media being 0.1-3.0mm thickness and 2-10μm of average pore diameter and the second media of glass fiber filter media being 0.2-5.0mm thickness and 1-10 μm of average pore diameter, the effective area of filter being 0.4-9m¬2; and (iv) use as an antibacterial agent 0.5-2.0wt.% of total weight of polypropylene of organic antibacterial agent of oxy-bis phenoxazine series.

Description

항균성이 우수한 액체 정제용 절곡필터의 제조방법{Producing method of the folding filter with excellent antibacterial property for liquid purification}Producing method of the folding filter with excellent antibacterial property for liquid purification}

본 발명은 유리섬유계 여재를 다층상으로 절곡후 필터를 제조하는 방법에 관한 것으로서, 특히 우수한 항균 성능을 보유하고 액체여과 특성 및 제거효율이 우수한 특성을 지닌 절곡필터의 제조방법에 관한 것이다.The present invention relates to a method for producing a filter after bending the glass fiber-based media in a multi-layered form, and more particularly, to a method for manufacturing a bending filter having excellent antibacterial performance and excellent characteristics of liquid filtration and removal efficiency.

최근들어 산업이 고도로 발달함에 따라 대기, 수질 및 토양 오염문제가 커다란 사회문제로 떠오르게 되었으며, 그중에서도 수질의 오염은 인간이 먹고 마시는데 직접적인 영향을 주게됨에 따라 그 문제성이 더 크게 부각되어왔다. 따라서 오염된 하수의 정화처리 방법과 일반수의 식수 또는 음료수의 사용을 위한 정수처리 방법이 다양하게 연구되어왔으며, 특히 역삼투막이나 한외여과막등의 막을 이용한 수질처리시스템이 활발히 연구되어지고 있다.In recent years, as the industry develops, the problem of air, water and soil pollution has emerged as a big social problem. Among them, the problem of water quality has been highlighted as it has a direct effect on human eating and drinking. Therefore, various methods of purifying polluted sewage and purified water for general drinking or drinking water have been studied. In particular, water treatment systems using membranes such as reverse osmosis membranes and ultrafiltration membranes have been actively studied.

이러한 수질처리시스템에 사용되는 필터는 그 종류가 다양하고 적용분야도 광범위한데, 예를 들어, 액체 정제용으로 부직포 및 다양한 종류의 막들을 이용해 절곡된 형태로 제조되는 액체필터가 미국, 일본 및 유럽 등지에서 개발되어 판매되고 있는 실정이다.The filters used in such water treatment systems are diverse and have a wide range of applications. For example, liquid filters manufactured in a bent form using non-woven fabrics and various kinds of membranes for liquid refining are available in the United States, Japan and Europe. The situation is developed and sold in places.

산업이 고도로 발전하게 됨에 따라 산업 장치들이 집적화, 정밀화되고 제조공정 뿐만 아니라 일반 사무실의 쾌적한 환경을 조성하기 위하여, 공조용 및 액체용 필터의 요구가 급속히 증대되었다. 그러나, 과거 공조용으로 사용되는 유리섬유 필터는 반도체 및 원자력발전소 등에서 유리섬유에 의한 2차 오염 뿐만 아니라, 폐기처리문제를 발생시키고, 필터제조공정 중의 조업시에 어려움이 발생하여 그 개선의 필요성이 대두되어 왔으며, 액체용으로 사용되고 있는 멜트블론(meltblown) 부직포의 경우는 짧은 수명과 낮은포집효율에 대한 개선이 요구되어왔다. 이에 따라 미국 및 일본을 중심으로 유리섬유의 대체 및 멜트블론 부직포의 고기능화를 위한 여재(media)개발이 중요한 문제로 여겨지게 되었으며, 특히 멜트블론 부직포의 경우, 생산량 및 다기능성이 매우 크게 증가되는 추세이며, 그에 따라 적용 범위도 점차 확대되고 있는 실정이다. 액체용 필터는 크게 수처리용과 오일처리용으로 나눌수 있으나 그 용도에 따라 세분화되어 각각의 용도에 따라 그 여재의 특성 또한 다양하게 요구되어 왔다.As the industry develops highly, the demands for air conditioning and liquid filters have rapidly increased in order to integrate and refine industrial devices and to create a pleasant environment for general offices as well as manufacturing processes. However, the glass fiber filters used for air conditioning in the past not only cause secondary pollution by glass fibers in semiconductors and nuclear power plants, but also cause disposal problems, and difficulties in operation during the filter manufacturing process have caused a need for improvement. In the case of meltblown nonwoven fabrics that have been emerging and used for liquids, improvements in short lifespan and low collection efficiency have been required. Accordingly, the development of media for the replacement of glass fiber and the high functionalization of meltblown nonwovens is considered to be an important problem, especially in the United States and Japan. Especially in the case of meltblown nonwoven fabrics, the production and versatility are greatly increased. As a result, the scope of application is gradually expanding. Liquid filters can be largely divided into water treatment and oil treatment, but they are subdivided according to their use, and various characteristics of the media have been required according to their respective uses.

특히 포도당 및 과당, 조미료 제조 공정액등의 고점도 액체를 정제하는 경우 유리섬유를 매체로 한 필터가 주로 사용되고 있으며, 이 경우 정제 공정중 유속 저항을 증가시키지 않고 이물 제거율이 높은 필터의 설계에 대한 요구가 계속되어져 왔다. 유리섬유를 매체로한 액체 여과용 필터의 경우 대한민국 특허출원 제 93- 702356 호에서는 수지-결합된 유리섬유 필터 매체를 이용하여 상향 및 하향면을 갖는 유리섬유 필터매체 및 필터 매체의 상향 및 하향면의 적어도 하나에 위치한 폴리머 메시를 함유하는 주름진 필터 요소를 포함하는 고점도 액체 여과용 필터제조에 관한 방법이 제시되어 있으나, 수지-결합된 유리섬유 필터 매체의 경우 고가의 문제점 및 포도당 및 과당, 조미료 제조 공정액등의 고점도 액체를 정제하는 필터에 적용하는 경우 제거효율은 우수한 반면 저유량의 문제점을 지닌다. 한편, 유리섬유 필터 매체를 이용한 포도당 및 과당, 조미료 제조 공정액등의 고점도 액체를 정제시 필터 외벽에 누적되는 글루코스 성분으로 인한 세균 번식의 문제점을 개선하기 위하여 필터지지체에 대하여 항균성을 부여하는 연구개발이 진행되어 왔는데, 예를 들어, 항균 기능을 부직포에 부여하는 방법으로 부직포를 제조하는 공정중 주로 스프레이법에 의해 후처리 공정에서 항균물질을 도포하는 방법이 사용되고 있으나, 공정 작업성의 어려움 및 마찰이나 세탁에 의한 내구성 저하, 의료용 부직포의 경우 인체에 대한 안전성등의 문제점을 지닌다. 또한 상기와 같은 문제점등을 개선하기 위한 방법으로 대한민국 특허출원 제 93-12277 호에서는 비다공성이면서 미립자에 의한 큰 표면적을 갖는 무기계 세라믹을 장섬유에 함유시켜 항균성을 갖는 PP 장섬유 부직포를 제조하는 방법이 제시되어 있고, 대한민국 특허출원 제 94-26076 호에서는 유기계 항균제로 벤즈 이미다졸 및 비구아니드 하이드로 클로라이드계 화합물을 투입하여 PP 장섬유 부직포를 제조하는 방법이 제시되어 있는데, 전자의 경우는 방사성등의 물성이 저하하는 문제점이 있고 후자의 경우는 항균성이 다소 미흡한 문제점이 있다.Especially in the case of refining high-viscosity liquids such as glucose, fructose and seasoning process liquids, filters based on fiberglass are mainly used.In this case, the demand for the design of filters with high foreign material removal rate without increasing the flow rate resistance during the refining process Has been going on. In the case of a filter for liquid filtration using glass fiber as a medium, Korean Patent Application No. 93-702356 discloses a glass fiber filter medium having an upward and a downward side using a resin-bonded glass fiber filter medium and an upward and downward side of a filter medium. A method for the manufacture of a filter for high viscosity liquid filtration comprising a pleated filter element containing a polymer mesh located on at least one of the elements has been proposed, but expensive problems with resin-bonded glass fiber filter media and the preparation of glucose, fructose and seasonings When applied to a filter for refining high-viscosity liquids, such as process liquids, the removal efficiency is excellent while having a low flow rate problem. Meanwhile, in order to improve the problem of bacterial propagation due to the glucose component accumulated on the filter outer wall when refining high viscosity liquids such as glucose, fructose, and seasoning process liquids using glass fiber filter media, research and development is given to the filter support. This has been progressed, for example, the method of applying the antimicrobial material in the post-treatment process mainly by the spray method in the process of manufacturing the nonwoven fabric by applying the antimicrobial function to the nonwoven fabric, but the difficulty of process workability and friction Durability deterioration due to washing, medical non-woven fabrics have problems such as safety to the human body. In addition, as a method for improving the above problems, Korean Patent Application No. 93-12277 discloses a method for producing a PP long fiber nonwoven fabric having antimicrobial properties by containing an inorganic ceramic having a large surface area by fine particles in a long fiber. In this case, Korean Patent Application No. 94-26076 discloses a method for preparing PP long fiber nonwoven fabric by adding benzimidazole and biguanide hydrochloride-based compound as an organic antimicrobial agent. There is a problem in that the physical properties of the latter, the latter has a problem that the antimicrobial properties are somewhat insufficient.

본 발명은 상기와 같은 유기섬유계 절곡필터의 문제점을 해결하기 위해 안출된 것으로서, 특히 부직포로 사용되는 폴리프로필렌 수지의 기본 물성을 저하시키지 않으면서도 항균성이 우수한 특성을 나타내는 액체 정제용 절곡필터의 제조방법을 제공하는 것을 목적으로 한 것이다.The present invention has been made to solve the problems of the organic fiber-based bending filter as described above, in particular, the production of a bending filter for liquid tablets exhibiting excellent antibacterial properties without reducing the basic physical properties of the polypropylene resin used as a nonwoven fabric The purpose is to provide a method.

본 발명은 상기 목적을 달성하기 위한 일 방법으로 폴리프로필렌 장섬유 부직포 제조시 유기계 항균제로 옥시비스 페녹사진계 유기계 항균제를 첨가하여 제조한 폴리프로필렌 장섬유 부직포를 지지체로 하고 유리섬유계 여재를 다층상으로 절곡하여 제조하는 것을 특징으로 한 절곡필터의 제조방법을 개시한다.The present invention is a polypropylene long fiber nonwoven fabric prepared by adding an oxybis phenoxazine-based organic antimicrobial agent as an organic antimicrobial agent when manufacturing a polypropylene long fiber nonwoven fabric as a method for achieving the above object as a support, and the glass fiber media in a multi-layer Disclosed is a method of manufacturing a bending filter, characterized by bending and manufacturing.

이하에서 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 폴리프로필렌 장섬유 부직포를 범용 폴리프로필렌 수지와 옥시비스 페녹사진계 항균제를 첨가하여 마스터 배치를 제조한 후 부직포 용도의 범용 폴리프로필렌 수지와 혼련하고 용융 방사 및 웹형성, 열접착 공정과 같은 주지의 부직포 제조공정을 거쳐 제조하며, 이렇게하여 얻어진 폴리프로필렌 장섬유 부직포를 상향 및 하향면의 지지체로 하고 유리섬유 여재를 다층상으로 절곡, 절단, 초음파 및 열접합공정 등을 거쳐 절곡필터를 제조한다.In the present invention, a polypropylene long fiber nonwoven fabric is prepared by adding a general polypropylene resin and an oxybis phenoxazine-based antimicrobial agent to prepare a master batch, and then kneading it with a general purpose polypropylene resin for nonwoven fabrics, such as melt spinning, web forming, and heat bonding processes. The polypropylene long fiber nonwoven fabric thus obtained is used as a support for the up and down surfaces, and the glass fiber media is folded, cut, ultrasonically and thermally bonded to produce a bending filter. .

본 발명에서 사용되는 옥시비스페녹사진계 유기 항균제의 투입 범위는 전체 부직포에 사용되는 폴리프로필렌 수지 총 중량의 0.5~2.0중량%로서, 0.5중량% 미만으로 사용하면 항균성이 미흡하고 2.0중량% 초과 사용하면 정제효율이 나빠지는 등의 문제점을 지닌다.The range of the oxybisphenoxazine-based organic antimicrobial agent used in the present invention is 0.5 to 2.0% by weight of the total weight of the polypropylene resin used in the entire nonwoven fabric, and when used in less than 0.5% by weight, the antimicrobial activity is insufficient and more than 2.0% by weight is used. There is a problem such as poor purification efficiency.

또한 필터여재로 사용되는 유리섬유 여재는 다층상으로 제작시 유리섬유 제1매체의 경우는 두께를 대략 0.1~3.0㎜, 평균기공 크기를 2~10㎛로 하고 유리섬유제2매체의 경우는 두께를 0.2~5.0㎜, 평균기공 크기를 1~10㎛ 범위로 하는 것이 좋으며, 또 필터 제조시 유효막 면적은 0.4~0.9㎡가 바람직하다.In addition, the glass fiber media used as the filter media should have a thickness of approximately 0.1 to 3.0 mm for the first glass fiber medium, an average pore size of 2 to 10 μm for the first glass fiber medium, and a thickness for the second glass fiber medium. It is preferable that the average pore size is in the range of 0.2 to 5.0 mm, and the range of 1 to 10 m, and the effective membrane area is 0.4 to 0.9 m 2 in the filter production.

이하에서 실시예 및 비교실시예를 들어 본 발명을 좀 더 구체적으로 설명한다. 이때 측정되는 물성은 하기와 같은 방법으로 측정한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The physical properties measured at this time are measured in the following manner.

- 유량(flow rate : 순수 탱크에 18megaΩ의 순수를 넣고, 초기압력에 따른 처리유량을 유량계로 평가한다.-Flow rate: Into the pure water tank, 18megaΩ of pure water and the flow rate according to the initial pressure are evaluated by the flow meter.

- 제거효율(removal efficiency) : 오수 탱크에 폴리스티렌 비드를 넣고 일정비율로 순수와 섞어서 기어펌프를 통하여 투여시킨후, upstream 센서를 통하여 필터 통과전의 입자 수를 입자크기별로 측정한후, 필터를 통과한 유체를 downstream 센서를 통하여 유체의 입자수를 측정하여 입자개수의 변화로 측정한다.-Removal efficiency: Put polystyrene beads in the sewage tank, mix them with pure water at a certain ratio and administer them through the gear pump, measure the number of particles before passing the filter by particle size by the upstream sensor, and then pass through the filter. The fluid is measured by changing the particle count by measuring the particle number of the fluid through the downstream sensor.

- 포집능력(dirt holding capacity) : 오수 탱크에 입자를 넣고, downstream과 upstream의 차압이 35psi가 될 때가지 순환시킨 후, 필터의 무게변화를 측정하여 평가한다.Dirt holding capacity: The particles are placed in a sewage tank, circulated until the downstream and upstream differential pressure reaches 35 psi, and then measured by measuring the weight change of the filter.

- 항균성 : 일본섬유제품위생가공협회 평가규격인 쉐이크 플라스크(Shake Flask)법에 의하여 다층여재 상태에서의 항균성능을 평가한다. 즉, 황색 포도 상구균을 한천 배지에 접종하여 37℃에서 27시간 배양한 균을 접종원으로 하여 시험편에 접종한후 일정량의 액체를 가하여 시험편으로부터 세균을 액중에 추출시킨뒤 처리포와 미처리포의 액중에 잔존하는 세균의 수를 측정하여 항균제에 의한 세균의 감소 백분율을 계산한다.-Antimicrobial: The antimicrobial performance is evaluated in the state of multilayer media by the Shake Flask method, an evaluation standard of the Japan Textile Products Sanitary Processing Association. In other words, Staphylococcus aureus was inoculated into agar medium and inoculated into a specimen by inoculation with a bacterium cultured at 37 ° C. for 27 hours, and then a certain amount of liquid was added to extract bacteria from the specimen. The percentage of bacteria remaining by the antimicrobial agent is calculated by measuring the number of bacteria remaining.

<실시예 1><Example 1>

용융지수가 15이고 평균입경이 200㎛의 폴리프로필렌 파우더 92중량%, 항균제로서 10,10'-옥시비스 페녹사진 파우더 5중량%, TiO2분말 2.5중량%, 열안정제로서 이가녹스 1010(시바가이기사제품) 0.1중량%, 퍼록사이드(일본화약(주)제품) 0.4중량%로 구성된 마스터 배치 성분들을 혼합기에 넣고 혼합한후 트윈 스크류가 장착된 용융압출기를 이용하여 스크류 회전속도 200~250rpm, 용융온도 200~220℃의 조건에서 마스타배치 칩을 제조하였다. 제조된 칩을 진공 건조기에서 120℃ × 4시간 조건에서 건조한후 용융지수 35의 부직포용 폴리프로필렌 칩과 1:9로 혼련하여 210℃에서 용융 방사하고 웹형성 및 열접착 공정을 거쳐 항균 기능성을 보유하는 중량 60g/㎡ 폴리프로필렌 장섬유 부직포를 제조하여 상향 및 하향면의 다층여재의 지지체로 하고, 여기에 두께 0.35㎜, 평균기공 크기 3㎛인 유리섬유 제1매체와 두께 0.7㎜, 평균기공크기 2㎛인 유리섬유 제2매체를 4층여재로하여 유효 막면적 0.7㎡ 조건에서 통상의 방법으로 절곡, 절단, 초음파 및 열접합 공정을 거쳐 절곡 필터를 제조하였으며, 물성을 평가하여 그 결과를 표 1에 명기하였다.92 wt% of polypropylene powder with an average particle diameter of 200 μm with a melt index of 15 μm, 5 wt% of 10,10′-oxybisphenoxazine powder as an antibacterial agent, 2.5 wt% of TiO 2 powder, and Iganox 1010 (Shibagai as a heat stabilizer) Article)) 0.1% by weight, peroxide (0.4 kg) of master batch components into a mixer, mixed with a screw screw speed 200 ~ 250rpm, using a melt extruder equipped with a twin screw The master batch chip was manufactured under the conditions of the temperature of 200 ~ 220 ℃. The chips are dried in a vacuum dryer at 120 ℃ × 4 hours, kneaded with a polypropylene chip for nonwoven fabric of melt index 35 at 1: 9, melt spun at 210 ℃, and retained antibacterial function through web formation and heat bonding processes. A weight of 60 g / m 2 polypropylene long fiber nonwoven fabric was prepared and used as a support for the multilayer media of up and down surfaces, and the first glass fiber medium having a thickness of 0.35 mm and an average pore size of 3 μm and a thickness of 0.7 mm and an average pore size. Bending filter was prepared by bending, cutting, ultrasonic and thermal bonding process in the usual way under the effective film area of 0.7㎡ with 4μm glass fiber 2nd media with 2㎛, and evaluated the properties 1 is specified.

<실시예 2><Example 2>

실시예 1에 있어서 항균제 10,10'-옥시비스 페녹사진 파우더를 10중량%(항균제 투입농도 1.0%)로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.Except for changing the antimicrobial 10,10'-oxybis phenoxazine powder in Example 1 to 10% by weight (antibacterial concentration of 1.0%) was carried out under the same conditions and the same method as in Example 1, the results are shown in Table 1 It is specified in.

<실시예 3><Example 3>

실시예 1에 있어서 항균제 10,10'-옥시비스 페녹사진 파우더를 20중량%(항균제 투입농도 2.0%)로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.Except for changing the antimicrobial 10,10'-oxybis phenoxazine powder in Example 1 to 20% by weight (antibacterial concentration 2.0%) was carried out under the same conditions and the same method as in Example 1, the results are shown in Table 1 It is specified in.

<실시예 4><Example 4>

실시예 1에 있어서 유리섬유 제1매체의 두께 1.0㎜, 평균기공 크기 3㎛ 및 유리섬유 제2매체의 두께 1.0㎜, 평균기공 크기 2㎛로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.The same conditions and methods as in Example 1 were changed in Example 1 except that the thickness of the first glass fiber medium was 1.0 mm, the average pore size was 3 μm, and the thickness of the glass fiber second medium was 1.0 mm and the average pore size was 2 μm. It was carried out in, and the results are listed in Table 1.

<실시예 5>Example 5

실시예 1에 있어서 유리섬유 제1매체의 두께 2.0㎜, 평균기공 크기 3㎛ 및 유리섬유 제2매체의 두께 2.0㎜, 평균기공 크기 2㎛로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.The same conditions and the same method as in Example 1, except that the thickness of the glass fiber first medium was 2.0 mm, the average pore size was 3 μm, and the thickness of the glass fiber second medium was 2.0 mm, and the average pore size was 2 μm. It was carried out in, and the results are listed in Table 1.

<실시예 6><Example 6>

실시예 1에 있어서 유리섬유 제1매체의 두께 0.35㎜, 평균기공 크기 6㎛ 및 유리섬유 제2매체의 두께 0.7㎜, 평균기공 크기 6㎛로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, the same conditions and methods as in Example 1 were changed except that the thickness of the first glass fiber medium was 0.35 mm, the average pore size was 6 μm, and the thickness of the glass fiber second medium was 0.7 mm and the average pore size was 6 μm. It was carried out in, and the results are listed in Table 1.

<실시예 7><Example 7>

실시예 1에 있어서 두께 0.35㎜, 평균기공 크기 3㎛ 및 유리섬유 제1매체와 두께 0.7㎜, 평균기공 크기 2㎛인 유리섬유 제2매체를 4층여재로하고 유효 막면적을 0.4㎡ 조건으로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, four layers of 0.35 mm thick, 3 micron average pore size, glass fiber first medium, and a second glass fiber medium of 0.7 mm thickness and 2 μm average pore size were used, and the effective membrane area was 0.4 m 2. Except having changed, it carried out by the same conditions and the same method as Example 1, and the result was specified in Table 1.

<실시예 8><Example 8>

실시예 1에 있어서 두께 0.35㎜, 평균기공 크기 3㎛ 및 유리섬유 제1매체와 두께 0.7㎜, 평균기공 크기 2㎛인 유리섬유 제2매체를 4층여재로하고 유효 막면적을 0.9㎡ 조건으로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, four layers of 0.35 mm thick, average pore size 3 μm, glass fiber first medium, and 0.7 mm thick, average pore size 2 μm were used as four layer media, and the effective membrane area was 0.9 m 2. Except having changed, it carried out by the same conditions and the same method as Example 1, and the result was specified in Table 1.

<비교실시예 1>Comparative Example 1

용융지수 35의 부직포용 폴리프로필렌 칩과 TiO2마스타 배치(2.5중량%)를 9:1로 혼련하여 210℃에서 용융 방사하고 웹형성 및 열접착 공정을 거쳐 일반적인 폴리프로필렌 장섬유 부직포를 제조하여 상향 및 하향면의 다층여재의 지지체로 하고 여기에 두께 0.35㎜, 평균기공 크기 3㎛ 및 유리섬유 제1매체와 두께 0.7㎜, 평균기공 크기 2㎛인 유리섬유 제2매체를 4층여재로하고 유효 막면적을 0.7㎡ 조건에서 통상의 방법으로 절곡, 절단, 초음파 및 열접합 공정을 거쳐 절곡 필터를 제조하였으며, 물성을 평가하여 그 결과를 표 1에 명기하였다.Polypropylene chips for nonwoven fabrics with a melt index of 35 and TiO 2 master batches (2.5% by weight) were kneaded at 9: 1 for melt spinning at 210 ° C, followed by web formation and heat bonding to produce general polypropylene long fiber nonwoven fabrics. And a multi-layered support on the downward side, and having a thickness of 0.35 mm, an average pore size of 3 μm, and a glass fiber first medium and a thickness of 0.7 mm and an average pore size of 2 μm as four layer media. The membrane area was bent, cut, ultrasonically and thermally bonded in a conventional manner under the conditions of 0.7 m2 to produce a bent filter. The physical properties were evaluated and the results are shown in Table 1.

<비교실시예 2>Comparative Example 2

실시예 1에 있어서 항균제로서 첨가제 1인 10,10'-옥시비스 페녹사진 파우더를 30중량%(항균제 투입농도 3.0%)로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, except that 10,10'-oxybis phenoxazine powder, which is additive 1, as an antibacterial agent was changed to 30% by weight (antibacterial concentration 3.0%), the same procedure and the same method as in Example 1 were carried out. The results are listed in Table 1.

<비교실시예 3>Comparative Example 3

실시예 1에 있어서 유리섬유 제1매체의 두께 4.0㎜, 평균기공 크기 5㎛ 및 유리섬유 제2매체의 두께 6.0㎜, 평균기공 크기 5㎛로 변경한 것 이외에는 실시예1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.The same conditions and the same method as in Example 1, except that the thickness of the glass fiber first medium was changed to 4.0 mm, the average pore size of 5 μm, and the thickness of the glass fiber second medium was 6.0 mm, and the average pore size was 5 μm. It was carried out in, and the results are listed in Table 1.

<비교실시예 4>Comparative Example 4

실시예 1에 있어서 두께 0.35㎜, 평균기공 크기 3㎛ 및 유리섬유 제1매체와 두께 0.7㎜, 평균기공 크기 2㎛인 유리섬유 제2매체를 4층여재로하고 유효 막면적을 0.2㎡ 조건으로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, four layers of 0.35 mm thick, 3 μm average pore size and 1 glass fiber first medium, and a second glass fiber medium of 0.7 mm thickness and 2 μm average pore size were used, and the effective membrane area was 0.2 m 2. Except having changed, it carried out by the same conditions and the same method as Example 1, and the result was specified in Table 1.

<비교실시예 5>Comparative Example 5

실시예 1에 있어서 두께 0.35㎜, 평균기공 크기 3㎛ 및 유리섬유 제1매체와 두께 0.7㎜, 평균기공 크기 2㎛인 유리섬유 제2매체를 4층여재로하고 유효 막면적을 1.3㎡ 조건으로 변경한 것 이외에는 실시예 1과 동일한 조건 및 동일한 방법으로 실시하였으며, 그 결과를 표 1에 명기하였다.In Example 1, four layers of 0.35 mm thick, 3 μm average pore size and 1 glass fiber first medium, and a second glass fiber medium of 0.7 mm thickness and 2 μm average pore size were used, and the effective membrane area was 1.3 m 2. Except having changed, it carried out by the same conditions and the same method as Example 1, and the result was specified in Table 1.

상기 실시예 및 비교실시예에서도 확인되듯이, 본 발명에 따라 제조된 절곡필터의 경우 유량 및 불순물 제거효율이 우수하면서도 항균성이 우수하여 액체 정제용으로 사용시 매우 유용하다.As can be seen from the above examples and comparative examples, the bending filter manufactured according to the present invention has excellent flow rate and impurities removal efficiency, but also has excellent antibacterial properties, which is very useful when used for liquid purification.

Claims (3)

범용 폴리프로필렌 수지와 항균제를 혼합하여 마스터 배치를 제조한 후 부직포 용도의 범용 폴리프로필렌 수지와 혼련, 용융 방사, 웹 형성 등의 부직포 제조공정을 거쳐 얻어진 폴리프로필렌 장섬유 부직포를 지지체로 하고, 여기에 유리섬유계 여재를 다층상으로 절곡, 절단, 접합 공정등을 거쳐 유리섬유계 절곡필터를 제조하는 주지의 공정에 있어서, 항균제로 옥시비스 페녹사진계 유기 항균제를 폴리프로필렌 수지 총중량의 0.5~2.0중량% 사용하는 것을 특징으로 하는 항균성이 우수한 액체 정제용 절곡필터의 제조방법After preparing a master batch by mixing a general purpose polypropylene resin and an antimicrobial agent, a polypropylene long fiber nonwoven fabric obtained through a nonwoven fabric manufacturing process such as kneading, melt spinning, and web formation with a general purpose polypropylene resin for nonwoven fabrics is used as a support. In the well-known process of manufacturing a glass fiber bending filter through bending, cutting, and joining a glass fiber filter medium in a multilayered form, an oxybis phenoxazine organic antibacterial agent is used as an antimicrobial agent at 0.5 to 2.0% by weight of the total weight of the polypropylene resin. Method for producing a bending filter for liquid purification excellent in antimicrobial characterized in that it is used 제 1 항에 있어서, 유리섬유계 여재로 유리섬유 제1매체는 두께 0.1~3.0㎜, 평균기공크기는 2~10㎛이며, 유리섬유 제2매체는 두께 0.2~5.0㎜, 평균기공크기는 1~10㎛ 범위인 것을 사용하는 것을 특징으로 하는 항균성이 우수한 액체 정제용 절곡필터의 제조방법.According to claim 1, wherein the glass fiber-based media, the glass fiber first medium is 0.1 ~ 3.0㎜ thickness, the average pore size is 2 ~ 10㎛, the second glass fiber medium is 0.2 ~ 5.0㎜ thickness, the average pore size is 1 A method for producing a bending filter for liquid refining having excellent antimicrobial characteristics, characterized by using a range of ˜10 μm. 제 1 항에 있어서, 필터의 유효 막 면적은 0.4~9㎡ 범위임을 특징으로 하는 항균성이 우수한 액체 정제용 절곡필터의 제조방법.The method of claim 1, wherein the effective membrane area of the filter ranges from 0.4 to 9 m 2.
KR1019990062904A 1999-12-27 1999-12-27 Producing method of the folding filter with excellent antibacterial property for liquid purification KR20010060509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990062904A KR20010060509A (en) 1999-12-27 1999-12-27 Producing method of the folding filter with excellent antibacterial property for liquid purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990062904A KR20010060509A (en) 1999-12-27 1999-12-27 Producing method of the folding filter with excellent antibacterial property for liquid purification

Publications (1)

Publication Number Publication Date
KR20010060509A true KR20010060509A (en) 2001-07-07

Family

ID=19630291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990062904A KR20010060509A (en) 1999-12-27 1999-12-27 Producing method of the folding filter with excellent antibacterial property for liquid purification

Country Status (1)

Country Link
KR (1) KR20010060509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054879A (en) * 2000-12-28 2002-07-08 한형수 Method for manufacturing bended filter to purifying fluid
WO2006057726A1 (en) * 2004-10-26 2006-06-01 Reemay, Inc. Composite filtration media
KR100809145B1 (en) * 2002-02-15 2008-02-29 주식회사 새 한 Manufacturing method of bending filter of Ultra Filtration membrane for liquid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247816A (en) * 1986-04-18 1987-10-28 Kureha Chem Ind Co Ltd Filter for air conditioner consisting of antimicrobial fiber cloth
JPH0592113A (en) * 1991-08-30 1993-04-16 Techno Ryowa:Kk Antibacterial air filter and its manufacture
KR960013423A (en) * 1994-10-08 1996-05-22 조규향 Inorganic Antibacterial for Drinking Water and Filters and Filters Using the Same
JPH08144199A (en) * 1994-11-17 1996-06-04 Nippon Glass Fiber Co Ltd Filter paper for antimicrobial air filter and its production
KR0137382B1 (en) * 1994-09-27 1998-04-25 박흥기 Preparation method of antibiotic flat membrane
KR19990012068A (en) * 1997-07-26 1999-02-25 구자홍 Exhaust filter of vacuum cleaner
KR19990031069A (en) * 1997-10-08 1999-05-06 김명기 Dust collecting filter material and manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247816A (en) * 1986-04-18 1987-10-28 Kureha Chem Ind Co Ltd Filter for air conditioner consisting of antimicrobial fiber cloth
JPH0592113A (en) * 1991-08-30 1993-04-16 Techno Ryowa:Kk Antibacterial air filter and its manufacture
KR0137382B1 (en) * 1994-09-27 1998-04-25 박흥기 Preparation method of antibiotic flat membrane
KR960013423A (en) * 1994-10-08 1996-05-22 조규향 Inorganic Antibacterial for Drinking Water and Filters and Filters Using the Same
JPH08144199A (en) * 1994-11-17 1996-06-04 Nippon Glass Fiber Co Ltd Filter paper for antimicrobial air filter and its production
KR19990012068A (en) * 1997-07-26 1999-02-25 구자홍 Exhaust filter of vacuum cleaner
KR19990031069A (en) * 1997-10-08 1999-05-06 김명기 Dust collecting filter material and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054879A (en) * 2000-12-28 2002-07-08 한형수 Method for manufacturing bended filter to purifying fluid
KR100809145B1 (en) * 2002-02-15 2008-02-29 주식회사 새 한 Manufacturing method of bending filter of Ultra Filtration membrane for liquid
WO2006057726A1 (en) * 2004-10-26 2006-06-01 Reemay, Inc. Composite filtration media

Similar Documents

Publication Publication Date Title
Yue et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications
Obaid et al. Amorphous SiO2 NP-incorporated poly (vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination
US7390343B2 (en) Drinking water filtration device
KR101444518B1 (en) Low-basis-weight filter media for air filters
JP2005527344A (en) Nanofiber filter media
JP2009148748A (en) Filter and filter unit
CA1226708A (en) Filtration membrane and process for producing the membrane
KR20010060509A (en) Producing method of the folding filter with excellent antibacterial property for liquid purification
CN105799272B (en) Filter medium and filter element having a filter medium
Mao Engineering design of high-performance filter fabrics
Chakraborty et al. Fabrication of Janus type bi-layer polymeric membranes for advance water purification
KR20020054879A (en) Method for manufacturing bended filter to purifying fluid
KR101068435B1 (en) Cylindrical depth filter for filtering fluid and manufacturing method thereof
JP2001321619A (en) Filter cartridge
KR102621800B1 (en) Nanofiber filter and preparation method thereof
KR100809145B1 (en) Manufacturing method of bending filter of Ultra Filtration membrane for liquid
CN105251380A (en) Hollow fiber water-gas dual-purpose membrane simultaneously used for water treatment filtering membrane and gas separation
Zakria et al. The use of PVDF membrane for wastewater treatment
KR0137382B1 (en) Preparation method of antibiotic flat membrane
KR20040072018A (en) Pleated filter with high flow rate
WO2018234838A1 (en) Filtration medium, processes to produce it and uses thereof
EP4029589A1 (en) A filter media
KR20230123484A (en) filter media
KR101626129B1 (en) High Viscous fluid filter assemblies and method for manufacturing thereof
RU2326715C1 (en) Sorption-filtrating material for filtrating cartridge for water purification and method for preparation of filtering cartridge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application