KR20010057154A - A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same - Google Patents

A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same Download PDF

Info

Publication number
KR20010057154A
KR20010057154A KR1019990058943A KR19990058943A KR20010057154A KR 20010057154 A KR20010057154 A KR 20010057154A KR 1019990058943 A KR1019990058943 A KR 1019990058943A KR 19990058943 A KR19990058943 A KR 19990058943A KR 20010057154 A KR20010057154 A KR 20010057154A
Authority
KR
South Korea
Prior art keywords
reactor
photocatalyst
annulus
fluidized bed
dimensional fluidized
Prior art date
Application number
KR1019990058943A
Other languages
Korean (ko)
Other versions
KR100358950B1 (en
Inventor
김상돈
임탁형
정상문
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019990058943A priority Critical patent/KR100358950B1/en
Publication of KR20010057154A publication Critical patent/KR20010057154A/en
Application granted granted Critical
Publication of KR100358950B1 publication Critical patent/KR100358950B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas

Abstract

PURPOSE: A two-dimensional fluidized-bed photocatalytic reactor is provided which has an annulus shaped narrow gap, and a method is provided which photodecomposes nitrogen oxide (NO) using the improved two-dimensional fluidized-bed photocatalytic reactor. CONSTITUTION: The two-dimensional fluidized-bed photocatalytic reactor comprises an annulus part (28) consisting of two quartz tubes each of which have different diameters; a porous dispersion plate (21) supporting photocatalysts (24) at the lower part of the annulus part; a reactive gas infusion part (25) installed under the porous dispersion plate; a reactive gas discharging part (27) installed at the upper part of the annulus part; and an ultraviolet ray lamp (23) installed inside the quartz tube having a smaller diameter out of the quartz tubes (22), wherein the photocatalysts (24) are one or more catalysts selected from the group consisting of TiO2, SnO2, ZnO, WO3, Fe2O3, CdS, MoS2, CdSe and MoSe2 which are coated on silica gel. The method for photodecomposable nitrogen oxide (NO) comprises the steps of filling photocatalysts into the annulus part of the two-dimensional fluidized-bed photocatalytic reactor; infusing nitrogen oxide (NO) into a reactive gas infusion part; and irradiating ultraviolet rays.

Description

애뉼러스 형태의 좁은 간격을 갖는 이차원 유동층 광촉매 반응기 및 그를 이용한 산화질소의 광분해방법{A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same}A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same}

본 발명은 애뉼러스 형태의 좁은 간격을 갖는 변형된 이차원 유동층 광촉매 반응기에 관한 것이다. 좀 더 구체적으로, 본 발명은 직경이 서로 다른 두개의 석영관으로 이루어진 애뉼러스부와 전기 석영관 중, 작은 직경의 석영관 내부에 구비된 자외선 램프를 포함하는 애뉼러스 형태의 좁은 간격을 갖는 변형된 이차원 유동층 광촉매 반응기 및 그를 이용한 산화질소의 광분해방법에 관한 것이다.The present invention relates to a modified two-dimensional fluidized bed photocatalyst reactor with narrow gaps in the form of annulus. More specifically, the present invention is a variant having a narrow gap in the form of an annulus including an ultraviolet lamp provided inside the quartz tube of a small diameter of the electrical quartz tube and the annular portion consisting of two quartz tubes of different diameters. It relates to a two-dimensional fluidized bed photocatalyst reactor and a photolysis method of nitric oxide using the same.

광촉매 반응기는, 수질, 대기, 해양, 지하수 등 다양한 환경분야에서 난분해성 물질 및 독성 물질, 휘발성 유기 및 무기 화합물 등을 고효율로 완전 산화/분해시키는 광촉매 반응에 사용되는 반응기로, 반응의 종류에 따라 다양한 형태가 있을수 있는 바, 이들 중 유동층반응기는 촉매와 반응물의 분리공정이 필요없다는 장점으로 인하여, 최근에는 염색 폐수의 탈색과 인쇄회로기판 제작 공정에서 발생되는 중금속 폐수의 COD 제거, 의약품 제조공정에서 발생되는 고농도 항생물질을 포함한 폐수처리 등의 다양한 분야에서 연구되어지고 있다.Photocatalytic reactor is a reactor used for photocatalytic reaction that completely oxidizes / decomposes hardly decomposable substances and toxic substances, volatile organic and inorganic compounds in various environmental fields such as water quality, air, ocean, groundwater, etc. There are various types of fluidized bed reactors, because of the advantage that the separation process of the catalyst and reactants is not necessary, recently, in the dyeing wastewater decolorization and COD removal of heavy metal wastewater generated in the printed circuit board manufacturing process, pharmaceutical manufacturing process It is being studied in various fields such as wastewater treatment containing high concentrations of antibiotics.

특히, 미국특허 제 5,374,405호(Firnberg et al.)에는 회전하는 플레넘베셀(plenum vessel)이 장착된 다공성 베드베셀드럼(bed vessel drum)을 이용한 광화학 반응기가 개시되어 있는 바, 이 반응기는 드럼의 벽면을 통하여 주입된 반응기체가 회전하는 플레넘베셀이 장착된 다공상 베드베셀드럼을 통과하면서, 유동화된 고체입자와 반응한 다음, 배출부를 통과하도록 구성되어 있고, 드럼 내부에는 전자기장 방사장치가 설치되어 광촉매반응을 촉진시킨다. 그러나, 이 반응기에서는 촉매 등의 고체 입자들이 원심력외에도 중력에 의한 영향을 받고 있기 때문에, 고체입자들을 유동화되도록 하는데는 복잡한 장치가 필요하다는 단점이 있다.In particular, U.S. Patent No. 5,374,405 (Firnberg et al.) Discloses a photochemical reactor using a porous bed vessel drum equipped with a rotating plenum vessel, which is a device for The reactor injected through the wall is configured to react with fluidized solid particles through the porous bed vessel drum equipped with a rotating plenum vessel, and then to pass through the discharge section. To promote the photocatalytic reaction. However, in this reactor, since solid particles such as catalysts are affected by gravity in addition to centrifugal force, there is a disadvantage that a complicated apparatus is required to allow the solid particles to be fluidized.

또한, 미국특허 제 5,045,288호(Raupp et al.)에는 평평한 2장의 유리판으로 이루어진 좁은 간격을 갖는 유리벽면(11), 다공성 분산판(12), 반응기체 주입부(13) 반응기체 배출부(14)로 구성되어 유리벽면 내부에는 광촉매(15)가 채워지고, 유리벽면(11)의 외부에서 자외선(16)이 조사되는 흐름형식의 이차원 광촉매 반응기가 반응기가 개시되어 있는데(참조: 도 1), 이 광촉매 반응기는 트리클로로에틸렌(trichloroethylene) 등의 휘발성 유기화합물이나 폴리클로리네이티드 바이페닐(polychlorinated biphenyl) 등의 비 휘발성 유기화합물들에 의해 오염된 대기와 수질을 정화하기 위하여 사용되고 있다. 그러나, 전술한 광촉매 반응기는 반응기의 유리벽면으로 보로실리케이트 유리가 사용되고 있어서, 단파장인 자외선이 유리에 흡수됨에 따라 자외선의 공급이 비효율적일 뿐만 아니라, 반응기가 평면상이기 때문에 반응기의 위치에 따라 도달되는 자외선의 강도가 다르다는 문제점이 있다.In addition, U. S. Patent No. 5,045, 288 (Raupp et al.) Discloses a glass wall surface 11 having a narrow gap consisting of two flat glass plates, a porous dispersion plate 12, a reactor body injector 13, and a reactor body outlet 14 The photocatalyst 15 is filled inside the glass wall surface and the ultraviolet ray 16 is irradiated from the outside of the glass wall surface 11 so that the reactor is disclosed (see FIG. 1). This photocatalytic reactor is used to purify the air and water contaminated by volatile organic compounds such as trichloroethylene and nonvolatile organic compounds such as polychlorinated biphenyl. However, in the photocatalyst reactor described above, borosilicate glass is used as the glass wall surface of the reactor, and as the ultraviolet light having short wavelength is absorbed into the glass, the supply of ultraviolet light is not only inefficient, but the reactor is planar, so that it is reached according to the position of the reactor. There is a problem that the intensity of ultraviolet light is different.

따라서, 전술한 광촉매 반응기들의 단점을 해소하여, 광촉매 입자들의 분산이 균일할 뿐만 아니라, 자외선의 조사가 효율적으로 이루어지는 광촉매 반응기를개발하여야 할 필요성이 끊임없이 대두되었다.Accordingly, the need for developing a photocatalytic reactor in which the dispersion of the photocatalyst particles is uniform and the irradiation of ultraviolet rays is efficiently generated is solved by solving the above-mentioned disadvantages of the photocatalytic reactors.

이에, 본 발명의 발명자들은 결국, 종래의 유동층 광촉매 반응기의 성능을 더욱 향상시키기 위하여, 종래의 좁은 간격을 가지며 2장의 보로실리케이트 유리판으로 이루어진 유동층 광촉매 반응기의 벽면을 자외선 광에너지의 손실을 최소화 하는 석영으로 바꾸고, 또한, 판상의 반응기를 애뉼러스 형상으로 전환시킨 다음, 그 내부공간에 자외선 램프를 설치하면, 자외선의 조사가 상대적으로 균일하게 되어, 효율적으로 산화질소를 광분해시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Therefore, the inventors of the present invention, in order to further improve the performance of the conventional fluidized bed photocatalytic reactor, quartz to minimize the loss of ultraviolet light energy on the wall surface of the fluidized bed photocatalyst reactor having a narrow gap of two conventional borosilicate glass plates In addition, by converting the plate-shaped reactor into an annular shape, and then installing an ultraviolet lamp in the inner space, it is confirmed that the irradiation of ultraviolet rays becomes relatively uniform, which can efficiently decompose nitrogen oxides, The present invention has been completed.

결국, 본 발명의 주된 목적은 애뉼러스 형태의 좁은 간격을 갖는 개량된 이차원 유동층 광촉매 반응기를 제공하는 것이다.After all, the main object of the present invention is to provide an improved two-dimensional fluidized bed photocatalyst reactor having a narrow gap in the form of annulus.

본 발명의 다른 목적은 전기 개량된 이차원 유동층 광촉매 반응기를 이용한 산화질소(NO)의 광분해방법을 제공하는 것이다.Another object of the present invention is to provide a photolysis method of nitric oxide (NO) using an electrically improved two-dimensional fluidized bed photocatalytic reactor.

도 1은 종래의 유동층 광촉매 반응기를 개략적으로 나타낸 정면도 및 측면도이다.1 is a front view and a side view schematically showing a conventional fluidized bed photocatalyst reactor.

도 2는 본 발명의 애뉼러스 형태의 좁은 간격을 가지는 이차원 유동층 광촉매 반응기를 개략적으로 나타낸 모식도이다.Figure 2 is a schematic diagram showing a two-dimensional fluidized bed photocatalyst reactor having a narrow gap of the annular form of the present invention.

도 3은 본 발명의 애뉼러스 형태의 좁은 간격을 가지는 변형된 이차원 유동층 광촉매 반응기와 종래의 흐름 형식의 광촉매 반응기에서의 산화질소의 전환율을 비교하여 나타낸 그래프이다.FIG. 3 is a graph showing the conversion of nitrogen oxides in a narrowly spaced modified two-dimensional fluidized bed photocatalyst reactor of the present invention and a conventional flow type photocatalyst reactor.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

11... 유리벽면 12, 21... 다공성 분산판11 ... glass walls 12, 21 ... porous dispersion plate

13, 25... 반응기체 주입부 14, 27... 반응기체 배출부13, 25 ... Reactor inlet 14, 27 ... Reactor inlet

15, 24... 광촉매 16... 자외선15, 24 ... Photocatalyst 16 ... UV

22... 석영관 23... 자외선 램프22 ... quartz tube 23 ... UV lamp

26... 생성된 기포 28... 애뉼러스부26 ... generated bubbles 28 ... annular part

상기와 같은 본 발명의 목적을 달성하기 위한 본 발명의 이차원 유동층 광촉매 반응기는Two-dimensional fluidized bed photocatalyst reactor of the present invention for achieving the object of the present invention as described above

직경이 서로 다른 두개의 석영관으로 이루어진 애뉼러스부;An annular part consisting of two quartz tubes having different diameters;

전기 애뉼러스의 하단부에서 광촉매를 지지하는 다공성 분산판;A porous dispersion plate supporting the photocatalyst at the lower end of the electric annulus;

전기 다공성 분산판의 아래에 구비된 반응기체 주입부;A reactor injection portion provided below the electroporous dispersion plate;

전기 애뉼러스부의 상단부에 구비된 반응기체 배출부; 및,A reactor gas discharge part provided at an upper end of the electric annulus part; And,

전기 석영관 중, 작은 직경의 석영관 내부에 구비된 자외선 램프를 포함한다.Among the electric quartz tubes, there is included an ultraviolet lamp provided inside a quartz tube of small diameter.

이하에서는, 상기 목적을 달성하기 위한 본 발명의 개량된 이차원 유동층 광촉매 반응기를 첨부한 도면에 의해 상세히 설명하고자 한다.Hereinafter, an improved two-dimensional fluidized bed photocatalyst reactor of the present invention for achieving the above object will be described in detail by the accompanying drawings.

도 2에서 보는 바와 같이, 본 발명의 이차원 유동층 광촉매 반응기의 애뉼러스부(28)는, 직경이 서로 다른 두개의 석영관(22)을 이용하여 제작된다. 이때, 두 석영관 사이의 간격은, 내부의 반응 기체가 자외선에 의하여 균일하게 조사될 수 있도록 2.5mm 내지 7mm로 유지하여야 하는 바, 두개의 석영판 사이의 간격이 2.5mm에 이르지 못한 경우는 기체의 통과량이 작아지게 되어 바람직하지 못하며, 7mm를 초과하는 경우는 통과하는 기체에 조사되는 자외선의 강도가 불균일하게 되어 반응이 고르게 일어나지 않는 문제점이 있어서 바람직하지 못하다. 전기 애뉼러스부(28)에는 광촉매 입자(24)가 채워진다. 이때, 광촉매의 유동화 특성을 향상시키기 위하여, 일반적인 분말 상태의 광촉매를 대신하여 실리카 겔에 코팅된 광촉매가 사용되는 것이 바람직한데, 입자의 크기가 작은 광촉매를 대신하여 자외선 투과도가 비교적 높고 적당한 물성을 갖는 실리카 겔에 코팅된 광촉매가 사용되는 경우, 유동화특성이 향상되어 적당한 크기의 기포가 생성됨에 따라 광촉매 층으로 자외선 침투가 원활하게 된다. 전기 광촉매로서는 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO), 삼산화텅스텐(WO3), 삼산화이철(Fe2O3), 황화카드뮴(CdS), 이황화몰리브덴(MoS2), 셀렌화카드뮴(CdSe), 이셀렌화몰리브덴(MoSe2) 등이 사용되며, 바람직하게는 이산화티탄(TiO2)이 사용된다.As shown in FIG. 2, the annular portion 28 of the two-dimensional fluidized bed photocatalytic reactor of the present invention is manufactured by using two quartz tubes 22 having different diameters. At this time, the spacing between the two quartz tubes should be maintained at 2.5mm to 7mm so that the reaction gas therein can be uniformly irradiated by ultraviolet light, and if the spacing between the two quartz plates does not reach 2.5mm It is not preferable that the amount of passes through becomes small, and if it exceeds 7 mm, there is a problem that the intensity of ultraviolet rays irradiated to the gas passing through becomes uneven and the reaction does not occur evenly. The electrical annulus portion 28 is filled with the photocatalyst particles 24. In this case, in order to improve the fluidization characteristics of the photocatalyst, it is preferable to use a photocatalyst coated on silica gel in place of a general photocatalyst in the form of a powder. When a photocatalyst coated on silica gel is used, fluidization characteristics are improved to generate bubbles of a suitable size, thereby smoothly penetrating ultraviolet rays into the photocatalyst layer. Titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), tungsten trioxide (WO 3 ), ferric trioxide (Fe 2 O 3 ), cadmium sulfide (CdS), molybdenum disulfide (MoS 2) ), Cadmium selenide (CdSe), molybdenum selenide (MoSe 2 ), and the like, and titanium dioxide (TiO 2 ) is preferably used.

전기 애뉼러스의 하단부에는 다수의 작은 기공을 가진 다공성 분산판(21)이 설치되는 바, 이는 이산화티탄 광촉매(24)를 지지하고, 반응기체가 좁은 애뉼러스부(28)으로 분산되어 균일한 크기의 기포(26)가 생성되도록 한다. 이를 위하여, 다공성 분산판의 기공의 크기는 평균직경이가 100 내지 200㎛이 되도록 한다. 다공성 분산판의 기공의 평균직경이 100㎛에 이르지 못하는 경우, 반응기체의 압력이 증가되어 기포가 균일하게 생성되지 않게 되며, 200㎛를 초과하는 경우에는 광촉매 입자가 기공을 막는 현상이 발생하여, 광촉매 반응이 고르게 일어나지 않게 된다.The lower part of the electric annulus is provided with a porous dispersion plate 21 having a plurality of small pores, which supports the titanium dioxide photocatalyst 24, and the reactor body is dispersed in the narrow annular part 28 so as to have a uniform size. Allows bubbles 26 to be created. To this end, the pore size of the porous dispersion plate is such that the average diameter is 100 to 200㎛. If the average diameter of the pores of the porous dispersion plate does not reach 100㎛, the pressure of the reaction medium is increased so that the bubbles are not produced uniformly, when the thickness exceeds 200㎛ photocatalyst particles block the pores, The photocatalytic reaction does not occur evenly.

전기 다공성 분산판(21)의 아래와 전기 애뉼러스부(28)의 상단부에는 반응기체 주입부(25)와 반응기체 배출부(27)이 구비되어, 반응기체가 반응기체 주입부(25), 다공성 분산판(21), 이산화티탄 광촉매(24)가 채워진 애뉼러스부(28), 반응기체 배출부(27)의 순서로 통과된다. 한편, 자외선 램프(23)는 전기 석영관(22) 중, 작은 직경의 석영관 내부에 구비되어, 광촉매 반응을 초기화시키기 위한 자외선이 애뉼러스부(28)에 균일하게 조사되도록 한다.A lower portion of the electroporous dispersion plate 21 and an upper portion of the electrical annulus portion 28 are provided with a reactive gas injection portion 25 and a reactive gas discharge portion 27. The dispersion plate 21, the titanium dioxide photocatalyst 24 is filled in the order of the annulus portion 28, the reactor body discharge portion 27 in order. On the other hand, the ultraviolet lamp 23 is provided inside the quartz tube of a small diameter of the electric quartz tube 22, so that the ultraviolet rays for initiating the photocatalytic reaction are uniformly irradiated to the annular portion 28.

이하에서는, 본 발명의 개량된 이차원 유동층 광촉매 반응기의 작용 및 효과를 설명한다.Hereinafter, the operation and effect of the improved two-dimensional fluidized bed photocatalytic reactor of the present invention will be described.

본 발명의 이차원 유동층 광촉매 반응기에서는, 반응 기체가 반응기체 주입부(25)에서 주입되고 다공성 분산판(21)에 의하여 생성된 기포(26) 형태로, 광촉매(24)가 채워진 애뉼러스부(28)를 통과하면서, 자외선 램프(23)에서 발광되어 석영관(22) 중, 작은 직경의 석영관을 투과한 자외선과 광촉매(24)하에서 반응한 다음, 반응기체 배출부(27)를 통과하여 반응기 밖으로 배출된다.In the two-dimensional fluidized-bed photocatalyst reactor of the present invention, the reactant gas is injected from the reactor body injector 25 and in the form of bubbles 26 generated by the porous dispersion plate 21, and the annular portion 28 filled with the photocatalyst 24 is provided. 1), and reacts under the photocatalyst 24 with ultraviolet light emitted from the ultraviolet lamp 23 and transmitted through the quartz tube of small diameter in the quartz tube 22, and then passes through the reactor body discharge part 27 to the reactor. Is discharged out.

본 발명의 애뉼러서 형태의 좁은 간격을 갖는 이차원 유동층 광촉매 반응기에 의하면, 반응기의 벽면으로 사용되던 종래의 보로실리케이트 유리를 석영관(22)으로 전환하고, 석영관(22)의 중심에 자외선 램프(23)를 구비함으로써, 자외선 광에너지의 손실을 최소화하고, 반응기체 및 이산화티탄 광촉매(24)에 조사되는 자외선의 세기가 광촉매 반응기 전체 면에서 균일하게 되도록 하였을 뿐만 아니라, 제작비용을 절감하는 부수적인 효과도 얻을 수 있다.According to the annularly spaced two-dimensional fluidized bed photocatalytic reactor of the present invention, the conventional borosilicate glass used as the wall of the reactor is converted into a quartz tube 22, and an ultraviolet lamp (in the center of the quartz tube 22) is used. 23) minimizes the loss of ultraviolet light energy and makes the intensity of ultraviolet light irradiated to the reactor body and the titanium dioxide photocatalyst 24 uniform throughout the photocatalytic reactor as well as to reduce manufacturing costs. The effect can also be obtained.

한편, 본 발명의 다른 전기 애뉼러스 형태의 좁은 간격을 갖는 개량된 이차원 유동층 광촉매 반응기를 이용한 산화질소의 광분해방법은 전술한 이차원 유동층 광촉매 반응기의 애뉼러스부에 광촉매를 충진한 다음, 산화질소(NO)를 반응기체 주입부에 주입시키고, 자외선을 조사시키는 단계를 포함한다. 이때, 산화질소의 반응기체 주입부에 주입되는 유속은 0.3 내지 4.0cm/s로 조절하는 것이 바람직하다.On the other hand, in the method of photolysis of nitric oxide using the improved two-dimensional fluidized bed photocatalytic reactor having a narrow gap of another electric annulus type of the present invention, after filling the photocatalyst in the annular part of the two-dimensional fluidized bed photocatalyst reactor described above, ) Is injected into the reactor gas injection unit and irradiated with ultraviolet rays. At this time, the flow rate injected into the reactor injection portion of the nitric oxide is preferably adjusted to 0.3 to 4.0cm / s.

이하, 본 발명을 실시예에 의해 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 제한되지 않는다는 것은 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited according to the gist of the present invention.

실시예 1: 개선된 이차원 유동층 광촉매 반응기를 이용한 산화질소(NO)의 광분해 Example 1 Photolysis of Nitric Oxide (NO) Using an Improved Two-Dimensional Fluidized Bed Photocatalytic Reactor

본 실시예에서 사용된 광촉매 반응기는 두께 2.0mm, 내경과 외경이 각각 150mm와 158mm(석영관 사이의 간격은 4mm), 높이가 250mm인 두개의 석영관으로 이루어진 애뉼러스부와, 애뉼러스의 하단부에 평균직경 140㎛의 기공을 포함하는 다공성 분산판, 다공성 분산판의 아래와 애뉼러스부의 상단부에 각각 구비된 반응기체 주입부와 배출부 및 전기 석영관의 내부에 구비된 자외선 램프로 구성되었다.The photocatalytic reactor used in this embodiment has a thickness of 2.0 mm, an inner diameter and an outer diameter of 150 mm and 158 mm (the spacing between quartz tubes is 4 mm), and an annulus portion consisting of two quartz tubes having a height of 250 mm, and a lower portion of the annulus. It consists of a porous dispersion plate containing pores having an average diameter of 140㎛, and a UV lamp provided inside the reactor injection portion and discharge portion and the electro-quartz tube, respectively provided on the upper and lower portions of the annular portion of the porous dispersion plate.

졸 겔법에 의하여, 1g의 실리카 겔(평균직경 250㎛)에 0.1g의 이산화티탄이 코팅된 이산화티탄 광촉매를 본 발명의 이차원 유동층 광촉매 반응기의 애뉼러스부에 110mm의 높이로 충진한 다음, 초기농도가 106ppm인 산화질소의 유속을 0.3 내지 4.0cm/s로 변화시키면서 다공성 분산판 아래의 반응기체 주입부로 주입시키고, 자외선(Imax=350nm)을 조사시키면서 반응기체 배출부의 산화질소의 농도변화를 측정하여 산화질소 전환율을 계산하였다. Mass Quadruples(Blazer사, 독일) 기기를 이용하여 산화질소의 농도를 측정하였으며, NO 가스 전환율은 다음의 식을 이용하여 계산하였다:By the sol gel method, 1 g of silica gel (average diameter 250 µm) was filled with titanium dioxide photocatalyst coated with 0.1 g of titanium dioxide to the annular part of the two-dimensional fluidized bed photocatalyst reactor of the present invention at a height of 110 mm, and then the initial concentration. Was injected into the reactor injection section under the porous dispersion plate while varying the flow rate of nitrogen oxide having a concentration of 106 ppm to 0.3 to 4.0 cm / s, and measuring the change in the concentration of nitrogen oxide at the exit of the reactor while irradiating ultraviolet rays (I max = 350 nm). Nitric oxide conversion was calculated. Nitrogen oxide concentrations were measured using a Mass Quadruples (Blazer, Germany) instrument, and NO gas conversion was calculated using the following equation:

산화질소 전환율 = (초기농도 - 반응 후 농도)/초기농도Nitric oxide conversion rate = (initial concentration-concentration after reaction) / initial concentration

비교예 1: 종래의 이차원 유동층 광촉매 반응기를 이용한 산화질소(NO) 가스의 광 Comparative Example 1 Light of Nitric Oxide (NO) Gas Using a Conventional Two-dimensional Fluidized Bed Photocatalytic Reactor

분해decomposition

폭 100mm, 높이 250mm의 보로실리케이트 유리판 두장이 4mm의 간격으로 부착되고, 하단에 평균직경 140㎛의 기공을 포함하는 다공성 분산판이 구비되었으며, 분산판의 아래와 유리판의 상단부에 각각 반응기체 주입부와 배출부가 구비된, 종래의 흐름형식의 이차원 광촉매 반응기(참조: 도 1)에, 실시예 1과 동일한 광촉매를 110mm 높이로 충진하였다. 도 1에서 보듯이, 종래의 반응기는 반응기 외부에서 자외선(Imax=350nm)이 조사되는 형태이다. 초기 산화질소 가스는 105ppm으로 유지하였으며, 광촉매 반응기에 주입되는 산화질소가스의 유속을 0.7 내지 3.4cm/s로 변화시키면서 반응기체 유출부에서 산화질소가스의 농도를 측정하여, 실시예 1의 식을 통하여 산화질소 전환율을 측정하였다.Two borosilicate glass plates 100 mm wide and 250 mm high were attached at intervals of 4 mm, and a porous dispersion plate including pores having an average diameter of 140 μm was provided at the bottom. In the conventional flow type two-dimensional photocatalyst reactor (see FIG. 1), which was additionally equipped, the same photocatalyst as in Example 1 was charged to a height of 110 mm. As shown in Figure 1, the conventional reactor is a form in which ultraviolet (I max = 350nm) is irradiated from the outside of the reactor. The initial nitric oxide gas was maintained at 105 ppm, and the concentration of nitric oxide gas at the outlet of the reactor was measured while changing the flow rate of the nitric oxide gas injected into the photocatalyst reactor to 0.7 to 3.4 cm / s. Nitric oxide conversion was measured through.

이상의 실시예 1 및 비교예 1의 결과를 도 3에 정리하였다. 도 3에서, (--)는 본 발명의 애뉼러스 형태의 좁은 간격을 갖는 이차원 유동층 광촉매 반응기에 의한 유속에 따른 산화질소의 전환율이고, (--)는 종래의 흐름형식의 이차원 유동층 광반응기에 의한 유속에 따른 산화질소의 전환율을 나다낸다. 도 3에서 보듯이, 본 발명의 개선된 이차원 유동층 광촉매 반응기를 사용한 경우에, 반응기체의 유속변화에 따라 산화질소 전환율이 변하였으나, 전체 유속 영역에서 종래의 광촉매 반응기에 비하여 높은 산화질소 전환율을 보이는 것을 확인할 수 있었다.The result of Example 1 and the comparative example 1 mentioned above is put together in FIG. In Figure 3, (- -) Is the conversion rate of nitric oxide according to the flow rate by the narrowly spaced two-dimensional fluidized bed photocatalyst reactor of the present invention, (- -) Shows the conversion rate of nitrogen oxide according to the flow rate by the conventional flow type two-dimensional fluidized bed photoreactor. As shown in FIG. 3, in the case of using the improved two-dimensional fluidized bed photocatalytic reactor of the present invention, the nitric oxide conversion was changed according to the flow rate of the reactant, but the nitric oxide conversion was higher than that of the conventional photocatalytic reactor in the entire flow rate region. I could confirm that.

이상에서 상세하게 설명하고 입증하였듯이, 본 발명은 직경이 서로 다른 두개의 석영관으로 이루어진 애뉼러스부와 전기 석영관 중, 작은 직경의 석영관 내부에 구비된 자외선 램프를 포함하는 애뉼러스 형태의 좁은 간격을 갖는 변형된 이차원 유동층 광촉매 반응기를 제공한다. 본 발명의 광촉매 반응기에 의하면, 벽면으로 사용되던 종래의 보로실리케이트 유리판을 석영관으로 전환하고, 석영관의 중심에 자외선 램프를 배치함으로써, 자외선 광에너지의 손실을 최소화하고, 반응기체 및 이산화티탄 광촉매에 조사되는 자외선의 세기를 일정하게 조절하였을 뿐만 아니라, 제작비용을 절감하는 부수적인 효과도 얻을 수 있다.As described and demonstrated in detail in the above, the present invention is an annular form of an annulus comprising an ultraviolet lamp provided inside a small diameter quartz tube of the annular portion and the electric quartz tube of two quartz tubes of different diameters. A modified two-dimensional fluidized bed photocatalyst reactor with spacing is provided. According to the photocatalytic reactor of the present invention, by converting a conventional borosilicate glass plate used as a wall surface into a quartz tube and disposing an ultraviolet lamp at the center of the quartz tube, the loss of ultraviolet light energy is minimized, and the reactant and titanium dioxide photocatalyst Not only the intensity of ultraviolet rays irradiated on the surface is constantly adjusted, but also a side effect of reducing the manufacturing cost can be obtained.

Claims (7)

직경이 서로 다른 두개의 석영관으로 이루어진 애뉼러스부;An annular part consisting of two quartz tubes having different diameters; 전기 애뉼러스부의 하단부에서 광촉매를 지지하는 다공성 분산판;A porous dispersion plate supporting the photocatalyst at the lower end of the electrical annulus portion; 전기 다공성 분산판의 아래에 구비된 반응기체 주입부;A reactor injection portion provided below the electroporous dispersion plate; 전기 애뉼러스부의 상단부에 구비된 반응기체 배출부; 및,A reactor gas discharge part provided at an upper end of the electric annulus part; And, 전기 석영관 중, 작은 직경의 석영관 내부에 구비된 자외선 램프를 포함하는 이차원 유동층 광촉매 반응기.A two-dimensional fluidized bed photocatalyst reactor including an ultraviolet lamp provided inside a quartz tube of small diameter among electric quartz tubes. 제 1항에 있어서,The method of claim 1, 직경이 서로 다른 두개의 석영관 사이의 간격은 2.5 내지 7mm인 것을 특징으로 하는The spacing between two quartz tubes of different diameters is 2.5 to 7 mm. 이차원 유동층 광촉매 반응기.Two-dimensional fluidized bed photocatalytic reactor. 제 1항에 있어서,The method of claim 1, 광촉매는 실리카 겔에 코팅된 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO), 삼산화텅스텐(WO3), 삼산화이철(Fe2O3), 황화카드뮴(CdS), 이황화몰리브덴(MoS2), 셀렌화카드뮴(CdSe) 및 이셀렌화몰리브덴(MoSe2)으로 구성되는 그룹으로부터 선택되는 하나 이상인 것을 특징으로 하는The photocatalyst is coated with silica gel on titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), tungsten trioxide (WO 3 ), ferric trioxide (Fe 2 O 3 ), cadmium sulfide (CdS), disulfide At least one selected from the group consisting of molybdenum (MoS 2 ), cadmium selenide (CdSe), and molybdenum selenide (MoSe 2 ) 이차원 유동층 광촉매 반응기.Two-dimensional fluidized bed photocatalytic reactor. 제 1항에 있어서,The method of claim 1, 다공성 분산판의 기공의 크기는 평균직경이 100 내지 200㎛인 것을 특징으로 하는The pore size of the porous dispersion plate is characterized in that the average diameter of 100 to 200㎛ 이차원 유동층 광촉매 반응기.Two-dimensional fluidized bed photocatalytic reactor. 제 1항의 이차원 유동층 광촉매 반응기의 애뉼러스부에 광촉매를 충진한 다음, 산화질소(NO)를 반응기체 주입부에 주입시키고, 자외선을 조사시키는 단계를 포함하는 산화질소(NO)의 광분해방법.A method of photodegradation of nitric oxide (NO), comprising the step of filling a photocatalyst in the annulus of the two-dimensional fluidized bed photocatalyst reactor of claim 1, and then injecting nitric oxide (NO) to the reactor body injection portion and irradiating ultraviolet rays. 제 5항에 있어서,The method of claim 5, 광촉매는 실리카 겔에 코팅된 이산화티탄(TiO2), 이산화주석(SnO2), 산화아연(ZnO), 삼산화텅스텐(WO3), 삼산화이철(Fe2O3), 황화카드뮴(CdS), 이황화몰리브덴(MoS2), 셀렌화카드뮴(CdSe) 및 이셀렌화몰리브덴(MoSe2)으로 구성되는 그룹으로부터 선택되는 하나 이상인 것을 특징으로 하는The photocatalyst is coated with silica gel on titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), tungsten trioxide (WO 3 ), ferric trioxide (Fe 2 O 3 ), cadmium sulfide (CdS), disulfide At least one selected from the group consisting of molybdenum (MoS 2 ), cadmium selenide (CdSe), and molybdenum selenide (MoSe 2 ) 산화질소(NO)의 광분해방법.Photolysis method of nitric oxide (NO). 제 5항에 있어서,The method of claim 5, 산화질소의 유속은 0.3 내지 4.0cm/s인 것을 특징으로 하는Nitrogen oxide flow rate is characterized in that 0.3 to 4.0cm / s 산화질소(NO)의 광분해방법.Photolysis method of nitric oxide (NO).
KR1019990058943A 1999-12-18 1999-12-18 A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same KR100358950B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990058943A KR100358950B1 (en) 1999-12-18 1999-12-18 A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990058943A KR100358950B1 (en) 1999-12-18 1999-12-18 A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same

Publications (2)

Publication Number Publication Date
KR20010057154A true KR20010057154A (en) 2001-07-04
KR100358950B1 KR100358950B1 (en) 2002-10-31

Family

ID=19626903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990058943A KR100358950B1 (en) 1999-12-18 1999-12-18 A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same

Country Status (1)

Country Link
KR (1) KR100358950B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467836B1 (en) * 2012-08-28 2014-12-02 (주) 빛과환경 Paint composition containing porous composite compound
KR102394150B1 (en) * 2021-06-14 2022-05-04 방승섭 High performance photocatalytic sterilizatio module
KR102394149B1 (en) * 2021-06-14 2022-05-06 방승섭 High performance photocatalytic sterilizatio device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104338547B (en) * 2013-07-29 2016-08-31 中国科学院理化技术研究所 Based on quantum dot/rod and the photochemical catalyst of molybdenum disulfide nano sheet, preparation method, photocatalysis system and the method for reforming biomass hydrogen preparation thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155337A (en) * 1995-12-08 1997-06-17 Adeka Eng Kk Method and apparatus for decomposing and removing volatile organic compound
JPH10151450A (en) * 1996-11-21 1998-06-09 Akira Fujishima Method for decomposingly removing toc component in liquid
JPH11226357A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Air cleaner
KR20000017686A (en) * 1999-04-30 2000-04-06 최수현 Construction of tubular photocatalytic reactor with the lamp inserted coaxially

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467836B1 (en) * 2012-08-28 2014-12-02 (주) 빛과환경 Paint composition containing porous composite compound
KR102394150B1 (en) * 2021-06-14 2022-05-04 방승섭 High performance photocatalytic sterilizatio module
KR102394149B1 (en) * 2021-06-14 2022-05-06 방승섭 High performance photocatalytic sterilizatio device

Also Published As

Publication number Publication date
KR100358950B1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
Mukherjee et al. Major challenges in the design of a large‐scale photocatalytic reactor for water treatment
US5151252A (en) Chamber design and lamp configuration for an ultraviolet photochemical reactor
US5174877A (en) Apparatus for photocatalytic treatment of liquids
US5308454A (en) Reactor process using metal oxide ceramic membranes
Zhou et al. Kinetic studies for photocatalytic degradation of Eosin B on a thin film of titanium dioxide
Kowalska et al. Photoreactors for wastewater treatment: A review
US6902653B2 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
An et al. Decolourization and COD removal from reactive dye‐containing wastewater using sonophotocatalytic technology
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
EP1494803B1 (en) Reactor and method for treating fluids by using photocatalysts coupled with phosphorescent solids
KR100358950B1 (en) A Reactor with Annulus-type Small Gap for Fluidized Photo-catayst and Method for Photolysis of NO Gas Using the Same
Malati The photocatalysed removal of pollutants from water
KR100503233B1 (en) Preparation of photocatalytic thin film and water-treatment apparatus using thereof
US20020040874A1 (en) Fluid treatment device and process for treating fluid
KR101004777B1 (en) Water treatment method and apparatus using microwave and oxidant
JP2001070935A (en) Method and device for water treatment using photocatalyst
KR100463713B1 (en) Reactor with lean phase for circulating fluized bed photo-catalyst and method for photolysis of trichloroethlyene gas using the same
CN1168672C (en) Tio film photo catalyzing equipment for cleaning water
KR100329805B1 (en) Photocatalytic reactor
JPH07227547A (en) Photocatalyst cartridge
JPH09103644A (en) Apparatus for treating volatile organic compound
Shaghaghi et al. Photocatalytic reactor types and configurations
JPH0824666A (en) Immobilized photocatalyst
Fukinbara et al. Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source: 1. Selection of a light source and photocatalyst support
KR100440623B1 (en) A shell-and-tube type reactor for photocatalysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080930

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee