KR20010055401A - Composition for cmp polishing - Google Patents

Composition for cmp polishing Download PDF

Info

Publication number
KR20010055401A
KR20010055401A KR1019990056605A KR19990056605A KR20010055401A KR 20010055401 A KR20010055401 A KR 20010055401A KR 1019990056605 A KR1019990056605 A KR 1019990056605A KR 19990056605 A KR19990056605 A KR 19990056605A KR 20010055401 A KR20010055401 A KR 20010055401A
Authority
KR
South Korea
Prior art keywords
polishing
phenyl ether
polishing composition
metal oxide
alkyl phenyl
Prior art date
Application number
KR1019990056605A
Other languages
Korean (ko)
Other versions
KR100599855B1 (en
Inventor
이재석
이길성
김석진
장두원
Original Assignee
안복현
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사 filed Critical 안복현
Priority to KR1019990056605A priority Critical patent/KR100599855B1/en
Publication of KR20010055401A publication Critical patent/KR20010055401A/en
Application granted granted Critical
Publication of KR100599855B1 publication Critical patent/KR100599855B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE: A composition for polishing is provided for little generating u-scratch on surface of wafer after grinding it and increasing precipitation-stability and flatness to enable it to be effective in surface levelling process for wafers of semiconductor devices. CONSTITUTION: The composition used in the surface levelling process for wafers of the semiconductor device comprises 30-99 wt.% of deionized water and 0.1-50 wt.% of metal oxide powder as principle components, and 0.001-5 wt.% of polyoxyethylene alkyl phenyl ether compound. The polyoxyethylene alkyl phenyl ether compound is defined as the formula 1 (wherein, R is alkyl group having 1-20 carbon atoms; and n is integer of 2 to 100). The metal oxide is at least one selected from a group consisting of silica, alumina, ceria, zirconia, titania and have the first mean particle size of 0-100nm and the second mean particle size of 50-250nm.

Description

연마용 조성물{COMPOSITION FOR CMP POLISHING}Polishing composition {COMPOSITION FOR CMP POLISHING}

본 발명은 반도체 디바이스의 표면 평탄화용 연마용 조성물에 관한 것으로, 더욱 상세하게는 탈이온수와 금속산화물을 주성분으로 하고, 폴리옥시에틸렌 알킬 페닐 에테르 화합물을 포함하는 것을 특징으로 하는 μ-스크래치를 거의 일으키지 않고 침강안정성이 우수한 연마용 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing composition for planarizing a semiconductor device, and more particularly, does not cause mu-scratches, which is characterized by containing deionized water and a metal oxide as a main component and containing a polyoxyethylene alkyl phenyl ether compound. The present invention relates to a polishing composition having excellent sedimentation stability.

오늘날 집적회로(IC)의 집적도가 증가함에 따라, 반도체 디바이스의 웨이퍼 (Wafer)의 글로벌(Global) 평탄화의 중요성이 증대되고 있는데, 이런 가운데 새로운 평탄화 기술로서 주목받기 시작한 것이 화학적 기계적 연마공정(Chemical Mechanical Polishing, 이하 CMP라 한다)이다. CMP라는 새로운 연마공정은 1980년대말 미국의 IBM에서 개발한 기계적 연마와 화학적 연마를 혼용하는 웨이퍼 연마 방법이다. CMP 공정은 PECVD와 RIE 공정과 함께 서브미크론 스케일(submicron scale)의 고집적화된 칩제조에 있어서 반드시 필요한 공정으로, ILD(Interlayer Dielectric ; 층간절연막) CMP와 금속 CMP는 디바이스의 고집적화 및 다층화를 위한 각 층의 광역적 평탄화에 이용된다.As the degree of integration of integrated circuits (ICs) increases today, the importance of global planarization of wafers in semiconductor devices is increasing. Among these, chemical mechanical polishing has started to attract attention as a new planarization technology. Polishing, hereinafter referred to as CMP). A new polishing process called CMP is a wafer polishing method that combines mechanical and chemical polishing developed by IBM in the United States in the late 1980s. CMP process is essential for manufacturing submicron scale highly integrated chip along with PECVD and RIE process. ILD (Interlayer Dielectric) CMP and metal CMP are each layer for high integration and multilayer of devices. It is used for global planarization of.

CMP 공정에서 웨이퍼는 패드와 슬러리에 의해서 연마되며, 패드가 부착되어진 연마 테이블은 회전운동을 하고, 웨이퍼는 표면장력 또는 진공에 의해서 헤드부에 장착되어 회전운동과 요동운동을 동시에 진행하며 일정한 압력으로 가압하여 준다. 헤드부는 테이블에 일정 압력을 가하여 웨이퍼 표면과 패드를 접촉시키고 이 접촉면 사이의 미세한 틈(패드의 기공 부분) 사이로 연마액인 슬러리가 유동을 하여 슬러리 내부에 있는 연마입자와 패드의 표면돌기들에 의해 기계적인 연마작용이 이루어지고 슬러리의 화학성분에 의해서 화학적인 연마작용이 이루어진다. CMP 공정에서는 패드와 웨이퍼 사이에 가해진 압력에 의해 디바이스 돌출부의 상부에서부터 접촉이 이루어지고 이 부분에 압력이 집중되어 상대적으로 높은 표면제거 속도를 가지게 되며, 가공이 진행되어 갈수록 이러한 돌출부는 줄어들어 웨이퍼 전면적에 걸쳐 균일하게 돌출부가 제거되어 평탄화가 이루어진다.In the CMP process, the wafer is polished by pads and slurry, and the polishing table to which the pad is attached is rotated, and the wafer is mounted on the head by surface tension or vacuum to simultaneously rotate and oscillate. Pressurize. The head part applies a constant pressure to the table to contact the surface of the wafer and the pad, and a slurry of polishing liquid flows between the minute gaps (pores of the pad) between the contact surfaces by the abrasive particles and the surface projections of the pad. Mechanical polishing is performed and chemical polishing is performed by the chemical composition of the slurry. In the CMP process, the pressure applied between the pad and the wafer makes contact from the top of the device protrusion, and the pressure is concentrated on this part, resulting in a relatively high surface removal rate. The protrusions are removed evenly over to make flattening.

앞서 언급한 바와 같이, 고집적화된 반도체 칩의 제조에 있어서 평탄화공정은 반드시 필요한 공정인데, 현재 개발되어 있는 평탄화 공정들(Resist Etch Back, SOG(Spin on Glass), BPSG Reflow)은 그 공정이 복잡하여 2∼5 단계(step)를 진행해야 하는데 반해 CMP 공정은 단 한번의 연마 및 세정에 의해 공정이 마무리될 수 있고, 다른 평탄화 공정에 비해 100∼1000배의 평탄화 범위를 갖기 때문에 새로운 평탄화 기술로서 각광을 받고 있다.As mentioned above, the planarization process is a necessary process in the fabrication of highly integrated semiconductor chips, and the currently developed planarization processes (Resist Etch Back, Spin on Glass (SOG), and BPSG Reflow) are complicated. While the CMP process can be completed by only one polishing and cleaning process, and has a flattening range of 100 to 1000 times compared to other planarization processes, the CMP process has been spotlighted as a new flattening technology. Is getting.

이러한 반도체 CMP 공정에 사용되는 연마용 조성물은 일반적으로 탈이온수, 금속산화물, 및 첨가제를 공통적으로 포함하고, 피연마 재질에 따라 단결정 실리콘 연마용, 절연층 연마용, 금속 배선 및 플러그(Plug) 연마용의 3종류로 나눌 수 있다.Polishing compositions used in such semiconductor CMP processes generally include deionized water, metal oxides, and additives in common, and according to the material to be polished, single crystal silicon polishing, insulating layer polishing, metal wiring and plug polishing. It can be divided into three kinds of dragons.

현재 피연마 재질 및 CMP 요구 공정에 따라 반도체 생산에 실제로 적용되고 있는 CMP용 연마용 조성물을 예로 들면, 절연층 연마용 슬러리로서 실리카/아민으로 구성된 슬러리(미국특허 제 4,169,337호), 실리카/4급암모늄염으로 구성된 슬러리(미국특허 제 5,139,571호)가 알려져 있고, 금속 배선 및 플러그 연마용 슬러리로서 알루미나/H202(미국특허 제 5,244,523호), 실리카/K3Fe(CN)6(미국특허 제 5,340,370호), 실리콘나이트라이드/디카르복실산(Siliconenitride/Dicarboxylic acid)(유럽특허 제 786,504호), 금속산화물/산화제/불소이온으로 구성된 슬러리(WO 9,743,070)등이 제안되어 있다.Examples of the polishing composition for CMP, which is currently applied to semiconductor production according to the material to be polished and the CMP process, for example, a slurry composed of silica / amine as a slurry for polishing an insulating layer (US Pat. No. 4,169,337), silica / Quarter grade A slurry composed of ammonium salts (US Pat. No. 5,139,571) is known, and alumina / H 2 O 2 (US Pat. No. 5,244,523), silica / K 3 Fe (CN) 6 (US Pat. 5,340,370), silicon nitride / dicarboxylic acid (European Patent No. 786,504), slurry consisting of metal oxide / oxidizer / fluorine ion (WO 9,743,070) and the like have been proposed.

그러나, 이러한 연마용 슬러리들은 연마성능 평가 항목중에서 연마속도, 평탄성, 선택도 등은 어느 정도 만족할 만한 수준에 이르렀지만 연마후의 웨이퍼 표면에 생성되는 μ-스크래치가 다량 발생되는 문제점을 가지고 있다. CMP 공정에 있어서 μ-스크래치 발생은 반도체 소자의 기능 및 수율면에서 치명적인 결과를 초래한다. 예를 들어, STI에서 트렌치(Trench)를 이루는 구조가 200nm 정도로 얇고 미세하여 μ-스크래치가 발생할 경우 절연 부분의 단전이 일어날 수 있고, 위층에 형성되는 TR이나 게이트 형성등에도 영향을 미치게 되어 디바이스 페일(Device Fail)을 초래하므로 CMP 공정에 사용되는 연마용 조성물은 연마후 웨이퍼(wafer) 표면에 μ-스크래치 등과 같은 결함을 일으키지 않는 것이 요구된다.However, these polishing slurries have a problem that the polishing rate, flatness, selectivity, and the like have been satisfactorily satisfied in the polishing performance evaluation items, but a large amount of μ-scratch generated on the wafer surface after polishing is generated. The occurrence of μ-scratches in the CMP process has fatal consequences in terms of function and yield of semiconductor devices. For example, if the structure of trenches in STI is as thin and fine as 200 nm, and the micro-scratch occurs, the insulation part may be disconnected, and it may affect the formation of TR or gate formed on the upper layer and fail the device. Since it causes (Device Fail), the polishing composition used in the CMP process is required not to cause defects such as μ-scratch on the wafer surface after polishing.

웨이퍼의 연마후의 웨이퍼 표면에 생기는 μ-스크래치는 연마기의플레튼(Platen) 또는 퀼 스피드(Quill speed) 및 압력 등과 같은 연마공정에 의해서도 발생되지만, 대부분은 슬러리에 포함되어 있는 수 ㎛(1 ∼ 10㎛) 크기를 갖는 입자(이하 큰 입자들)에 의해 발생되는 것으로 알려져 있으며, 이들 큰 입자들의 발생은 슬러리의 침강을 증진하는 원인이 되기도 한다. 이러한 큰 입자들은 응집 또는 응결 (Aggregation 또는 Agglomerization), 온도 및 pH의 급격한 변화, 배송/파이핑 시스템 등에서의 클로깅 또는 크러스팅 등에 의해 발생한다. 이와 같이, 큰 입자들은 분산방법 및 분산정도와 관계없이 운송, 저장등의 취급과정 중에 환경변화 등으로 인해서도 생성되므로 CMP 슬러리를 취급함에 있어서 많은 애로 사항이 있어 왔다.The micro-scratch on the surface of the wafer after polishing the wafer is also generated by a polishing process such as a platen or quill speed and pressure of the polishing machine, but most of the micro-scratches in the slurry are several micrometers (1 to 10). It is known to be caused by particles having a size of 탆) (hereinafter, large particles), and the generation of these large particles also contributes to the settling of the slurry. These large particles are caused by aggregation or agglomeration (aggregation or agglomeration), rapid changes in temperature and pH, clogging or crusting in delivery / piping systems and the like. As such, large particles are generated due to environmental changes during transportation, storage, and the like regardless of the dispersion method and the degree of dispersion, and thus, there are many difficulties in handling the CMP slurry.

한편, CMP 공정에 사용되는 연마용 조성물의 유효기간은 침강안정성과 관련하여 약 6개월 내지 12개월 정도인데, 침강안정성이 좋지 않은 연마용 조성물은 μ-스크래치를 빨리 유발시키며, 연마속도의 재현성이 떨어지므로, 연마용 조성물의 장기 보관 및 장거리 운송시 슬러리의 성능이 시간의 경과에 따라 열화되는 문제점을 발생시킨다.On the other hand, the effective period of the polishing composition used in the CMP process is about 6 months to 12 months with respect to the sedimentation stability, and the polishing composition having poor sedimentation stability causes μ-scratches quickly, and the reproducibility of the polishing rate is high. As a result, the performance of the slurry during long-term storage and long-distance transportation of the polishing composition may be deteriorated over time.

본 발명은 상술한 종래 기술의 문제점들을 극복하는 것으로, 탈이온수와 금속산화물을 주성분으로 하는 연마용 조성물에 폴리옥시에틸렌 알킬 페닐 에테르 화합물을 첨가함으로써 μ-스크래치가 생성되지 않거나 극소화되고 침강안정성 및 평탄성을 향상시킨 연마용 조성물을 제공하는 것이다.The present invention overcomes the problems of the prior art described above, by adding a polyoxyethylene alkyl phenyl ether compound to a polishing composition based on deionized water and a metal oxide, mu-scratch is not produced or minimized, sedimentation stability and flatness It is to provide a polishing composition having improved.

즉, 본 발명은 탈이온수 및 금속산화물 미분말을 포함하는 연마용 조성물로서, 폴리옥시에틸렌 알킬 페닐 에테르를 포함하는 것을 특징으로 하는 연마용 조성물을 제공하는 것이다.That is, the present invention is to provide a polishing composition comprising a polyoxyethylene alkyl phenyl ether as a polishing composition comprising deionized water and fine metal oxide powder.

이하에서 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 연마용 조성물은 탈이온수, 금속산화물 미분말, 및 폴리옥시에틸렌 알킬 페닐 에테르를 포함하는 것을 특징으로 한다.The polishing composition of the present invention is characterized by comprising deionized water, metal oxide fine powder, and polyoxyethylene alkyl phenyl ether.

본 발명의 연마용 조성물에서 연마제로 사용되는 금속산화물로는 발연법 또는 졸 겔(Sol-Gel)법에 의해 제조된 실리카(Si02), 알루미나(Al203), 세리아(Ce02), 지르코니아(Zr02), 티타니아(Ti02) 등과 같이, 현재 사용되고 있는 임의의 것을 사용할 수 있다. 본 발명에서 이들 금속산화물의 1차 입자 크기는 10∼100nm, 바람직하게 20∼60nm이다(BET 측정 결과). 1차 입자의 크기가 10nm 미만인 경우에는 연마속도(Removal Rate)가 떨어져 생산성(Throughput) 측면에서 바람직하지 못하고, 반대로 100nm를 초과하면 연마속도는 증가하나 분산이 곤란해지고 큰 입자들이 다량 존재하여 μ-스크래치를 다량 유발할 수 있다.Metal oxides used as abrasives in the polishing composition of the present invention include silica (Si0 2 ), alumina (Al 2 0 3 ), ceria (Ce0 2 ), produced by the fuming method or the Sol-Gel method, Any one currently used may be used, such as zirconia (Zr0 2 ), titania (Ti0 2 ), or the like. In the present invention, the primary particle size of these metal oxides is 10 to 100 nm, preferably 20 to 60 nm (BET measurement results). If the size of the primary particles is less than 10 nm, the removal rate is not preferable because of the low removal rate. On the contrary, if the size of the primary particles is larger than 100 nm, the polishing rate increases, but dispersion is difficult and large particles are present. It can cause a lot of scratches.

이들 금속산화물들의 수용성 분산 상태에서의 2차 평균 입자의 크기는 50∼250nm인 것이 바람직하며, 최대 입자는 500nm 미만인 것이 좋은데, 500nm 이상일 경우 μ-스크래치가 급격히 증가할 뿐만 아니라 침강이 잘 일어나는 등 많은 문제점이 발생할 수 있다. 즉, 평균 입자 및 최대 입자가 크면 클수록 침강안정성이 떨어져 30일 이상 실온에서 방치할 경우 침강이 일어나 CMP 공정에 사용하기 전에 교반공정을 거쳐야 하므로 바람직하지 않다.It is preferable that the size of the secondary average particle in the water-soluble dispersion state of these metal oxides is 50 to 250 nm, and the maximum particle size is preferably less than 500 nm. Problems may arise. That is, the larger the average particle and the maximum particle, the lower the sedimentation stability, and if left at room temperature for more than 30 days, the sedimentation occurs, and thus it is not preferable because it must undergo a stirring process before use in the CMP process.

본 발명의 연마용 조성물중 이들 금속산화물의 함량은 일반적으로 조성물 전량에 대해 0.1∼50wt%, 바람직하게는 1∼25wt%이다. 구체적으로, 실리카를 연마제로 포함하는 연마용 조성물을 반도체 웨이퍼의 절연층 연마용으로 사용할 경우에는 9∼15wt%를, 금속배선 및 플러그 연마용으로 사용할 경우에는 3∼6wt%를 사용한다.The content of these metal oxides in the polishing composition of the present invention is generally 0.1 to 50 wt%, preferably 1 to 25 wt%, based on the total amount of the composition. Specifically, 9 to 15 wt% is used when the polishing composition comprising silica as an abrasive is used for polishing the insulating layer of the semiconductor wafer, and 3 to 6 wt% is used when the metal wiring and plug polishing are used.

본 발명의 연마용 조성물 성분중에는 탈이온수 및 금속산화물 미분말 이외에 필수성분으로 하기 화학식 1의 폴리옥시에틸렌 알킬 페닐 에테르가 포함된다.Among the polishing composition components of the present invention, in addition to the deionized water and the fine metal oxide powder, polyoxyethylene alkyl phenyl ether represented by the following general formula (1) is included as an essential component.

상기 식에서, R은 탄소수 1 내지 20의 알킬기이고,In the above formula, R is an alkyl group having 1 to 20 carbon atoms,

n은 2 내지 100 사이의 정수이다.n is an integer between 2 and 100.

이러한 폴리옥시에틸렌 알킬 페닐 에테르 화합물의 대표적인 예로는 폴리옥시에틸렌 옥틸 페닐 에테르, 폴리옥시에틸렌 노닐 페닐 에테르 등을 들 수 있다. 본 발명에서 폴리옥시에틸렌 알킬 페닐 에테르 화합물은 상기 화학식 1로 표현되는 화합물들중 1종을 단독으로 사용하거나 2종 이상 혼합해서 사용할 수가 있다.Representative examples of such polyoxyethylene alkyl phenyl ether compounds include polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and the like. In the present invention, the polyoxyethylene alkyl phenyl ether compound may be used alone or in combination of two or more kinds of the compounds represented by the formula (1).

이러한 폴리옥시에틸렌 알킬 페닐 에테르 화합물의 함량은 연마용 조성물 전량에 대해 0.001∼5wt%, 바람직하게는 0.01∼1wt%이다. 폴리옥시에틸렌 알킬 페닐 에테르의 함량이 0.001wt% 미만이면 본 발명에서 의도하는 효과를 기대할 수 없게 되고, 반대로 5wt%를 초과하면 폴리옥시에틸렌 알킬 페닐 에테르 화합물 첨가 효과가 더 이상 향상되지 아니하므로 비경제적이다. 본 발명의 연마용 조성물에서 탈이온수의 함량은 30∼99wt%이다.The content of such polyoxyethylene alkyl phenyl ether compound is 0.001 to 5 wt%, preferably 0.01 to 1 wt% based on the total amount of the polishing composition. If the content of the polyoxyethylene alkyl phenyl ether is less than 0.001 wt%, the effect intended in the present invention cannot be expected. On the contrary, if the content of the polyoxyethylene alkyl phenyl ether is more than 5 wt%, the effect of adding the polyoxyethylene alkyl phenyl ether compound is no longer improved. to be. The content of deionized water in the polishing composition of the present invention is 30 to 99wt%.

본 발명에서 폴리옥시에틸렌 알킬 페닐 에테르에 의해 연마용 조성물의 μ-스크래치 특성과 평탄성이 현저하게 개선되는 메카니즘은 정확하게 밝혀진 것은 아니나, 대략적으로 다음과 같은 원인으로부터 기인되는 것으로 추측된다.In the present invention, the mechanism by which the poly-oxyethylene alkyl phenyl ether significantly improves the micro-scratching properties and flatness of the polishing composition is not precisely identified, but it is estimated to be due to the following causes.

폴리옥시에틸렌 알킬 페닐 에테르 화합물들은 보습성(Humectant)을 갖는데, 이들이 연마용 조성물 성분내에서 금속산화물의 응집 또는 응결을 방지하여 μ-스크래치를 일으키는 큰 입자의 생성을 억제하고 운송 및 저장, 배송/파이핑 시스템에서 발생되는 클로깅 또는 크러스팅 등을 방지해 주기 때문에 μ-스크래치의 감소가 나타나며, 연마시 슬러리의 유동성을 향상시켜 웨이퍼 표면에 균일하게 접촉하도록 함으로써 평탄성을 향상시킬 것으로 생각된다.Polyoxyethylene alkyl phenyl ether compounds have humectants, which prevent the agglomeration or condensation of metal oxides in the polishing composition components, thereby inhibiting the formation of large particles causing micro-scratches, and transporting, storing, shipping / This prevents clogging or crusting in the piping system, which leads to a reduction in μ-scratches, and is thought to improve flatness by improving the flowability of the slurry during polishing to ensure uniform contact with the wafer surface.

본 발명의 연마용 조성물 제조시 폴리옥시에틸렌 알킬 페닐 에테르 화합물의 첨가시점은 특별히 제한되지 않아, 금속산화물의 분산전 또는 분산후 어느 경우나 가능하며, 또한 상업적으로 시판중인 슬러리 조성물에 추가로 첨가해도 동일한 효과를 수득할 수 있다.The point of addition of the polyoxyethylene alkyl phenyl ether compound in preparing the polishing composition of the present invention is not particularly limited, and may be any case before or after dispersing the metal oxide, and may be additionally added to a commercially available slurry composition. The same effect can be obtained.

본 발명의 연마용 조성물에는 피연마 물질의 종류에 따라 조성물의 물성을 해하지 않는 범위내에서 pH 조절을 위한 염기 또는 산, 연마속도 개선을 위한 산화제, 슬러리의 안정성을 위한 안정제 등의 기타 첨가제가 추가로 첨가될 수 있다. 예를 들어, 웨이퍼의 절연층을 연마할 경우에는 KOH 또는 아민염과 같은 염기를, 금속배선 및 플러그 등을 연마할 경우에는 H2S04, HN03, CH3COOH과 같은 산 및 산화제를 함께 첨가하여 사용할 수 있다.In the polishing composition of the present invention, other additives such as a base or acid for adjusting pH, an oxidizing agent for improving the polishing rate, and a stabilizer for the stability of the slurry are added within a range that does not impair the physical properties of the composition, depending on the type of polishing material. Can be added. For example, when polishing an insulating layer of a wafer, a base such as KOH or an amine salt, and an acid and an oxidizing agent such as H 2 S0 4 , HN0 3 , and CH 3 COOH are used together when polishing metal wires and plugs. It can be added and used.

본 발명의 연마용 조성물은 반도체, 포토마스크, 글래스디스크 및 합성 수지등 각종 공업 제품의 연마에 사용가능하며, 특히 반도체 산업에서 반도체 디바이스 웨이퍼의 표면 평탄화 가공에 이용될 수 있다. 구체적으로, 본 발명의 연마용 조성물은 반도체 디바이스 제조시 단결정 실리콘 연마용, 층간 절연막 연마용, 금속 배선 및 플러그 연마용, 배리어 머트리얼 연마용으로 이용될 수 있다.The polishing composition of the present invention can be used for polishing various industrial products such as semiconductors, photomasks, glass disks, and synthetic resins, and can be used for surface planarization of semiconductor device wafers, particularly in the semiconductor industry. Specifically, the polishing composition of the present invention can be used for polishing single crystal silicon, polishing interlayer insulating film, polishing metal wiring and plug, and barrier material polishing in the manufacture of semiconductor devices.

이하 실시예를 들어 본 발명을 더욱 상세하게 설명하나, 하기 실시예들은 예시적 의미를 지니는 것일뿐, 본 발명의 보호 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are intended to be illustrative, but not limiting.

실시예 1Example 1

시판중인 실리카(Aerosil 200, Degussa사 제품) 130g, 20%-KOH 용액 18g, 탈이온수 860g의 혼합물을 2ℓ의 폴리에틸렌 플라스크에 넣어 1000rpm에서 2 시간 동안 프리믹싱시킨 혼합물에 폴리옥시에틸렌 노닐 페닐 에테르 lg(0.1wt%)을 첨가한 후, 2mm 유리 비드 500g이 들어있는 배치 타입의 다이노밀을 이용하여 1500rpm에서 1 시간 동안 분산시켜 연마용 조성물을 제조하고 아래와 같이 연마 성능을 평가하여 하기 표 1에 나타내었다. 수득된 연마용 조성물을 1㎛ Depth 필터를 사용하여 필터링한 후 아래와 같은 조건에서 2분간 연마하여 연마에 의해 제거된 두께변화로부터 연마속도 및 평탄성을 측정하고, KLA(TENCOR社) 기기를 이용하여 μ-스크래치 발생수를 측정하였다.A mixture of 130 g of commercially available silica (Aerosil 200, manufactured by Degussa), 18 g of 20% -KOH solution, and 860 g of deionized water was added to a 2-liter polyethylene flask and premixed at 1000 rpm for 2 hours to polyoxyethylene nonyl phenyl ether lg ( 0.1 wt%) was added and then dispersed for 1 hour at 1500 rpm using a batch-type dynomil containing 500 g of 2 mm glass beads to prepare a polishing composition and evaluated for polishing performance as shown in Table 1 below. . The resulting polishing composition was filtered using a 1 μm Depth filter and then polished for 2 minutes under the following conditions to measure the polishing rate and flatness from the change in thickness removed by polishing, and then using a KLA (TENCOR company) instrument. The number of scratch occurrences was measured.

ο연마기 모델: 6EC(STRASBAUGH社)οAbrasive model: 6EC (STRASBAUGH)

ο연마조건:οPolishing condition:

- 패드 타입: IC1000/SubaⅣ Stacked(Rodel社)Pad Type: IC1000 / SubaIV Stacked (Rodel)

- 플래튼 스피드(Platen Speed) : 120rpmPlaten Speed: 120rpm

- 퀼 스피드(Quill Speed) : 120rpmQuill Speed: 120rpm

- 압 력 : 6psiPressure: 6psi

- 백 프레셔(Back Pressure) : 0psi-Back Pressure: 0psi

- 온 도 : 25℃-Temperature: 25 ℃

- 슬러리 플로우 : 150㎖/minSlurry flow: 150 ml / min

실시예 2∼3Examples 2 to 3

폴리옥시에틸렌 노닐 페닐 에테르 대신 폴리옥시에틸렌 알킬 페닐 에테르를 사용한 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 1에 함께 나타내었다.Except that polyoxyethylene alkyl phenyl ether was used instead of polyoxyethylene nonyl phenyl ether, after the polishing composition was prepared in the same manner as in Example 1, the polishing performance was evaluated and the results are shown in Table 1 together.

실시예 4∼7Examples 4-7

발연 실리카 대신 표1에 기재된 바와 같이 다른 금속산화물을 사용하고, 분산후 pH를 달리한 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 1에 함께 나타내었다.Instead of fumed silica, other metal oxides were used as described in Table 1, except that the pH was changed after dispersing. The polishing composition was prepared in the same manner as in Example 1, and the polishing performance was evaluated. 1 is shown together.

비교예 1Comparative Example 1

실시예 1에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 2에 나타내었다.Except for not adding polyoxyethylene nonyl phenyl ether in Example 1 after preparing a polishing composition in the same manner as in Example 1, the polishing performance was evaluated and the results are shown in Table 2 below.

비교예 2Comparative Example 2

실시예 4에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 2에 함께 나타내었다.Except for not adding polyoxyethylene nonyl phenyl ether in Example 4 after preparing a polishing composition in the same manner as in Example 1 and evaluated the polishing performance and the results are shown in Table 2 together.

비교예 3Comparative Example 3

실시예 5에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 2에 함께 나타내었다.Except for not adding polyoxyethylene nonyl phenyl ether in Example 5 after preparing a polishing composition in the same manner as in Example 1 and evaluated the polishing performance and the results are shown in Table 2 together.

비교예 4Comparative Example 4

실시예 6에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 2에 함께 나타내었다.Except for not adding polyoxyethylene nonyl phenyl ether in Example 6 after preparing a polishing composition in the same manner as in Example 1, the polishing performance was evaluated and the results are shown in Table 2 together.

비교예 5Comparative Example 5

실시예 7에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 것을 제외하고는 실시예 1과 같은 방법으로 연마용 조성물을 제조한 후 연마성능을 평가하여 그 결과를 하기 표 2에 함께 나타내었다.Except not adding polyoxyethylene nonyl phenyl ether in Example 7, after the polishing composition was prepared in the same manner as in Example 1, the polishing performance was evaluated and the results are shown in Table 2 together.

금속산화물Metal oxide POE 알킬 페닐 에테르 화합물POE Alkyl Phenyl Ether Compound pHpH 연마속도(Å/min)Polishing Speed (Å / min) μ- 스크래치(個/웨이퍼)μ-scratch (wrap / wafer) 연마균일도(WIWNU, %)Polishing uniformity (WIWNU,%) 실시예 1Example 1 실리카(Si02)Silica (Si0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 1111 3,1073,107 22 3.53.5 실시예 2Example 2 실리카(Si02)Silica (Si0 2 ) POE octyl 페닐 에테르POE octyl phenyl ether 1111 3,2883,288 33 3.53.5 실시예 3Example 3 실리카(Si02)Silica (Si0 2 ) POE heptyl 페닐 에테르POE heptyl phenyl ether 1111 3,2513,251 66 3.83.8 실시예 4Example 4 알루미나(Al203)Alumina (Al 2 0 3 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 99 3,8953,895 55 4.14.1 실시예 5Example 5 세리아(Ce02)Ceria (Ce0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 44 4,9584,958 88 4.84.8 실시예 6Example 6 지르코니아(Zr02)Zirconia (Zr0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 77 4,6954,695 1111 5.25.2 실시예 7Example 7 티타니아(Ti02)Titania (Ti0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 1010 4,0474,047 1111 5.25.2 * POE : 폴리옥시에틸렌* WIWNU(Within Wafer Non-Uniformity) : (표준편차/평균연마속도)x100* POE: Polyoxyethylene * WIWNU (Within Wafer Non-Uniformity): (Standard Deviation / Average Grinding Speed) x100

금속산화물Metal oxide POE 알킬 페닐 에테르 화합물POE Alkyl Phenyl Ether Compound pHpH 연마속도(Å/min)Polishing Speed (Å / min) μ- 스크래치(個/웨이퍼)μ-scratch (wrap / wafer) 연마균일도(WIWNU, %)Polishing uniformity (WIWNU,%) 비교예 1Comparative Example 1 실리카(Si02)Silica (Si0 2 ) 미첨가No addition 1111 3,2953,295 7373 6.46.4 비교예 2Comparative Example 2 알루미나(Al203)Alumina (Al 2 0 3 ) 미첨가No addition 99 3,9413,941 152152 6.96.9 비교예 3Comparative Example 3 세리아(Ce02)Ceria (Ce0 2 ) 미첨가No addition 44 5,0055,005 173173 7.87.8 비교예 4Comparative Example 4 지르코니아(Zr02)Zirconia (Zr0 2 ) 미첨가No addition 77 4,7214,721 296296 8.18.1 비교예 5Comparative Example 5 티타니아(Ti02)Titania (Ti0 2 ) 미첨가No addition 1010 4,1854,185 315315 8.38.3

* WIWNU(Within Wafer Non-Uniformity) : (표준편차/평균연마속도)x100* WIWNU (Within Wafer Non-Uniformity): (Standard Deviation / Average Grinding Speed) x100

실시예 8∼10Examples 8-10

장기 저장후의 연마성능(μ-스크래치) 변화를 평가하기 위해, 실시예 1과 같은 방법에 의해 제조된 연마용 조성물을 1일(실시예 8), 60일(실시예 9), 120일(실시예 10) 보관한 후 각각의 연마성능을 평가하여 그 결과를 하기 표 3에 나타내었다.In order to evaluate the change in polishing performance (μ-scratch) after long term storage, the polishing composition prepared by the same method as in Example 1 was applied for 1 day (Example 8), 60 days (Example 9), 120 days (execution). Example 10) After storage, the respective polishing performances were evaluated and the results are shown in Table 3 below.

비교예 6∼8Comparative Examples 6 to 8

실시예 7에서 폴리옥시에틸렌 노닐 페닐 에테르를 첨가하지 않는 연마용 조성물을 사용한 것을 제외하고는 실시예 8과 같은 방법으로 각각의 연마성능을 평가하여 그 결과를 하기 표 3에 함께 나타내었다.Except for using the polishing composition in which the polyoxyethylene nonyl phenyl ether is not added in Example 7, each polishing performance was evaluated in the same manner as in Example 8 and the results are shown in Table 3 together.

금속산화물Metal oxide POE 알킬 페닐 에테르 화합물POE Alkyl Phenyl Ether Compound pHpH 연마속도(Å/min)Polishing Speed (Å / min) μ- 스크래치(個/웨이퍼)μ-scratch (wrap / wafer) 연마균일도(WIWNU, %)Polishing uniformity (WIWNU,%) 실시예 8Example 8 실리카(Si02)Silica (Si0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 1111 3,1103,110 1One 3.53.5 실시예 9Example 9 실리카(Si02)Silica (Si0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 1111 3,1213,121 33 3.43.4 실시예 10Example 10 실리카(Si02)Silica (Si0 2 ) POE 노닐 페닐 에테르POE Nonyl Phenyl Ether 1111 3,1063,106 33 3.73.7 비교예 6Comparative Example 6 실리카(Si02)Silica (Si0 2 ) 미첨가No addition 1111 3,2883,288 8282 6.56.5 비교예 7Comparative Example 7 실리카(Si02)Silica (Si0 2 ) 미첨가No addition 1111 3,3173,317 169169 7.27.2 비교예 8Comparative Example 8 실리카(Si02)Silica (Si0 2 ) 미첨가No addition 1111 3,3043,304 205205 7.87.8

* WIWNU(Within Wafer Non-Uniformity) : (표준편차/평균연마속도)x100* WIWNU (Within Wafer Non-Uniformity): (Standard Deviation / Average Grinding Speed) x100

상기 실시예의 결과를 통해서 확인되는 바와 같이, 본 발명의 연마용 조성물에서는 연마후 μ-스크래치를 일으키는 큰 입자의 생성이 억제되어 μ-스크래치의 발생이 감소되거나 거의 발생하지 않게 된다. 더 나아가 반도체 웨이퍼 연마제용 슬러리는 장기 보관후 사용시 특히 μ-스크래치를 다량 유발시키는 경향이 있는데 반해, 폴리옥시에틸렌 알킬 페닐 에테르를 첨가한 본 발명의 연마용 조성물은 6개월 이상 보관하였다가 사용해도 μ-스크래치 발생수가 증가되지 않는 등 지정기간에 관계없이 일관성있는 연마성능을 나타낸다. 또한 본 발명의 연마용 조성물은 폴리옥시에텔린 알킬 페닐 에테르를 첨가하지 않은 연마용 조성물에 비해 분산 안정성이 증가되어 침강 안정성이 우수한 이점을 갖는다.As confirmed through the results of the above embodiment, in the polishing composition of the present invention, the generation of large particles causing the micro-scratch after polishing is suppressed so that the occurrence of the micro-scratch is reduced or hardly occurs. Furthermore, the slurry for semiconductor wafer abrasives tends to induce a large amount of μ-scratches, especially when used after long-term storage, whereas the polishing composition of the present invention containing polyoxyethylene alkyl phenyl ether is stored for 6 months or more and then used. It shows consistent polishing performance regardless of the designated period, such as no increase in the number of scratches. In addition, the polishing composition of the present invention has an advantage of excellent sedimentation stability because the dispersion stability is increased compared to the polishing composition without the addition of polyoxyethelin alkyl phenyl ether.

Claims (7)

탈이온수 및 금속산화물 미분말을 포함하는 연마용 조성물에 있어서, 폴리옥시에틸렌 알킬 페닐 에테르를 포함하는 것을 특징으로 하는 연마용 조성물.A polishing composition comprising deionized water and a fine metal oxide powder, wherein the polishing composition comprises polyoxyethylene alkyl phenyl ether. 제 1항에 있어서, 상기 폴리옥시에틸렌 알킬 페닐 에테르가 하기 화학식 1로 표현되는 화합물들중 적어도 1종류 이상인 것을 특징으로 하는 연마용 조성물.The polishing composition according to claim 1, wherein the polyoxyethylene alkyl phenyl ether is at least one or more of the compounds represented by the following general formula (1). [화학식 1][Formula 1] 상기 식에서, R은 탄소수 1 내지 20의 알킬기이고,In the above formula, R is an alkyl group having 1 to 20 carbon atoms, n은 2 내지 100 사이의 정수이다.n is an integer between 2 and 100. 제 1항에 있어서, 상기 조성물이 금속산화물 0.1∼50wt%, 탈이온수 30∼99wt%, 폴리옥시에틸렌 알킬 페닐 에테르 0.001∼5wt%를 함유하는 것을 특징으로 하는 연마 조성물.The polishing composition according to claim 1, wherein the composition contains 0.1-50 wt% of a metal oxide, 30-99 wt% of deionized water, and 0.001-5 wt% of polyoxyethylene alkyl phenyl ether. 제 1항에 있어서, 상기 금속산화물이 실리카, 알루미나, 세리아, 지르코니아, 티타니아로 구성되는 그룹으로부터 선택되는 적어도 1종류 이상인 것을 특징으로 하는 연마용 조성물.The polishing composition according to claim 1, wherein the metal oxide is at least one selected from the group consisting of silica, alumina, ceria, zirconia, and titania. 제 3항에 있어서, 상기 금속산화물이 실리카 또는 알루미나인 것을 특징으로 하는 연마용 조성물.The polishing composition according to claim 3, wherein the metal oxide is silica or alumina. 제 1항 내지 제 4항중 어느 하나의 항에 있어서, 상기 금속산화물의 평균 1차 입자 크기가 0 ∼ 100nm인 것을 특징으로 하는 연마용 조성물.The polishing composition according to any one of claims 1 to 4, wherein the average primary particle size of the metal oxide is 0 to 100 nm. 제 1항 내지 제 4항중 어느 하나의 항에 있어서, 상기 금속산화물의 분산액 중에서의 2차 평균 입자의 크기가 50∼250nm이고, 최대 입자크기가 500nm 미만인 것을 특징으로 하는 연마용 조성물.The polishing composition according to any one of claims 1 to 4, wherein the size of the secondary average particles in the dispersion of the metal oxide is 50 to 250 nm, and the maximum particle size is less than 500 nm.
KR1019990056605A 1999-12-10 1999-12-10 Composition for cmp polishing KR100599855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990056605A KR100599855B1 (en) 1999-12-10 1999-12-10 Composition for cmp polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990056605A KR100599855B1 (en) 1999-12-10 1999-12-10 Composition for cmp polishing

Publications (2)

Publication Number Publication Date
KR20010055401A true KR20010055401A (en) 2001-07-04
KR100599855B1 KR100599855B1 (en) 2006-07-12

Family

ID=19624915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990056605A KR100599855B1 (en) 1999-12-10 1999-12-10 Composition for cmp polishing

Country Status (1)

Country Link
KR (1) KR100599855B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826238B2 (en) * 1996-10-25 2006-09-27 奥野製薬工業株式会社 Liquid composition for metal polishing

Also Published As

Publication number Publication date
KR100599855B1 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6984588B2 (en) Compositions for oxide CMP
US6447694B1 (en) Composition for chemical mechanical polishing
US6533832B2 (en) Chemical mechanical polishing slurry and method for using same
TW574334B (en) CMP slurry composition and a method for planarizing semiconductor device using the same
WO2011081109A1 (en) Polishing liquid for cmp and polishing method using the same
US20040065864A1 (en) Acidic polishing slurry for the chemical-mechanical polishing of SiO2 isolation layers
EP2500928A1 (en) Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP2001223216A (en) Manufacturing method of semiconductor device
US8512593B2 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
US20020022369A1 (en) Polishing composition
KR100313573B1 (en) Composition for cmp polishing
KR100599855B1 (en) Composition for cmp polishing
KR20000074300A (en) Composition for polishing
KR100449610B1 (en) Slurry Composition for Polishing Insulating Layer
KR100466422B1 (en) Composition for chemical mechanical polishing
KR100497410B1 (en) Slurry Composition for Chemical Mechanical Polishing of Oxide with Enhanced Polishing Performance
KR100366304B1 (en) Composition for chemical mechanical polishing of insulating layer in semiconductor wafer
JP6551053B2 (en) Polishing liquid for CMP and polishing method using the same
KR100367830B1 (en) Composition for chemical mechanical polishing
JP2001332516A (en) Cmp abrasive and method for polishing substrate
KR100561568B1 (en) Composition for chemical mechanical polishing
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JP4878728B2 (en) CMP abrasive and substrate polishing method
KR100740898B1 (en) Chemical mechanical polishing slurry increasing the removal rate of interlayer dielectric film
KR100565419B1 (en) Composition for cmp

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120621

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee