KR20010049636A - Method of producing aromatic carbonates by gas phase reaction using heterogeneous catalyst - Google Patents

Method of producing aromatic carbonates by gas phase reaction using heterogeneous catalyst Download PDF

Info

Publication number
KR20010049636A
KR20010049636A KR1020000035674A KR20000035674A KR20010049636A KR 20010049636 A KR20010049636 A KR 20010049636A KR 1020000035674 A KR1020000035674 A KR 1020000035674A KR 20000035674 A KR20000035674 A KR 20000035674A KR 20010049636 A KR20010049636 A KR 20010049636A
Authority
KR
South Korea
Prior art keywords
catalyst
sio
titanium
supported catalyst
supported
Prior art date
Application number
KR1020000035674A
Other languages
Korean (ko)
Inventor
이재성
박광호
김영대
Original Assignee
성재갑
주식회사 엘지씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사 엘지씨아이 filed Critical 성재갑
Priority to PCT/KR2000/000687 priority Critical patent/WO2001000560A1/en
Publication of KR20010049636A publication Critical patent/KR20010049636A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids

Abstract

PURPOSE: A method for preparing methyl phenyl carbonate by using an inhomogeneous solid catalyst in gas phase is provided, which provides the methyl phenyl carbonate having excellent activity. CONSTITUTION: The method comprises steps of: (i) preparing a liquid mixture solution by mixing dimethyl carbonate with phenol in a molar ratio of 1:1-10:1; (ii) vaporizing the liquid phase mixture solution; and (iii) gas phase reacting the vaporized mixture solution under a catalyst selected from the group consisting of molybdenum dipped in catalyst, titanium dipped in catalyst, chromium dipped in catalyst, tungsten dipped in catalyst, vanadium dipped in catalyst and stannum dipped in catalyst at a temperature of 300-600 deg.C.

Description

기상반응에서의 불균일계 고체촉매를 이용한 방향족 카보네이트의 제조방법{METHOD OF PRODUCING AROMATIC CARBONATES BY GAS PHASE REACTION USING HETEROGENEOUS CATALYST}METHODS OF PRODUCING AROMATIC CARBONATES BY GAS PHASE REACTION USING HETEROGENEOUS CATALYST}

[산업상 이용분야][Industrial use]

본 발명은 고체 촉매를 이용하여 기상에서 방향족 카보네이트를 제조하는 방법에 관한 것이다. 특히 시작물질을 디메틸카보네이트와 페놀으로하여 메틸페닐카보네이트를 기상에서 제조하는 방법에 관한 것이다.The present invention relates to a process for producing aromatic carbonate in the gas phase using a solid catalyst. In particular, the present invention relates to a method for preparing methylphenyl carbonate in the gas phase using dimethyl carbonate and phenol.

[종래 기술][Prior art]

디메틸카보네이트와 페놀을 시작물질로 메틸페닐카보네이트를 제조하는 방법은 액상 반응으로 수행하는 것이 일반적으로 알려져 있으며, 이때 사용되는 촉매는 루이스산, 전이금속의 염이나 이스터, 유기 및 무기 보레이트 등이다.It is generally known that a method of preparing methylphenyl carbonate using dimethyl carbonate and phenol as a starting material is carried out by a liquid phase reaction. The catalysts used are Lewis acids, salts of transition metals or esters, organic and inorganic borate.

문헌(Ind. Eng. Chem. Res., 31, pp 1167∼1170, 1992)에 의하면 상기 액상 반응에 있어서 틴이나 티타늄 화합물 등의 균일계 촉매를 사용하는 것이 보고되어 있으며, 일본 특허 공고 소54-125617호에는 불균일계 촉매로서 실리카-타이타니아와 같은 물리적 혼합물을 사용하는 방법이 기재되어 있으며, 또 다른 문헌(Pure and Applied Chemistry, 68, Iss. 2, pp.367∼375, 1996)에는 실리카에 담지된 몰리브데늄 산화물이 활성이 우수하다고 보고되어 있다.Document (Ind. Eng. Chem. Res., 31, pp 1167-1170, 1992) reported the use of homogeneous catalysts such as tin and titanium compounds in the liquid phase reaction. 125617 describes a method of using a physical mixture such as silica-titania as a heterogeneous catalyst and another document (Pure and Applied Chemistry, 68, Iss. 2, pp. 367-375, 1996). It has been reported that the molybdenum oxide is excellent in activity.

또한 일련의 특허들은 티타늄이나 주석 화합물을 촉매로 사용하는 것이 알려져 있다. 미국 특허 제5,380,908호에는 디페닐 카보네이트 합성 반응을 연속 공정으로 확장해 반응 증류법을 채택하여 부산물이 알코올류를 제거하는 방법으로서, 촉매로는 디부틸 틴 옥사이드를 사용하고 상압, 감압 그리고 진공 상태에서 반응온도를 100∼200 ℃으로 하여 반응이 수행됨이 기재되어 있으며, 미국 특허 제5,426,207호에는 세 개의 반응 영역을 나누어 유기 타이타네이트 촉매를 사용하고, 다단계 반응기를 채용하여 수율을 향상시킬 수 있었다고 하였는데 이때 다단계 반응기를 사용함으로써 생성물의 기화열을 혼합물 분리에 사용하여 리보일러의 경비를 줄일 수 있다고 하였다.A series of patents is also known to use titanium or tin compounds as catalysts. U.S. Patent No. 5,380,908 describes a method of extending diphenyl carbonate synthesis in a continuous process to employ distillation to remove alcohols by-products, using dibutyl tin oxide as a catalyst and reacting at atmospheric pressure, reduced pressure and vacuum. It is described that the reaction is carried out at a temperature of 100 to 200 ℃, US Patent No. 5,426,207 was divided into three reaction zones using an organic titanate catalyst, it was possible to improve the yield by employing a multi-stage reactor By using a multi-stage reactor, the heat of vaporization of the product can be used to separate the mixture, reducing the cost of the reboiler.

이외에도 미국 특허 제5,210,268호에는 납화합물을 촉매로서 사용하여 두 개의 다단계 증류 칼럼을 사용하므로써 디페닐 카보네이트를 높은 반응 속도와 수율 및 높은 선택도를 얻었다고 하였다.In addition, US Pat. No. 5,210,268 states that diphenyl carbonate has a high reaction rate, yield and high selectivity by using two multistage distillation columns using lead compounds as catalysts.

이상에서 살펴본 바와 같이 상기 선행기술들은 방향족 카보네이트의 제조에 있어서 액상 반응에서만을 수행한 것으로서 본 발명은 현재까지 보고되지 않은 기상 반응에서 고체 촉매를 이용하여 디메틸카보네이트와 페놀을 반응시켜서 높은 활성을 나타내는 메틸페닐카보네이트를 제조하는 방법을 제공하는 것을 목적으로 한다.As described above, the prior arts are performed only in the liquid phase reaction in the preparation of the aromatic carbonate, and the present invention is methylphenyl which exhibits high activity by reacting dimethyl carbonate and phenol using a solid catalyst in a gas phase reaction not reported to date. It is an object to provide a method for producing a carbonate.

[과제를 해결하기 위한 수단][Means for solving the problem]

본 발명에서는 상기 목적을 달성하기 위하여In the present invention to achieve the above object

a) 디메틸카보네이트와 페놀을 1 : 1 ∼ 10 : 1 의 몰비로 혼합하여 액상a) Mixing dimethyl carbonate and phenol in a molar ratio of 1: 1 to 10: 1

혼합액을 제조하는 단계;Preparing a mixed liquid;

b) 상기 액상 혼합액을 기화시키는 단계; 및b) vaporizing the liquid mixture; And

c) 상기 기화된 혼합액을 몰리브텐(Mo) 담지 촉매, 티탄(Ti) 담지 촉매,c) supporting the vaporized mixed solution with a molybdenum (Mo) supported catalyst, a titanium (Ti) supported catalyst,

크롬(Cr) 담지 촉매, 텅스텐(W) 담지 촉매, 바나듐(V) 담지 촉매, 및Chromium (Cr) supported catalyst, tungsten (W) supported catalyst, vanadium (V) supported catalyst, and

주석(Sn) 담지 촉매로 이루어진 군으로부터 선택되는 촉매 하에 300∼600300 to 600 under a catalyst selected from the group consisting of tin (Sn) supported catalysts

℃ 의 온도에서 기상 반응시키는 단계Gas phase reaction at a temperature of

를 포함하는 메틸페닐카보네이트의 제조 방법을 제공한다.It provides a method for producing methylphenyl carbonate comprising a.

상기에서 몰리브덴(Mo) 담지 촉매는 몰리브텐(Mo) 금속 담지량이 1∼30 중량%이며, (NH4)6Mo7O24·4H2O인 몰리브텐(Mo) 산화물 전구체를 산화알루미늄(Al2O3), 산화티탄(TiO2), 산화규소(SiO2), 및 활성탄(C)으로 이루어진 군으로부터 선택되는 담체에 담지시켜서 제조되는 것이다.Molybdenum (Mo) supported catalyst is a molybdenum (Mo) metal supported amount of 1 to 30% by weight, (NH 4 ) 6 Mo 7 O 24 4H 2 O molybdenum (Mo) oxide precursor aluminum oxide It is prepared by being supported on a carrier selected from the group consisting of (Al 2 O 3 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and activated carbon (C).

상기에서 티탄(Ti) 담지 촉매는 티탄(Ti) 금속 담지량이 1∼30 중량%이며, 티타늄(Ⅳ)부톡사이드(Ti(Ⅳ)-butoxide), 티타늄(Ⅳ)에톡사이드(Ti(Ⅳ)- ethoxide), 티타늄(Ⅳ)이소프로폭사이드(Ti(Ⅳ)-isopropoxide), 및 티타늄(Ⅳ)클로라이드(Ti(Ⅳ)- chloride)로 이루어진 군으로부터 선택되는 티탄(Ti) 산화물 전구체를 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화규소(SiO2), 및 활성탄(C)으로 이루어진 군으로부터 선택되는 담체에 담지시켜서 제조되는 것이다.The titanium (Ti) supported catalyst is a titanium (Ti) metal supported amount of 1 to 30% by weight, titanium (IV) butoxide (Ti (IV) -butoxide), titanium (IV) ethoxide (Ti (IV)- titanium oxide (Ti) oxide precursor selected from the group consisting of ethoxide, titanium (IV) isopropoxide (Ti (IV) -isopropoxide), and titanium (IV) chloride Al 2 O 3 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), and activated carbon (C) to be supported on a carrier selected from the group consisting of.

상기에서 크롬(Cr) 담지 촉매는 크롬(Cr) 금속 담지량이 1∼30 중량%이며, Cr(NO3)3·9H2O 인 크롬 산화물 전구체를 실리카(SiO2) 담체에 담지시켜서 제조되는 것이다.The chromium (Cr) supported catalyst is prepared by supporting a chromium (Cr) metal supported amount of 1 to 30% by weight and supporting a chromium oxide precursor of Cr (NO 3 ) 3 .9H 2 O on a silica (SiO 2 ) carrier. .

상기에서 텅스텐(W) 담지 촉매는 텅스텐(W) 금속 담지량이 1∼30 중량%이며, (NH4)6W12O39·xH2O 인 텅스텐 산화물 전구체를 실리카(SiO2) 담체에 담지시켜서 제조되는 것이다.The tungsten (W) supported catalyst has a tungsten (W) metal loading of 1 to 30% by weight, and a (NH 4 ) 6 W 12 O 39 .xH 2 O tungsten oxide precursor is supported on a silica (SiO 2 ) carrier. To be manufactured.

상기에서 바나듐(V) 담지 촉매는 바나듐(V) 금속 담지량이 1∼30 중량%이며, (NH4)VO3인 바나듐 산화물 전구체를 실리카(SiO2) 담체에 담지시켜서 제조되는 것이다.The vanadium (V) supported catalyst is prepared by supporting a vanadium oxide precursor having a vanadium (V) metal content of 1 to 30% by weight, and a (NH 4 ) VO 3 vanadium oxide precursor on a silica (SiO 2 ) carrier.

상기에서 주석(Sn) 담지 촉매는 주석(Sn) 금속 담지량은 1∼30 중량%이며, SnCl2인 주석 산화물 전구체를 실리카(SiO2) 담체에 담지법에 의하여 제조되는 것이다.The tin (Sn) supported catalyst is a tin (Sn) metal supported amount of 1 to 30% by weight, and the tin oxide precursor, which is SnCl 2 , is prepared by a silica (SiO 2 ) support.

본 발명에 사용된 반응 시스템은 연속 흐름식 기상 반응기로서 파이렉스 재질 또는 석영 재질의 유리관을 사용하고, 반응물은 디메틸카보네이트와 페놀의 액상 혼합물을 반응기 도달 전에 가열을 통하여 기화시켜 기상에서 반응시킨다.The reaction system used in the present invention uses a glass tube made of Pyrex or quartz as a continuous flow gas phase reactor, and the reactant is reacted in the gas phase by vaporizing a liquid mixture of dimethyl carbonate and phenol through heating before reaching the reactor.

본 발명의 반응은 여러 가지 지지체 상에 금속 산화물이 담지된 촉매를 사용하는데, 금속 전구체 용액을 담지법(incipient wetness)에 의해 각 담체에 1∼30 중량%를 담지시키고, 110 ℃의 오븐에서 12 시간 이상 건조시킨후 공기나 헬륨가스 분위기에서 500∼800 ℃의 온도로 4 시간 소성하는 열처리를 하여 제조되는 불균일계 고체 촉매이다.The reaction of the present invention uses a catalyst in which a metal oxide is supported on various supports. The metal precursor solution is supported by 1 to 30% by weight on each carrier by incipient wetness, and is then heated in an oven at 110 ° C. It is a heterogeneous solid catalyst produced by heat-treating for 4 hours at 500-800 degreeC in air or helium gas atmosphere after drying for more than time.

모든 촉매는 특별히 나타내지 않는 한 지지체에 담지되는 형태가 완전히 산화된 금속 산화물 형태로 존재한다.All catalysts are present in the form of fully oxidized metal oxides, unless otherwise indicated.

이하의 본 발명의 반응에 사용된 고체 촉매들의 제조예와 실시예를 통하여 구체적으로 설명하며, 이들 실시예는 본 발명을 예시하기 위한 것이지 본 발명이 이들만으로 한정되는 것은 아니다.Hereinafter, the preparation examples and examples of the solid catalysts used in the reaction of the present invention will be described in detail, and these examples are provided to illustrate the present invention, but the present invention is not limited thereto.

[실시예]EXAMPLE

제조예 1∼15Production Examples 1-15

몰리브텐(Mo), 크롬(Cr), 텅스텐(W), 바나듐(V), 주석(Sn), 티탄(Ti)의 금속 전구체 용액을 담지법(incipient)에 의하여 산화알루미늄(Al2O3), 산화티탄(TiO2), 산화규소(SiO2), 활성탄(C) 중에서 선택된 담체에 담지시킨 후 공기 또는 헬륨가스를 흘려주면서 500 ℃에서 4 시간 동안 열처리하여 불균일계 고체 촉매를 제조하였다. 이때의 용매, 전구체 용액의 종류 및 열처리시의 가스 종류 등의 각 제조예를 표 1에 나타내었다.Aluminum oxide (Al 2 O 3 ) by incipient the metal precursor solution of molybdenum (Mo), chromium (Cr), tungsten (W), vanadium (V), tin (Sn), titanium (Ti) ), Supported on a carrier selected from titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and activated carbon (C), and then heat-treated at 500 ° C. for 4 hours while flowing air or helium gas to prepare a heterogeneous solid catalyst. Table 1 shows each preparation example such as the solvent at this time, the kind of precursor solution, and the kind of gas at the time of heat treatment.

이들 촉매들은 디메틸카보네이트와 페놀을 반응시켜서 메틸페닐카보네이트를 제조할 때는 반응전에 반응온도보다 50 ℃ 높은 온도에서 1 시간 동안 질소가스를 흘려주면서 열처리한후 촉매로 사용하였다.These catalysts were prepared by reacting dimethyl carbonate and phenol to prepare methylphenyl carbonate, followed by heat treatment while flowing nitrogen gas for 1 hour at a temperature higher than 50 ° C. before the reaction, and then used as catalysts.

제조예 16Preparation Example 16

제조예 4의 Mo(Ⅳ)-C촉매를 암모니아 가스를 흘려주면서 온도 700 ℃에서 1 시간 열처리하여 MoN-C 촉매를 제조하였다.The Mo (IV) -C catalyst of Preparation Example 4 was heat-treated at 700 ° C. for 1 hour while flowing ammonia gas to prepare a MoN-C catalyst.

제조예 17Preparation Example 17

제조예 16의 MoN-C 촉매를 메탄과 수소를 1 : 4 의 비율로 흘려주면서 온도 700 ℃에서 1 시간 열처리하여 Mo2C-C 촉매를 제조하였다.The MoN-C catalyst of Preparation Example 16 was heat-treated at 700 ° C. for 1 hour while flowing methane and hydrogen at a ratio of 1: 4 to prepare a Mo 2 CC catalyst.

구 분division 촉매형태(금속-담체)Catalyst type (metal-carrier) 금속 전구체Metal precursor 담체내 금속 담지량(중량%)Metal loading in the carrier (% by weight) 담지 용매Supported solvent 열처리 가스Heat treatment gas 제조예 1Preparation Example 1 Mo-SiO2 Mo-SiO 2 (NH4)6Mo7O24·4H2O (NH 4) 6 Mo 7 O 24 · 4H 2 O 1010 증류수Distilled water 공기air 제조예 2Preparation Example 2 Mo-Al2O3 Mo-Al 2 O 3 (NH4)6Mo7O24·4H2O (NH 4) 6 Mo 7 O 24 · 4H 2 O 1010 증류수Distilled water 공기air 제조예 3Preparation Example 3 Mo-TiO2 Mo-TiO 2 (NH4)6Mo7O24·4H2O (NH 4) 6 Mo 7 O 24 · 4H 2 O 1010 증류수Distilled water 공기air 제조예 4Preparation Example 4 Mo(Ⅳ)-CMo (Ⅳ) -C (NH4)6Mo7O24·4H2O (NH 4) 6 Mo 7 O 24 · 4H 2 O 2020 증류수Distilled water 헬륨helium 제조예 5Preparation Example 5 Cr-SiO2 Cr-SiO 2 Cr(NO3)3·9H2OCr (NO 3 ) 3 9H 2 O 1010 증류수Distilled water 공기air 제조예 6Preparation Example 6 W-SiO2 W-SiO 2 (NH4)6W12O39·xH2O (NH 4) 6 W 12 O 39 · xH 2 O 1010 증류수Distilled water 공기air 제조예 7Preparation Example 7 V-SiO2 V-SiO 2 NH4VO3 NH 4 VO 3 1010 증류수Distilled water 공기air 제조예 8Preparation Example 8 Sn-SiO2 Sn-SiO 2 SnCl2 SnCl 2 1010 메탄올Methanol 공기air 제조예 9Preparation Example 9 Ti-MgOTi-MgO Ti(Ⅳ)-butoxideTi (Ⅳ) -butoxide 1010 톨루엔toluene 공기air 제조예 10Preparation Example 10 Ti-CTi-C Ti(Ⅳ)-butoxideTi (Ⅳ) -butoxide 1010 톨루엔toluene 헬륨helium 제조예 11Preparation Example 11 Ti-Al2O3 Ti-Al 2 O 3 Ti(Ⅳ)-butoxideTi (Ⅳ) -butoxide 1010 톨루엔toluene 공기air 제조예 12Preparation Example 12 Ti-SiO2 Ti-SiO 2 Ti(Ⅳ)-butoxideTi (Ⅳ) -butoxide 1010 톨루엔toluene 공기air 제조예 13Preparation Example 13 Ti-SiO2 Ti-SiO 2 Ti(Ⅳ)-ethoxideTi (Ⅳ) -ethoxide 1010 톨루엔toluene 공기air 제조예 14Preparation Example 14 Ti-SiO2 Ti-SiO 2 Ti(Ⅳ)-isopropoxideTi (Ⅳ) -isopropoxide 1010 톨루엔toluene 공기air 제조예 15Preparation Example 15 Ti-SiO2 Ti-SiO 2 Ti(Ⅳ)-chlorideTi (Ⅳ) -chloride 1010 톨루엔toluene 공기air 제조예 16Preparation Example 16 Mo2N-CMo 2 NC (NH4)6Mo7O24·4H2O암모니아 주입 700℃ 열처리 (NH 4) 6 Mo 7 O 24 · 4H 2 O ammonia injection 700 ℃ heat treatment 2020 증류수Distilled water 헬륨helium 제조예 17Preparation Example 17 Mo2C-CMo 2 CC (NH4)6Mo7O24·4H2O메탄, 수소 주입 700℃ 열처리 (NH 4) 6 Mo 7 O 24 · 4H 2 O methane, hydrogen injection 700 ℃ heat treatment 2020 증류수Distilled water 헬륨helium

실시예 1∼6Examples 1-6

연속 흐름식 반응기에 상기 제조예 1의 촉매 Mo-SiO2를 반응 촉매로 사용하고, 반응물로서 디메틸카보네이트와 페놀을 5 : 1 의 몰비로 혼합한 용액을 1 ml/hr 의 주입속도로 주입하면서 반응온도를 300∼600 ℃로 변화시키면서 반응시켰다. 이때 운반가스는 질소로서 주입속도는 20 ml/min이며, 반응물이 촉매층에 원활하게 도달시키기 위하여 반응기 도달 전에 가열을 통하여 반응물을 모두 기화시켰다.The reaction using the catalyst Mo-SiO 2 of Preparation Example 1 as a reaction catalyst in a continuous flow reactor and injecting a mixture of dimethyl carbonate and phenol in a molar ratio of 5: 1 as a reactant at an injection rate of 1 ml / hr The reaction was carried out while changing the temperature to 300 to 600 ° C. At this time, the carrier gas was nitrogen, and the injection rate was 20 ml / min, and all the reactants were vaporized by heating before reaching the reactor in order to reach the catalyst layer smoothly.

각 촉매에 따른 반응시간 500 분에서의 페놀 전환률과 페닐카보네이트의 선택도 및 수율 등의 생성 정도를 표 2에 나타내었다.Table 2 shows the degree of formation of phenol conversion, phenyl carbonate selectivity, yield, and the like in the reaction time of 500 minutes for each catalyst.

페놀 전환률은 투입된 페놀 중량을 기준으로 구하였으며, 메틸페닐카보네이트의 선택도 및 수율은 페놀의 전환으로부터 생성된 생성물 중의 질량 농도로부터 구하였다.Phenol conversion was determined based on the weight of phenol added, and selectivity and yield of methylphenylcarbonate were determined from the mass concentration in the product resulting from conversion of phenol.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 촉 매catalyst Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 1010 1010 1010 1010 1010 1010 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 2020 2020 2020 2020 2020 2020 반응 온도(℃)Reaction temperature (℃) 300300 350350 400400 450450 500500 600600 페놀 전환률 (%)Phenolic Conversion Rate (%) 2.52.5 4.04.0 9.99.9 20.520.5 30.230.2 36.736.7 DMC 선택도 (%)DMC selectivity (%) 20.520.5 26.326.3 47.147.1 40.840.8 35.335.3 30.230.2 DMC 수율 (%)DMC yield (%) 0.50.5 1.11.1 4.74.7 8.48.4 10.710.7 11.111.1

실시예 7∼11Examples 7-11

제조예 1의 촉매 Mo-SiO2의 사용량을 1 g으로 변경하고, 실시예 1과 같이 제조하되 반응온도를 450 ℃로 고정하고 반응몰비와 반응물의 주입 유량을 변경하여 메틸페닐카보네이트를 제조하였다.The amount of the catalyst Mo-SiO 2 used in Preparation Example 1 was changed to 1 g, and the preparation was carried out as in Example 1, but the reaction temperature was fixed at 450 ° C., and the reaction molar ratio and the injection flow rate of the reactant were changed to prepare methylphenyl carbonate.

이때의 생성 정도를 표 3에 나타내었다.The generation degree at this time is shown in Table 3.

구 분division 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9 실시예 10Example 10 실시예 11Example 11 촉 매catalyst Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 촉 매 양 (g)Catalyst amount (g) 1One 1One 1One 1One 1One 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 1010 1010 1010 1010 1010 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 1:11: 1 2.5:12.5: 1 5:15: 1 7.5:17.5: 1 10:110: 1 반응물 유량 (ml/hr)Reactant Flow Rate (ml / hr) 0.200.20 0.490.49 1One 1.51.5 22 질소 유량 (ml/min)Nitrogen Flow Rate (ml / min) 2020 2020 2020 2020 2020 반응 온도 (℃)Reaction temperature (℃) 450450 450450 450450 450450 450450 페놀 전환률 (%)Phenolic Conversion Rate (%) 6.86.8 11.311.3 20.620.6 29.629.6 35.735.7 DMC 선택도 (%)DMC selectivity (%) 19.219.2 34.934.9 40.640.6 31.831.8 22.522.5 DMC 수율 (%)DMC yield (%) 1.31.3 3.93.9 8.48.4 9.49.4 8.08.0

실시예 12∼16, 비교예 1Examples 12-16, Comparative Example 1

반응온도 450℃에서 질소유량을 30 ml/min으로 변경하고, 제조예 1의 촉매 Mo-SiO2의 금속 담지량을 변화시키면서 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.The methylphenyl carbonate was prepared in the same manner as in Example 1 while changing the nitrogen flow rate to 30 ml / min at a reaction temperature of 450 ° C. and changing the metal loading of the catalyst Mo-SiO 2 of Preparation Example 1.

이때의 생성 정도를 표 4에 나타내었다.The production degree at this time is shown in Table 4.

구 분division 비교예 1Comparative Example 1 실시예 12Example 12 실시예 13Example 13 실시예 14Example 14 실시예 15Example 15 실시예 16Example 16 촉 매catalyst Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 Mo-SiO2 Mo-SiO 2 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 00 1One 55 1010 2020 3030 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 3030 3030 3030 3030 3030 3030 반응 온도(℃)Reaction temperature (℃) 450450 450450 450450 450450 450450 450450 페놀 전환률 (%)Phenolic Conversion Rate (%) 39.039.0 30.130.1 19.619.6 11.511.5 9.39.3 3.53.5 DMC 선택도 (%)DMC selectivity (%) 40.740.7 51.751.7 50.350.3 37.937.9 34.734.7 35.035.0 DMC 수율 (%)DMC yield (%) 15.915.9 15.615.6 9.99.9 4.44.4 3.23.2 1.21.2

실시예 17∼21, 비교예 2Examples 17-21, Comparative Example 2

반응온도를 450 ℃로 하고, 제조예 4의 촉매 Mo(Ⅳ)-C의 금속 담지량을 변화시키면서 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.The reaction temperature was 450 deg. C, and methylphenyl carbonate was prepared in the same manner as in Example 1 while changing the amount of metal supported by the catalyst Mo (IV) -C in Preparation Example 4.

이때의 생성 정도를 표 5에 나타내었다.The generation degree at this time is shown in Table 5.

구 분division 비교예 2Comparative Example 2 실시예 17Example 17 실시예 18Example 18 실시예 19Example 19 실시예 20Example 20 실시예 21Example 21 촉 매catalyst Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 00 1One 55 1010 2020 3030 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 2020 2020 2020 2020 2020 2020 반응 온도(℃)Reaction temperature (℃) 450450 450450 450450 450450 450450 450450 페놀 전환률 (%)Phenolic Conversion Rate (%) 57.157.1 27.927.9 30.330.3 24.624.6 28.628.6 20.720.7 DMC 선택도 (%)DMC selectivity (%) 7.27.2 29.429.4 32.532.5 38.638.6 47.447.4 50.350.3 DMC 수율 (%)DMC yield (%) 4.14.1 8.28.2 9.89.8 9.59.5 13.613.6 10.410.4

실시예 22∼26, 비교예 3Examples 22-26, Comparative Example 3

제조예 4의 촉매 Mo(Ⅳ)-C을 촉매로 사용하고, 반응온도를 450℃로 고정하고, 운반가스인 질소의 유량을 변화시키면서 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.Using the catalyst Mo (IV) -C of Preparation Example 4 as a catalyst, the reaction temperature was fixed at 450 ℃, methylphenyl carbonate was prepared in the same manner as in Example 1 while changing the flow rate of nitrogen as a carrier gas.

이때의 생성 정도를 표 6에 나타내었다.The production degree at this time is shown in Table 6.

구 분division 비교예 3Comparative Example 3 실시예 22Example 22 실시예 23Example 23 실시예 24Example 24 실시예 25Example 25 실시예 26Example 26 촉 매catalyst Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 2020 2020 2020 2020 2020 2020 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 00 1010 2020 3030 5050 7070 반응 온도(℃)Reaction temperature (℃) 450450 450450 450450 450450 450450 450450 페놀 전환률 (%)Phenolic Conversion Rate (%) 51.751.7 26.826.8 21.221.2 17.917.9 16.016.0 14.714.7 DMC 선택도 (%)DMC selectivity (%) 13.313.3 47.747.7 55.355.3 70.170.1 70.970.9 71.271.2 DMC 수율 (%)DMC yield (%) 6.96.9 12.812.8 11.711.7 12.512.5 11.311.3 10.510.5

실시예 27∼31Examples 27-31

제조예 4의 촉매 Mo(Ⅳ)-C을 촉매로 사용하고, 반응온도를 450℃에서 질소유량을 30 ml/min으로 고정하고, 반응물의 주입 유량을 변경하여 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.Using the catalyst Mo (IV) -C of Preparation Example 4 as a catalyst, the reaction temperature was fixed at 450 ℃ nitrogen flow rate to 30 ml / min, and the injection flow rate of the reactants were changed to prepare methylphenyl carbonate as in Example 1 It was.

이때의 활성은 표 7에 나타내었다.The activity at this time is shown in Table 7.

구 분division 실시예 27Example 27 실시예 28Example 28 실시예 29Example 29 실시예 24Example 24 실시예 30Example 30 실시예 31Example 31 촉 매catalyst Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C Mo(Ⅳ)-CMo (Ⅳ) -C 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 2020 2020 2020 2020 2020 2020 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 0.200.20 0.490.49 0.740.74 1.001.00 1.501.50 2.002.00 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 3030 3030 3030 3030 3030 3030 반응 온도(℃)Reaction temperature (℃) 450450 450450 450450 450450 450450 450450 페놀 전환률 (%)Phenolic Conversion Rate (%) 25.425.4 23.923.9 22.322.3 17.917.9 12.312.3 10.110.1 DMC 선택도 (%)DMC selectivity (%) 40.840.8 48.248.2 58.658.6 70.170.1 61.761.7 55.455.4 DMC 수율 (%)DMC yield (%) 10.410.4 11.511.5 13.113.1 12.512.5 7.67.6 5.65.6

실시예 32∼38Examples 32-38

제조예 12의 촉매 Ti-SiO2을 사용하고 반응온도를 변화시키면서 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.Methylphenyl carbonate was prepared in the same manner as in Example 1, using the catalyst Ti-SiO 2 of Preparation Example 12 and changing the reaction temperature.

이때의 생성 정도를 표 8에 나타내었다.The generation degree at this time is shown in Table 8.

구 분division 실시예 32Example 32 실시예 33Example 33 실시예 34Example 34 실시예 35Example 35 실시예 36Example 36 실시예 37Example 37 실시예 38Example 38 촉 매catalyst Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 1010 1010 1010 1010 1010 1010 1010 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 2020 2020 2020 2020 2020 2020 2020 반응 온도(℃)Reaction temperature (℃) 300300 370370 400400 430430 450450 480480 600600 페놀 전환률 (%)Phenolic Conversion Rate (%) 12.712.7 20.320.3 29.529.5 36.436.4 37.237.2 38.238.2 45.945.9 DMC 선택도 (%)DMC selectivity (%) 77.477.4 78.578.5 93.693.6 87.587.5 85.185.1 86.086.0 68.668.6 DMC 수율 (%)DMC yield (%) 9.89.8 15.915.9 27.627.6 31.831.8 31.731.7 32.932.9 31.531.5

실시예 39∼42, 비교예 4Examples 39-42, Comparative Example 4

반응온도를 430℃로 하고, 제조예 12의 Ti-SiO2촉매의 금속 담지량을 변화시키면서 실시예 1과 같이 메틸페닐카보네이트를 제조하였다.The reaction temperature was 430 ° C., and methylphenyl carbonate was prepared in the same manner as in Example 1 while varying the metal loading of the Ti-SiO 2 catalyst of Preparation Example 12.

이때의 생성 정도를 표 9 나타내었다.Table 9 shows the degree of generation at this time.

구 분division 비교예 4Comparative Example 4 실시예 39Example 39 실시예 35Example 35 실시예 40Example 40 실시예 41Example 41 실시예 42Example 42 촉 매catalyst Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 Ti-SiO2 Ti-SiO 2 촉 매 양 (g)Catalyst amount (g) 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 0.480.48 촉매의 금속 담지량 (중량%)Metal supported amount of catalyst (wt%) 00 55 1010 1313 2020 3030 몰비 (DMC : Ph)Molar ratio (DMC: Ph) 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 5:15: 1 반응물 유량(ml/hr)Reactant Flow Rate (ml / hr) 1One 1One 1One 1One 1One 1One 질소 유량(ml/min)Nitrogen Flow Rate (ml / min) 2020 2020 2020 2020 2020 2020 반응 온도(℃)Reaction temperature (℃) 430430 430430 430430 430430 430430 430430 페놀 전환률 (%)Phenolic Conversion Rate (%) 13.713.7 30.630.6 36.436.4 33.033.0 23.423.4 13.513.5 DMC 선택도 (%)DMC selectivity (%) 52.152.1 65.265.2 87.587.5 85.785.7 85.385.3 85.085.0 DMC 수율 (%)DMC yield (%) 7.17.1 20.020.0 31.831.8 28.328.3 20.020.0 11.511.5

실시예 43∼56Examples 43-56

제조예 1∼17의 촉매를 사용하고, 디메틸카보네이트와 페놀을 5 : 1 의 몰비로 혼합한 용액을 1 ml/hr의 주입속도로 주입하고, 운반 가스로서 질소를 20 ml/min 로 흘려주면서 반응물의 촉매층 도달을 원활하게 하여 반응기 도달 전에 가열을 통하여 반응물을 기화시킨다. 각 촉매는 질소가스를 흘려주면서 500 ℃에서 1 시간 동안 열처리한 후 반응온도를 450 ℃로 고정하여 500 분 동안 반응시켰다.Using the catalysts of Preparation Examples 1 to 17, a solution containing dimethyl carbonate and phenol mixed at a molar ratio of 5: 1 was injected at an injection rate of 1 ml / hr, and reacted while flowing nitrogen at 20 ml / min as a carrier gas. The reaction of the catalyst layer is facilitated to vaporize the reactant through heating before reaching the reactor. Each catalyst was heat treated at 500 ° C. for 1 hour while flowing nitrogen gas, and the reaction temperature was fixed at 450 ° C. for 500 minutes.

이렇게 디메틸카보네이트와 페놀을 기상 반응시켜서 제조된 메틸페닐카보네이트의 활성을 표 10에 기재하였다.Table 10 shows the activities of methylphenyl carbonate prepared by gas phase reaction between dimethyl carbonate and phenol.

구 분division 촉 매catalyst 촉매 양(g)Catalyst amount (g) 페놀전환률(%)Phenol Conversion Rate (%) 메틸페닐카보네이트 선택도(%)Methylphenylcarbonate selectivity (%) 메틸페닐카보네이트 수율(%)Methylphenylcarbonate yield (%) 실시예 4Example 4 Mo-SiO2(제조예 1)Mo-SiO 2 (Manufacturing Example 1) 0.480.48 20.620.6 40.640.6 8.48.4 실시예 43Example 43 Mo-Al2O3(제조예 2)Mo-Al 2 O 3 (Preparation Example 2) 1.001.00 2.12.1 34.634.6 0.70.7 실시예 44Example 44 Mo-TiO2(제조예 3)Mo-TiO 2 (Manufacturing Example 3) 1.001.00 0.90.9 57.657.6 0.50.5 실시예 20Example 20 Mo(Ⅳ)-C (제조예 4)Mo (IV) -C (production example 4) 1.001.00 28.628.6 47.447.4 13.613.6 실시예 45Example 45 Cr-SiO2(제조예 5)Cr-SiO 2 (Manufacturing Example 5) 0.480.48 29.929.9 16.816.8 5.05.0 실시예 46Example 46 W-SiO2(제조예 6)W-SiO 2 (Manufacturing Example 6) 0.480.48 12.112.1 27.727.7 3.43.4 실시예 47Example 47 V-SiO2(제조예 7)V-SiO 2 (Preparation Example 7) 0.480.48 6.06.0 47.747.7 2.92.9 실시예 48Example 48 Sn-SiO2(제조예 8)Sn-SiO 2 (Manufacturing Example 8) 0.480.48 20.720.7 52.952.9 11.011.0 실시예 49Example 49 Ti-MgO (제조예 9)Ti-MgO (Manufacturing Example 9) 0.480.48 24.324.3 37.137.1 9.09.0 실시예 50Example 50 Ti-C (제조예 10)Ti-C (Production Example 10) 0.480.48 30.430.4 91.291.2 27.727.7 실시예 51Example 51 Ti-Al2O3(제조예 11)Ti-Al 2 O 3 (Manufacturing Example 11) 0.480.48 37.037.0 80.880.8 29.929.9 실시예 36Example 36 Ti-SiO2(제조예 12)Ti-SiO 2 (Manufacturing Example 12) 0.480.48 37.237.2 85.185.1 31.731.7 실시예 52Example 52 Ti-SiO2(제조예 13)Ti-SiO 2 (Manufacturing Example 13) 0.480.48 30.430.4 84.984.9 25.825.8 실시예 53Example 53 Ti-SiO2(제조예 14)Ti-SiO 2 (Manufacturing Example 14) 0.480.48 28.928.9 80.480.4 23.223.2 실시예 54Example 54 Ti-SiO2(제조예 15)Ti-SiO 2 (Manufacturing Example 15) 0.480.48 32.432.4 87.987.9 28.528.5 실시예 55Example 55 Mo2N-C (제조예 16)Mo 2 NC (Production Example 16) 1.001.00 16.816.8 18.218.2 3.13.1 실시예 56Example 56 Mo2C-C (제조예 17)Mo 2 CC (Manufacturing Example 17) 1.001.00 17.517.5 24.524.5 4.34.3

본 발명의 기상 반응 공정에 의해 디메틸카보네이트와 페놀을 반응시켜서 제조되는 메틸페닐카보네이트는 기존의 액상 반응 공정에 의한 제조보다 우수한 메틸페닐카보네이트의 선택도와 수율을 갖는 활성을 나타낸다. 따라서 메틸페닐카보네이트를 보다 생산성을 높여서 제조할 수 있다.The methylphenyl carbonate prepared by reacting dimethyl carbonate and phenol by the gas phase reaction process of the present invention exhibits an activity having better selectivity and yield of methyl phenyl carbonate than the conventional liquid phase reaction process. Therefore, methylphenyl carbonate can be manufactured by raising productivity more.

Claims (7)

메틸페닐카보네이트의 제조 방법에 있어서,In the manufacturing method of methylphenyl carbonate, a) 디메틸카보네이트와 페놀을 1 : 1 ∼ 10 : 1 의 몰비로 혼합하여 액상a) Mixing dimethyl carbonate and phenol in a molar ratio of 1: 1 to 10: 1 혼합액을 제조하는 단계;Preparing a mixed liquid; b) 상기 액상 혼합액을 기화시키는 단계; 및b) vaporizing the liquid mixture; And c) 상기 기화된 혼합액을 몰리브텐(Mo) 담지 촉매, 티탄(Ti) 담지 촉매,c) supporting the vaporized mixed solution with a molybdenum (Mo) supported catalyst, a titanium (Ti) supported catalyst, 크롬(Cr) 담지 촉매, 텅스텐(W) 담지 촉매, 바나듐(V) 담지 촉매, 및Chromium (Cr) supported catalyst, tungsten (W) supported catalyst, vanadium (V) supported catalyst, and 주석(Sn) 담지 촉매로 이루어진 군으로부터 선택되는 촉매하에 300∼600300 to 600 under a catalyst selected from the group consisting of tin (Sn) supported catalysts ℃의 온도에서 기상 반응시켜서 메틸페닐카보네이트를 제조하는 단계Gas phase reaction at a temperature of ℃ to prepare methylphenyl carbonate 를 포함하는 메틸페닐카보네이트의 제조 방법.Method for producing methylphenyl carbonate comprising a. 제 1 항에 있어서,The method of claim 1, 상기 몰리브덴(Mo) 담지 촉매는 암모늄헵타몰리브데이트[(NH4)6Mo7O24·4H2O]의 몰리브텐(Mo) 산화물 전구체를 산화알루미늄(Al2O3), 산화티탄(TiO2), 산화규소(SiO2), 및 활성탄(C)으로 이루어진 군으로부터 선택되는 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 몰리브텐(Mo) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The molybdenum (Mo) supported catalyst is a molybdenum (Mo) oxide precursor of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] aluminum oxide (Al 2 O 3 ), titanium oxide ( TiO 2 ), supported by a carrier selected from the group consisting of silicon oxide (SiO 2 ), and activated carbon (C) and dried, and then fired for 4 hours at 500 ~ 800 ℃ firing temperature under air or helium gas atmosphere, A method for producing methylphenyl carbonate having a molybdenum (Mo) metal loading of 1 to 30% by weight. 제 1 항에 있어서,The method of claim 1, 상기 티탄(Ti) 담지 촉매는 티타늄(Ⅳ)부톡사이드(Ti(Ⅳ)- butoxide), 티타늄(Ⅳ)에톡사이드(Ti(Ⅳ)-ethoxide), 티타늄(Ⅳ)이소프로폭사이드(Ti(Ⅳ)- isopropoxide), 및 티타늄(Ⅳ)클로라이드(Ti(Ⅳ)-chloride)로 이루어진 군으로부터 선택되는 티탄(Ti) 산화물 전구체를 산화알루미늄(Al2O3), 산화마그네슘(MgO), 실리카(SiO2), 및 활성탄(C)으로 이루어진 군으로부터 선택되는 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 티탄(Ti) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The titanium (Ti) supported catalyst is titanium (IV) butoxide (Ti (IV)-butoxide), titanium (IV) ethoxide (Ti (IV)-ethoxide), titanium (IV) isopropoxide (Ti (IV) ) titanium oxide precursors selected from the group consisting of isopropoxide, and titanium (IV) chloride, such as aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), and silica (SiO). 2 ) and dried on a carrier selected from the group consisting of activated carbon (C), and then calcined at 500 to 800 ° C. for 4 hours under an air or helium gas atmosphere, and the amount of titanium (Ti) metal supported is 1 The manufacturing method of methylphenyl carbonate which is-30 weight%. 제 1 항에 있어서,The method of claim 1, 상기 크롬(Cr) 담지 촉매는 크로뮴니트레이트 수화물[Cr(NO3)3·9H2O]의 크롬 산화물 전구체를 실리카(SiO2) 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기 하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 크롬(Cr) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The chromium (Cr) supported catalyst is dried by supporting a chromium oxide precursor of chromium nitrate hydrate [Cr (NO 3 ) 3 .9H 2 O] on a silica (SiO 2 ) carrier, followed by drying in an air or helium gas atmosphere. It is produced by firing at 500 to 800 ° C. for 4 hours, and has a chromium (Cr) metal loading of 1 to 30% by weight. 제 1 항에 있어서,The method of claim 1, 상기 텅스텐(W) 담지 촉매는 암모늄메타텅스테이트 수화물[(NH4)6W12O39·xH2O]의 텅스텐 산화물 전구체를 실리카(SiO2) 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기 하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 텅스텐(W) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The tungsten (W) supported catalyst is formed by drying a tungsten oxide precursor of ammonium metatungstate hydrate [(NH 4 ) 6 W 12 O 39 .xH 2 O] on a silica (SiO 2 ) carrier, followed by air or helium gas. A method for producing methylphenyl carbonate, which is prepared by firing at a firing temperature of 500 to 800 ° C. for 4 hours in an atmosphere, and has a tungsten (W) metal loading of 1 to 30% by weight. 제 1 항에 있어서,The method of claim 1, 상기 바나듐(V) 담지 촉매는 암모늄메타바나데이트(NH4VO3)의 바나듐 산화물 전구체를 실리카(SiO2) 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기 하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 바나듐(V) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The vanadium (V) supported catalyst is dried by supporting a vanadium oxide precursor of ammonium metavanadate (NH 4 VO 3 ) on a silica (SiO 2 ) carrier and then drying at 500 to 800 ° C. under an air or helium gas atmosphere. It is produced by baking for a time, and the manufacturing method of methylphenyl carbonate whose vanadium (V) metal loading amount is 1-30 weight%. 제 1 항에 있어서,The method of claim 1, 상기 주석(Sn) 담지 촉매는 염화주석(SnCl2)의 주석 전구체를 실리카(SiO2) 담체에 담지하여 건조시킨 후, 공기 또는 헬륨가스 분위기 하에 소성온도 500∼800 ℃에서 4 시간 소성시켜서 제조되며, 주석(Sn) 금속 담지량이 1∼30 중량%인 메틸페닐카보네이트의 제조 방법.The tin (Sn) supported catalyst is prepared by drying a tin precursor of tin chloride (SnCl 2 ) on a silica (SiO 2 ) carrier, followed by drying at 500 to 800 ° C. under an air or helium gas atmosphere for 4 hours. The manufacturing method of methylphenyl carbonate whose tin (Sn) metal loading is 1-30 weight%.
KR1020000035674A 1999-06-29 2000-06-27 Method of producing aromatic carbonates by gas phase reaction using heterogeneous catalyst KR20010049636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2000/000687 WO2001000560A1 (en) 1999-06-29 2000-06-29 Process for preparing aromatic carbonates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR19990025348 1999-06-29
KR1019990025348 1999-06-29

Publications (1)

Publication Number Publication Date
KR20010049636A true KR20010049636A (en) 2001-06-15

Family

ID=19597027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000035674A KR20010049636A (en) 1999-06-29 2000-06-27 Method of producing aromatic carbonates by gas phase reaction using heterogeneous catalyst

Country Status (1)

Country Link
KR (1) KR20010049636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012127A (en) * 2011-09-28 2013-04-03 中国石油化工股份有限公司 Method for subjecting phenol and dimethyl ester to transesterification
CN111744540A (en) * 2020-06-09 2020-10-09 湖北三宁碳磷基新材料产业技术研究院有限公司 Solid acid catalyst and application thereof in esterification reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012127A (en) * 2011-09-28 2013-04-03 中国石油化工股份有限公司 Method for subjecting phenol and dimethyl ester to transesterification
CN103012127B (en) * 2011-09-28 2015-08-26 中国石油化工股份有限公司 A kind of phenol and dimethyl ester carry out the method for transesterify
CN111744540A (en) * 2020-06-09 2020-10-09 湖北三宁碳磷基新材料产业技术研究院有限公司 Solid acid catalyst and application thereof in esterification reaction

Similar Documents

Publication Publication Date Title
US8242047B2 (en) Oxide catalyst and phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and method for preparing olefin by using the same
KR100954049B1 (en) Method for preparing heteropoly acid catalyst
US6521808B1 (en) Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes
Ma et al. Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesterification of dimethyl oxalate with phenol
MX2007015298A (en) Method for selectively oxidizing ethane to ethylene.
US3954855A (en) Process for preparing acrylic acid
US20040049064A1 (en) Method for producing isocyanato-organosilanes
US6908878B2 (en) Catalyst compound for the metathesis of olefins
KR20010049636A (en) Method of producing aromatic carbonates by gas phase reaction using heterogeneous catalyst
WO2001000560A1 (en) Process for preparing aromatic carbonates
JP4597998B2 (en) Method for producing isocyanatoorganosilane
KR100682515B1 (en) Method for Preparing Catalyst for Partial Oxidation of Methylbenzenes
US7291755B2 (en) Process for producing alcohol and/or ketone
JPH0525550B2 (en)
CN107915710B (en) Method for producing ethylene carbonate
CN101468315B (en) Method for preparing multiphase catalyst for exchange reaction of dimethyl carbonate and phenol ester
KR20010049648A (en) Method of producing aromatic carbonates using activated carbon supported molybdenum catalyst
KR20010004645A (en) Method of producing aromatic carbonates using silica supported titanium catalyst
KR100982831B1 (en) Method for preparing heteropoly acid catalyst
KR100831559B1 (en) Catalyst for Partial Oxidation of Methylbenzenes, Method for Preparation the same and Method for Producing Aromatic Aldehyde Using the Same
EP2493839B1 (en) Propylene oxide isomerization process
KR101002123B1 (en) Method for Preparing Aromatic Carbonate Compound
CN114160120B (en) Preparation method of catalyst for producing adiponitrile from adipate
CN109529830B (en) Preparation method of catalyst composition for dimethyl sulfide
CN113042092A (en) Supported carbon nitride catalyst for brain-culture condensation reaction and preparation method thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid