KR20010048739A - Method for continuous casting bearing steel - Google Patents

Method for continuous casting bearing steel Download PDF

Info

Publication number
KR20010048739A
KR20010048739A KR1019990053539A KR19990053539A KR20010048739A KR 20010048739 A KR20010048739 A KR 20010048739A KR 1019990053539 A KR1019990053539 A KR 1019990053539A KR 19990053539 A KR19990053539 A KR 19990053539A KR 20010048739 A KR20010048739 A KR 20010048739A
Authority
KR
South Korea
Prior art keywords
steel
casting
continuous casting
molten steel
mold
Prior art date
Application number
KR1019990053539A
Other languages
Korean (ko)
Other versions
KR100423423B1 (en
Inventor
이재용
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0053539A priority Critical patent/KR100423423B1/en
Publication of KR20010048739A publication Critical patent/KR20010048739A/en
Application granted granted Critical
Publication of KR100423423B1 publication Critical patent/KR100423423B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

PURPOSE: A method for continuous casting a bearing steel is provided to reduce center segregation by synthetically interpreting influences on the center segregation by each key technologies in the continuous casting and controlling the conditions thereof. CONSTITUTION: The method comprises the steps of controlling a degree of overheating in a tundish (3) of molten steel comprising 0.95 to 1.02 wt.% of C, 0.25 to 0.45 wt.% of Mn, 0.15 to 0.25 wt.% of Si, 0.045 wt.% or less of P, 0.010 to 0.040 wt.% of sol-Al and 1.35 to 1.55 wt.% of Cr to 12 to 15 deg.C; casting the molten steel at a casting speed of 0.60 to 0.63 m/min by injecting the molten steel into a mold (7); solidifying the strip by cooling a strip transferred after passing through the mold to a water-liter steel-ton of 0.11 to 0.17 l/kg in a second cooling zone (8); and light reduction rolling the solidified strip to a thickness reduction of 6 to 7mm, wherein S-EMS (standard-electric magnetic stirring) is controlled at a frequency of 10 Hz and current density of 301 to 400 A, and F-EMS (final-electric magnetic stirring) is controlled at a frequency of 15 Hz and current density of 401 to 500 A in the second cooling zone (8).

Description

베어링강의 연속주조방법{Method for continuous casting bearing steel}Continuous casting method of bearing steel {Method for continuous casting bearing steel}

본 발명은 고속회전운동에서 내마모성과 고피로특성이 요구되는 베어링강의 제조방법에 관한 것으로, 보다 상세하게는 조괴재로 제조되던 베어링강을 중심편석의 발생없이 연속주조할 수 있는 방법에 관한 것이다.The present invention relates to a method for manufacturing a bearing steel requiring high wear resistance and high fatigue characteristics in a high speed rotational motion, and more particularly, to a method for continuously casting a bearing steel made of a coarse material without the occurrence of central segregation.

최근, 자동차 산업 및 기계공업의 급속한 발달로 인해 고속회전운동에서 내마모성과 내피로특성이 우수한 베어링강이 요구되고 있으며, 고탄소, 고크롬강이 개발되어 사용되고 있다. 이러한 베어링강 소재에는 조괴재가 사용되고 있으나, 생산성측면에서 불리하다. 따라서, 조괴재 대신 연주재를 사용하려는 노력이 행해지고 있으나, 아직 연속주조기술이 확립되어 있지 않은 실정이다.Recently, due to the rapid development of the automotive industry and the mechanical industry, a bearing steel having excellent wear resistance and fatigue resistance is required in a high-speed rotational movement, and high carbon and high chromium steel have been developed and used. Coarse materials are used for such bearing steel materials, but are disadvantageous in terms of productivity. Therefore, although efforts have been made to use performance materials instead of crude materials, continuous casting techniques have not yet been established.

아래 표 1에는 베어링강의 화학성분이 제시되어 있다.Table 1 below shows the chemical composition of the bearing steel.

화학성분(중량)Chemical composition (weight) CC SiSi MnMn PP SS Sol.AlSol.Al CrCr NN 0.956-1.020.956-1.02 0.15-1.020.15-1.02 0.25-0.450.25-0.45 ≤0.04≤0.04 ≤0.07≤0.07 0.010-0.040.010-0.04 1.35-1.551.35-1.55 ≤60ppm≤60ppm

베어링강은 실리콘+알루미늄 복합탈산강의 대표적인 강으로, 전로→조괴재→강편압연→선재압연의 공정을 거쳐 반제품으로 생산되며, 이 반제품은 선재가공업체에서 베어링강으로 가공된다.Bearing steel is a representative steel of silicon + aluminum composite deoxidation steel. It is produced as semi-finished products through converter → cob steel → rolled steel sheet → wire rod. This semi-finished product is processed into bearing steel by wire processing company.

본 발명자들은 베어링강을 연속주조하여 주편으로 생산하기 위해 통상의 연속주조조건(아래 표 2)을 적용하여 생산한 결과, 도 8(a,b)과 같이 연주블룸상태에서 중심편석이 심하게 발생한 결과를 얻었다.The present inventors produced by applying the continuous continuous casting conditions (Table 2 below) to produce the cast steel by continuously casting the bearing steel, as a result of the center segregation in the playing room state as shown in Fig. 8 (a, b) Got.

과열도Superheat 주조속도Casting speed 2차냉각패턴2nd cooling pattern 전자교반장치Electronic Stirring Device 경압하Under light pressure 스트랜드Strand 파이널final 20℃20 ℃ 0.65m/min0.65 m / min 0.27ℓ/kg0.27ℓ / kg 10Hz-300A10 Hz-300 A 15Hz-400A15 Hz-400 A 4mm4mm

물론, 중심편석이 형성된 주편에 대하여 후속공정조건의 제어로 이를 해결할 수는 있으나, 근본적인 해결책은 될 수 없다.Of course, it is possible to solve this problem by controlling the subsequent process conditions for the slab in which the central segregation is formed, but it is not a fundamental solution.

본 발명에서는 연속주조에서 각 요소기술들이 중심편석에 미치는 영향을 종합적으로 해석해내고 이들 조건을 제어하여 중심편석을 저감할 수 있는 베어링강의 연속주조방법을 제공하는데, 그 목적이 있다.The present invention provides a continuous casting method of bearing steel which can reduce the central segregation by comprehensively analyzing the influence of each element technology on the central segregation in continuous casting and controlling these conditions.

도 1은 연속주조설비의 개략도1 is a schematic diagram of a continuous casting facility

도 2-도 7은 연속주조공정에서 주조조건에 따른 주조조직과 중심편석발생율을 나타낸 그래프2 to 7 are graphs showing the casting structure and the central segregation rate according to the casting conditions in the continuous casting process

도 8은 주편의 내부품질사진으로서8 is an internal quality picture of the cast steel

도 8(a)(b)는 종래재의 조직사진이고8 (a) (b) is a tissue photograph of a conventional material

도 8(c)는 발명재의 조직사진Figure 8 (c) is a tissue photograph of the invention material

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1.... 래들 3....턴디쉬1 .... ladle 3 .... tundish

5....침지노즐 7....몰드5 .... Immersion nozzle 7 .... Mold

8....2차냉각대 9....경압하구간8 .... 2nd cooling stand 9 ....

상기 목적을 달성하기 위한 본 발명의 베어링강 연속주조방법은, 중량로, C:0.95∼1.02, Mn:0.25∼0.45, Si:0.15∼0.25, P:0.045이하, sol-Al:0.010∼0.040, Cr:1.35∼1.55를 포함하여 조성되는 용강을 턴디쉬에서의 과열도를 12∼15℃로 관리하는 단계;Bearing steel continuous casting method of the present invention for achieving the above object, by weight, C: 0.95 to 1.02, Mn: 0.25 to 0.45, Si: 0.15 to 0.25, P: 0.045 or less, sol-Al: 0.010 to 0.040, Managing the superheat degree in the tundish of 12 to 15 DEG C for molten steel including Cr: 1.35 to 1.55;

이 용강을 주형에 주입하여 0.60∼0.63m/min으로 속도로 주조하는 단계;Injecting the molten steel into a mold and casting at a speed of 0.60 to 0.63 m / min;

주형을 통과하여 이송되는 주편을 2차냉각대에서 0.11∼0.17ℓ/kg의 비수량으로 냉각하여 응고하는 단계;Cooling and solidifying the cast steel being passed through the mold to a non-aqueous quantity of 0.11 to 0.17 l / kg in a secondary cooling stand;

응고된 주편을 경압하하여 두께 감소량을 6-7mm로 하는 단계;를 포함하여 구성된다.It is configured to include; step of reducing the thickness of the thickness of the solidified slab to 6-7mm.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 베어링강을 연속주조하여 연주재로 제조하는데 그 기술적의미가 있으며, 그 대상강종은 베어링강의 일종인 중량로 C:0.95∼1.02, Mn:0.25∼0.45, Si:0.15∼0.25, P:0.045이하, sol-Al:0.010∼0.040, Cr:1.35∼1.55를 포함하여 조성되는 강이다.In the present invention, the continuous casting of the bearing steel to produce a casting material has the technical significance, the target steel is a kind of bearing steel by weight of C: 0.95 to 1.02, Mn: 0.25 to 0.45, Si: 0.15 to 0.25, P: 0.045 or less, sol-Al: 0.010-0.040, Cr: 1.35-1.55, and the steel is comprised.

본 발명에서는 상기한 베어링강을 도 1에 일례로 나타난 연속주조설비에서 과열도, 주조속도, 2차냉각대에서의 비수량, 경압하량 등의 주조조건을 엄밀히 제어하여 중심편석없이 연주재를 제조하는 것이다. 본 발명에서 이러한 주조조건은 주편에서 내부크랙도 줄이고 등축정율을 높여 중심편석을 저감하는데, 촛점이 맞추어져 있다.In the present invention, in the continuous casting equipment shown in the example shown in Figure 1, the casting material such as superheat degree, casting speed, non-quantity in the secondary cooling zone, light pressure load, etc. are strictly controlled to obtain the casting material without center segregation. To manufacture. In the present invention, such casting conditions are also focused on reducing the internal segregation in the cast steel to reduce the center segregation by increasing the equiaxed crystallinity, it is focused.

본 발명에서는 도 1의 연속주조설비에서 래들(1)의 용강을 턴디쉬(3)로 주입하고 이를 침지노즐(5)을 통해 몰드로(7) 인입하여 주편을 제조하는데, 이때, 턴디쉬(3)의 과열도를 12∼15℃로 한다. 과열도는 아래 관계식 1로 결정되므로, 본 발명에서는 이론응고온도를 고려하여 과열도가 12∼15℃가 유지되도록 턴디쉬내 용강의 온도를 관리한다.In the present invention, the molten steel of the ladle 1 is injected into the tundish 3 in the continuous casting facility of Figure 1 and introduced into the mold (7) through the immersion nozzle (5), in this case, the tundish ( The superheat degree of 3) shall be 12-15 degreeC. Since the superheat degree is determined by the following Equation 1, the present invention manages the temperature of the molten steel in the tundish so that the superheat degree is maintained in consideration of the theoretical solidification temperature.

[관계식 1][Relationship 1]

과열도= 턴디쉬내 용강의 온도-용강의 이론응고온도Superheat = temperature of molten steel in tundish-theoretical solidification temperature of molten steel

과열도가 12℃ 미만의 경우 용강의 온도가 낮아 침지노즐이 막힐 수 있으며, 15℃ 보다 크면 등축정이 너무 낮아 중심편석이 높아진다. 이러한 과열도는 통상수준 대비 많이 낮춘 것으로, 본 발명의 연구에 따르면 과열도가 크면 주상정조직이 잘발달하여 등축정대가 얇아지고 용질농화용강이 중심부위로 유동하게 되어 중심편석이 생성되기 쉽다.If the superheat is less than 12 ℃, the temperature of the molten steel can be lowered to block the immersion nozzle. If the temperature is greater than 15 ℃, the equiaxed crystal is too low to increase the center segregation. This degree of superheat is much lower than the normal level, according to the study of the present invention, if the superheat degree is large, the columnar apical tissue develops well, the equiaxed ligament becomes thin and the solute thickening steel flows over the center, and the center segregation is likely to be generated.

턴디쉬내 용강을 몰드에 주입하여 주조할때의 주조속도는 0.60∼0.63m/min으로 하는 것이 바람직한데, 이는 통상(약 0.65m/min) 대비 주조속도를 낮춘 것이다. 주조속도가 빠르면 미응고된 상태에서 빠르게 설비를 통과하기 때문에 대류 등에 의하여 용질농화 용강이 중심부위로 유동하게 되어 중심편석이 생성되기 쉽다. 따라서, 본 발명에서는 주조속도를 0.60∼0.63m/min으로 낮추는데, 주조속도가 0.60m/min미만의 경우 주조시간의 너무 길어져 주조말기 온도가 너무 떨어지므로 침지노즐이 막힐 수 있고, 주조속도가 0.63m/min을 초과하는 경우 중심편석발생율이 높아지기 때문이다.When the molten steel in the tundish is injected into the mold and casting, it is desirable to set the casting speed to 0.60 to 0.63 m / min, which is lower than the conventional (about 0.65 m / min) casting speed. When the casting speed is fast, the solute-enriched molten steel flows over the center due to convection, so it is easy to generate central segregation because it passes through the equipment quickly in an unsolidified state. Therefore, in the present invention, the casting speed is lowered to 0.60 to 0.63 m / min. If the casting speed is less than 0.60 m / min, the casting time is too long, and the end temperature of the casting is too low, so that the immersion nozzle may be blocked, and the casting speed is 0.63. This is because the central segregation rate increases when it exceeds m / min.

또한, 주형을 통과하여 이송되는 주편을 2차냉각대(8)에서 냉각하는데, 이때의 비수량은 0.11∼0.17ℓ/kg으로 한다. 이는 주편의 냉각에 필요한 최소한의 양인 0.11ℓ/kg이상으로 한 것이며, 비수량이 많을 수록 등축정이 낮아지고 응고수축량이 많아져 중심편석저감에 불리하므로 0.17ℓ/kg이하로 하는 것이다.In addition, although the slab conveyed through a mold is cooled by the secondary cooling stand 8, the specific water quantity at this time shall be 0.11-0.17 L / kg. This is the minimum amount required for the cooling of the cast steel is 0.11ℓ / kg or more, and the larger the non-abundance, the lower the equiaxed crystal and the greater the amount of coagulation shrinkage, which is disadvantageous to the reduction of central segregation, so it is 0.17ℓ / kg or less.

2차 냉각대를 통과하면서 응고되는 주편을 경압하(9)하는데, 압하량이 증가함에 따라 편석립경이 감소하며 응고수축에 의한 잔류용강의 유속이 감소하여 중심편석을 억제한다. 따라서, 본 발명에서는 경압하공정에서 주편의 두께 감소율을 통상 수준 대비 높여서 6∼7mm가 되도록 한다. 이는 두께 감소량이 6mm이상 되어야 내부크랙 발생도 적고 등축정율이 높아져 중심편석저감에 유리하며, 두께 감소율이 7mm를 초과하는 경우에는 내부크랙의 발생하기 때문이다.The slag solidified while passing through the secondary cooling zone (9) is pressure-reduced, the segregation grain diameter decreases as the amount of reduction decreases, and the flow rate of the residual molten steel due to solidification shrinkage is reduced to suppress the center segregation. Therefore, in the present invention, the thickness reduction rate of the cast steel in the process under light pressure is increased to 6 to 7 mm compared to the normal level. This is because when the thickness reduction amount is 6mm or more, there is less internal cracking and the equiaxed crystallinity is higher, which is advantageous for reducing the center segregation, and when the thickness reduction rate exceeds 7mm, internal cracking occurs.

한편, 연속주조설비의 2차냉각대에는 전자교반장치인 S-EMS(Strand- Electric Magnetic Stiring)가 주형의 바로 아래에 설치되어 있는데, 보통 주형의 탕면으로 부터 약 3.18m 떨어진 위치에 설치된다. 또한, F-EMS(Final- Electric Magnetic Stiring)가 S-EMS의 아래에 설치되어 있으며, 보통 주형의 탕면으로 부터 약 7.18m 떨어진 곳에 설치된다. 본 발명에서는 중심편석을 보다 완전하게 저감하기 위하여 상기 S-EMS와 F-EMS의 주파수와 전류밀도를 각각 10Hz에서 301∼400A, 15Hz에서 401∼500A로 제어한다.Meanwhile, S-EMS (Strand-Electric Magnetic Stiring), which is an electronic stirrer, is installed directly below the mold in the secondary cooling zone of the continuous casting facility, and is usually installed at a position about 3.18m away from the hot water surface of the mold. In addition, F-EMS (Final-Electric Magnetic Stiring) is installed under the S-EMS, and is usually installed about 7.18m away from the hot water surface of the mold. In the present invention, the frequency and current density of the S-EMS and F-EMS are controlled to 301 to 400 A at 10 Hz and 401 to 500 A at 15 Hz, respectively, in order to reduce the center segregation more completely.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

중량로, C:0.95∼1.02, Mn:0.25∼0.45, Si:0.15∼0.25, P:0.045이하, sol-Al:0.010∼0.040, Cr:1.35∼1.55를 포함하여 조성되는 용강을 도 1의 설비에서 연속주조할때 과열도, 주조속도, 비수량, 경압하량 등을 변화시켜 가면서 중심편석발생량을 조사해 보았다.The molten steel which consists of C: 0.95-1.02, Mn: 0.25-0.45, Si: 0.15-0.25, P: 0.045 or less, sol-Al: 0.010-0.040, Cr: 1.35-1.55 by weight is equipped with the apparatus of FIG. In the continuous casting at, the segregation rate of the central segregation was investigated by varying the superheat, casting speed, specific quantity, and pressure drop.

도 2∼도 7에서 확인할 수 있듯이, 본 발명의 주조조건을 만족하는 경우에는 내부크랙의 발생도 적으며 등축정이 많아서 중심편석의 발생량이 낮음을 알 수 있다.As can be seen from Figures 2 to 7, when the casting conditions of the present invention is satisfied, there is little occurrence of internal cracks and many equiaxed crystals, so it can be seen that the amount of central segregation is low.

한편, 도 8(c)에 나타난 바와 같이, 본 발명에 따라 연속주조한 경우에 주편내부품질 수준이 매우 양호함을 알 수 있다.On the other hand, as shown in Figure 8 (c), in the case of continuous casting according to the present invention it can be seen that the internal quality level of the cast steel is very good.

상술한 바와 같이, 본 발명에 따르면 베어링강을 중심편석 없이 연주재로 생산할 수 있음에 따라 기존에 조괴재를 전량 교체할 수 있어 생산성을 획기적으로 개선하는 유용한 효과가 있는 것이다.As described above, according to the present invention, since the bearing steel can be produced as a cast material without the center segregation, it is possible to replace all the coarse materials in the past, which has a useful effect of dramatically improving productivity.

Claims (2)

중량로, C:0.95∼1.02, Mn:0.25∼0.45, Si:0.15∼0.25, P:0.045이하, sol-Al:0.010∼0.040, Cr:1.35∼1.55를 포함하여 조성되는 용강을 턴디쉬에서의 과열도를 12∼15℃로 관리하는 단계;By weight, the molten steel which contains C: 0.95-1.02, Mn: 0.25-0.45, Si: 0.15-0.25, P: 0.045 or less, sol-Al: 0.010-0.040, Cr: 1.35-1.55 by tundish Managing the superheat degree at 12 to 15 ° C; 이 용강을 주형에 주입하여 0.60∼0.63m/min으로 속도로 주조하는 단계;Injecting the molten steel into a mold and casting at a speed of 0.60 to 0.63 m / min; 주형을 통과하여 이송되는 주편을 2차냉각대에서 0.11∼0.17ℓ/kg의 비수량으로 냉각하여 응고하는 단계;Cooling and solidifying the cast steel being passed through the mold to a non-aqueous quantity of 0.11 to 0.17 l / kg in a secondary cooling stand; 응고된 주편을 경압하하여 두께 감소량을 6-7mm로 하는 단계;를 포함하여 이루어지는 베어링강의 연속주조방법.Continuously casting the solidified cast steel to reduce the thickness of the thickness to 6-7mm; continuous casting method of a bearing steel comprising a. 제 1항에 있어서, 상기 2차냉각대에서 S-EMS는 10Hz의 주파수에서 301∼400A로 하고, F-EMS는 15Hz의 주파수에서 401∼500A로 하는 것을 특징으로 하는 베어링강의 연속주조방법.The method of claim 1, wherein in the secondary cooling zone, S-EMS is 301 to 400A at a frequency of 10Hz, F-EMS is 401 to 500A at a frequency of 15Hz.
KR10-1999-0053539A 1999-11-29 1999-11-29 Method for continuous casting bearing steel KR100423423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053539A KR100423423B1 (en) 1999-11-29 1999-11-29 Method for continuous casting bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053539A KR100423423B1 (en) 1999-11-29 1999-11-29 Method for continuous casting bearing steel

Publications (2)

Publication Number Publication Date
KR20010048739A true KR20010048739A (en) 2001-06-15
KR100423423B1 KR100423423B1 (en) 2004-03-19

Family

ID=19622453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0053539A KR100423423B1 (en) 1999-11-29 1999-11-29 Method for continuous casting bearing steel

Country Status (1)

Country Link
KR (1) KR100423423B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940736B1 (en) * 2002-12-20 2010-02-04 주식회사 포스코 Method for Reducing Centerline Segregation of Continuously Cast Slab Segments
CN111254256A (en) * 2020-04-07 2020-06-09 广东韶钢松山股份有限公司 Bearing steel and manufacturing method thereof
CN113084110A (en) * 2021-03-04 2021-07-09 天津荣程联合钢铁集团有限公司 Method for reducing carbon segregation of alloy steel
CN114054706A (en) * 2021-11-19 2022-02-18 河南济源钢铁(集团)有限公司 Production control method for improving pickling low-power quality of bearing steel round steel
CN115430812A (en) * 2022-08-15 2022-12-06 中天钢铁集团有限公司 Control method for medium-high carbon steel uniform structure for automobile constant-speed transmission shaft
CN117259705A (en) * 2023-11-23 2023-12-22 北京科技大学 Method and system for monitoring blank white and bright bands

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137559A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JPS60137560A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JP3149764B2 (en) * 1995-12-15 2001-03-26 日本鋼管株式会社 Prevention method of placing cracks in continuous cast slabs of bearing steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940736B1 (en) * 2002-12-20 2010-02-04 주식회사 포스코 Method for Reducing Centerline Segregation of Continuously Cast Slab Segments
CN111254256A (en) * 2020-04-07 2020-06-09 广东韶钢松山股份有限公司 Bearing steel and manufacturing method thereof
CN113084110A (en) * 2021-03-04 2021-07-09 天津荣程联合钢铁集团有限公司 Method for reducing carbon segregation of alloy steel
CN113084110B (en) * 2021-03-04 2022-07-12 天津荣程联合钢铁集团有限公司 Method for reducing carbon segregation of alloy steel
CN114054706A (en) * 2021-11-19 2022-02-18 河南济源钢铁(集团)有限公司 Production control method for improving pickling low-power quality of bearing steel round steel
CN115430812A (en) * 2022-08-15 2022-12-06 中天钢铁集团有限公司 Control method for medium-high carbon steel uniform structure for automobile constant-speed transmission shaft
CN115430812B (en) * 2022-08-15 2024-01-23 中天钢铁集团有限公司 Control method for uniform structure of medium-high carbon steel for automobile constant-speed transmission shaft
CN117259705A (en) * 2023-11-23 2023-12-22 北京科技大学 Method and system for monitoring blank white and bright bands
CN117259705B (en) * 2023-11-23 2024-03-05 北京科技大学 Method and system for monitoring blank white and bright bands

Also Published As

Publication number Publication date
KR100423423B1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
US5592988A (en) Method for the continuous casting of peritectic steels
CN101642774B (en) GCr15 bearing steel bloom continuous casting dynamic soft reduction process
KR20110075387A (en) Martensitic stainless steels by twin roll strip casting process and manufacturing method thereof
KR100224487B1 (en) Continuous casting method for austenitic stainless steel
KR100423423B1 (en) Method for continuous casting bearing steel
US4927467A (en) Method for producing thin plate of phosphor bronze
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
KR101286213B1 (en) Twin roll strip casting process of martensitic stainless strip and twin roll strip casting apparatus of martensitic stainless strip
KR101230117B1 (en) Method for manufacturing austenitic stainless steel
JPH0565263B2 (en)
KR100958029B1 (en) A Method of Manufacturing A Ferrite Stainless Steel
KR20040058814A (en) Method for manufacturing slab of martensitic stainless steel
JPH1058093A (en) Method for continuously casting steel
KR100419644B1 (en) A Method for Manufacturing Continuously Cast Strands from High Ni Containing Steel
KR100969806B1 (en) A method for controling ?-ferrite distribution in slab of stainless 304
JPS61193758A (en) Production of hot worked steel material having good surface characteristic
JP2721382B2 (en) Method for refining organization of steel slab
KR960002216B1 (en) Molding device
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JPH09285855A (en) Manufacture of ni containing steel
KR101243259B1 (en) Martensitic stainless hot rolled steel strip and manufacturing method thereof
JPH0324297B2 (en)
JPS6083756A (en) Continuous casting method
KR100579389B1 (en) continuous casting method of 310S austenite stainless steel
KR100595874B1 (en) Method for continuously casting of 409 statinless steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee