KR20010047690A - Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite - Google Patents

Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite Download PDF

Info

Publication number
KR20010047690A
KR20010047690A KR1019990052020A KR19990052020A KR20010047690A KR 20010047690 A KR20010047690 A KR 20010047690A KR 1019990052020 A KR1019990052020 A KR 1019990052020A KR 19990052020 A KR19990052020 A KR 19990052020A KR 20010047690 A KR20010047690 A KR 20010047690A
Authority
KR
South Korea
Prior art keywords
ferrite
delta
heating
stainless steel
slab
Prior art date
Application number
KR1019990052020A
Other languages
Korean (ko)
Inventor
이종엽
김용호
김광수
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990052020A priority Critical patent/KR20010047690A/en
Publication of KR20010047690A publication Critical patent/KR20010047690A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Abstract

PURPOSE: A method is provided to prevent surface and edge crack by performing hot rolling process during the heating process and improving resolution of delta ferrite. CONSTITUTION: A method comprises the steps of heating the austenitic stainless steel slab at a temperature of 1150 to 1250 Deg.C for a time period of 0.7 minute x slab thickness to 1.8 minutes x slab thickness, wherein the stainless steel slab contains delta ferrite of 8 or higher and the calculation result of Cr + Mo + 1.5 x Si is 22 or higher from among the steel ingredient; hot rolling the stainless steel slab at a draft percentage of 5 to 50; and heating and hot rolling the stainless steel slab in the above-described process. Thus, hot rolled coil with a superior surface quality having no edge or surface crack is obtained.

Description

고 델타 페라이트 함유 오스테나이트계 스테인레스강 열연코일의 균열결함 방지 방법{Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite}Method for preventing crack from occur on hot rolled coil of austenitic stainless steel with high delta-ferrite}

본 발명은 고델타-페라이트(δ-ferrite) 함유 오스테나이트계 스테인레스강의 제조방법에 관한 것으로, 보다 상세하게는 델타-페라이트를 다량 함유하여 열간가공성이 불량한 오스테나이트계 스테인레스강의 표면 균열결함 및 에지크랙을 방지하기 위한 열간압연방법에 관한 것이다.The present invention relates to a method for producing high delta-ferrite-containing austenitic stainless steel, and more particularly, to surface cracking defects and edge cracks of austenitic stainless steel, which contains a large amount of delta-ferrite and is poor in hot workability. It relates to a hot rolling method for preventing.

초정 델타-페라이트로 응고하는 오스테나이트계 스테인레스강은 대부분 연속주조후 슬라브 상태에서 많은 양의 델타-페라이트가 함유되어 있다. 델타-페라이트의 양은 합금원소의 함량과 관련이 있으며, 대부분의 오스테나이트계 스테인스강에는 그 용도상 합금원소의 함량이 높다.Most austenitic stainless steels solidified with primary delta-ferrite contain large amounts of delta-ferrite in the slab state after continuous casting. The amount of delta-ferrite is related to the content of alloying elements, and most of the austenitic stainless steels have a high content of alloying elements.

오스테나이트 스테인레스강에 6.0∼8.0수준의 적당량의 델타-페라이트가 함유되어 있으면 열간압연중 재결정이 촉진되어 열간가공성이 향상된다. 그러나, 델타-페라이트량이 5이하로 과도하게 적을 경우에는 열간압연중 재결정 핵생성 싸이트로 작용하는 델타-페라이트/오스테나이트 계면이 적어 오히려 열간가공성이 불량하다. 이 경우에는 열연코일 표면에 미세한 균열형태의 슬리버(sliver)흠이 발생되지만, 코일 그라인딩(coil grinding)처리로 흠을 제거하면 냉간압연이 가능함으로 인해 경미한 조업부하를 초래하는 것외에는 특별히 문제되지 않는다. 그러나, 델타-페라이트가 8이상으로 과도하게 많이 함유되어 있으면, 델타페라이트와 오스테나이트 상간의 열간가공성 차이로 인해 델타-페라이트/오스테나이트 계면에서 균열이 시발되어 에지크랙 및 표면에 심한 균열성 표면결함이 유발되어 조업 및 품질에 심각한 문제가 발생하게 된다.When austenite stainless steel contains an appropriate amount of delta-ferrite in the range of 6.0 to 8.0, recrystallization during hot rolling is promoted to improve hot workability. However, when the amount of delta-ferrite is excessively less than 5, there is little delta-ferrite / austenite interface which acts as a recrystallization nucleation site during hot rolling. In this case, a fine crack-shaped sliver flaw is generated on the surface of the hot rolled coil, but if the flaw is removed by coil grinding, cold rolling is possible. . However, if the excessive amount of delta-ferrite is more than 8, cracks may be generated at the delta-ferrite / austenite interface due to the difference in hot workability between the delta-ferrite and austenite phase, resulting in severe crack surface defects on the edge cracks and surfaces. This causes serious problems in operation and quality.

종래에는 주조상태에서 델타-페라이트가 8이상으로 많더라도 일반 오스테나이트계 스테인레스강과 동일하게 열간압연-압연(조압연-사상압연)-권취의 방법으로 열연코일을 제조하여 왔다. 이 경우 표면균열 및 에지크랙이 다량 발생하여 이를 제거하기 위한 과도한 사이드 트리밍(side triming)과 코일 그라인딩으로 실수율 저하와 공정부하를 초래하였다. 또, 에지크랙이 심할 경우에는 압연시 에지크랙부가 사이드 가이드와 부딪혀 파편이 코일 안으로 튀어들어가 압연되어서 코일 그라인딩으로 제거되지 않는 중결함을 일으키는 문제가 있었다.Conventionally, hot-rolled coils have been manufactured by hot rolling-rolling (crude-thin rolling) -winding in the same state as in the case of a large number of delta-ferrites of 8 or more. In this case, a large amount of surface cracks and edge cracks were generated, resulting in excessive side trimming and coil grinding in order to remove them. In addition, when the edge crack is severe, there was a problem that the edge crack portion hits the side guide during rolling, causing debris to splash into the coil and rolled, which is not removed by the coil grinding.

이러한 문제를 개선하기 위하여, 통상의 가열시간(1210∼1300℃의 온도구간에서 약 3시간 동안 가열) 보다 약 50정도 가열시간을 길게하여 델타-페라이트를 분해한 후 압연하는 방법이 행해졌다. 이 경우에 합금량이 비교적 적은 304강종 계열에서는 어느 정도 효과가 있었으나, 합금량이 많으면서 델타-페라이트의 함량이 높은 강종은 델타-페라이트의 분해가 미흡하여 강판표면에 균열성 결함발생 및 코일모서리부에서 에지크랙이 발생하는 문제점이 있다.In order to remedy this problem, a method of decomposing delta-ferrite and rolling after prolonging the heating time by about 50 longer than the normal heating time (heating for about 3 hours in the temperature section of 1210-1300 ° C) was performed. In this case, there was some effect in the 304 series of alloys with relatively small amount of alloys, but steels with high amounts of alloys and high delta-ferrite have insufficient decomposition of delta-ferrite, resulting in cracking defects on the surface of the steel sheet and at the coil edges. There is a problem that an edge crack occurs.

또 다른 방법으로 일본 공고특허공보 평2-54404호에는 주조상태에서 델타-페라이트를 10이상 함유하는 오스테나이트강을 압연전의 전처리로 열간에서 5∼80의 압하율로 가공하고 이를 1000∼1300℃의 온도구간에서 5∼30시간 열처리한 후 이를 정상적으로 가열-열간압연하는 방법이 제안된 바 있다. 이 방법에서는 어느 정도 균열발생을 방지할 수는 있으나, 균열처리 등에 많은 시간이 소요되어 공업적인 방법으로는 적당하지 못하다.As another method, Japanese Patent Application Laid-open No. Hei 2-54404 discloses that austenitic steel containing 10 or more delta-ferrite in the casting state is processed at a reduction ratio of 5 to 80 in a hot pretreatment prior to rolling, and is subjected to a 1000 to 1300 ° C. After heat treatment for 5 to 30 hours in the temperature range has been proposed a method of heating and hot rolling it normally. Although this method can prevent cracking to some extent, it takes a long time for cracking and the like, which is not suitable for industrial methods.

본 발명은 보다 짧은 가열시간으로도 표면균열성 결함 및 에지크랙의 발생이 전혀 없는 표면품질이 우수한 고델타-페라이트 함유 오스테나이트 스테인레스강을 경제적인 방법으로 제조하는데, 그 목적이 있다.The present invention aims to produce a high delta-ferrite-containing austenitic stainless steel having an excellent surface quality with no surface cracking defects and edge cracks even with a shorter heating time.

도 1은 오스테나이트계 스테인레스강에서 가열시간에 따른 델타-페라이트의 함량의 변화를 나타내는 그래프1 is a graph showing the change of the content of delta-ferrite with heating time in austenitic stainless steel

도 2는 가열시간과 가열온도에 따른 승온곡선의 일례를 나타내는 그래프2 is a graph showing an example of a temperature rising curve according to heating time and heating temperature.

도 3은 가열온도에 따른 델타-페라이트의 분해량을 나타내는 그래프3 is a graph showing the decomposition amount of delta-ferrite according to the heating temperature

상기 목적을 달성하기 위한 본 발명은, 델타 페라이트 함량이 8이상이고, 강성분중 Cr+Mo+1.5×Si의 합이 22이상인 오스테나이트계 스테인레스강 슬라브를 1150∼1250℃에서 0.7분×슬라브 두께∼1.8분×슬라브두께의 시간동안 가열하고 5∼50의 압하율로 열간압연다음, 다시 상기 조건으로 가열하여 통상의 방법으로 열간압연하는 것을 포함하여 구성된다.The present invention for achieving the above object, 0.7 minutes × slab thickness of the austenitic stainless steel slab having a delta ferrite content of 8 or more, and the sum of Cr + Mo + 1.5 × Si in the steel component is 22 or more at 1150 to 1250 ° C And heating for a time of ˜1.8 minutes by slab thickness, hot rolling at a reduction ratio of 5 to 50, then heating under the above conditions, and hot rolling in a conventional manner.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

오스테나이트 스테인레스강은 표 1에서 확인할 수 있듯이, 델타-페라이트의 함량이 높을수록 에지크랙과 표면균열결함이 심각한 문제로 대두된다.As can be seen in Table 1, the austenitic stainless steel has a higher content of delta-ferrite, which leads to serious problems of edge cracks and surface cracking defects.

강종Steel grade 계산된 델타-페라이트의 양()Calculated amount of delta-ferrite () 화학성분(중량)Chemical composition (weight) 에지크랙 발생정도Edge crack occurrence degree 표면균열결함 발생정도Surface Crack Defect CrCr NiNi SiSi STS309SSTS309S 5.05.0 22.222.2 13.513.5 0.60.6 발생무Outbreak 표면양호Surface 6.56.5 22.722.7 14.414.4 0.60.6 발생무Outbreak 표면양호Surface 6.96.9 22.522.5 12.712.7 0.50.5 발생무Outbreak 표면양호Surface 7.57.5 22.622.6 12.612.6 0.50.5 경미발생Slight occurrence 에지 200mm이내 경미한 균열결함발생Minor crack defects occur within 200mm of edge 8.28.2 22.622.6 12.712.7 0.50.5 경미발생(부분적 10mm)Minor Occurrence (Partial 10mm) 에지 300mm이내 균열결함 다발Crack defect bundle within 300mm 8.98.9 22.622.6 12.712.7 0.50.5 양측면에 10mm발생10mm on both sides 대형 크랙결함 발생Large crack defects 10.510.5 22.622.6 13.713.7 0.50.5 양측면에 10mm발생10mm on both sides 대형 크랙결함 발생Large crack defects

오스테나이트계 스테인레스강에서 델타-페라이트 함량은 여러가지 계산식으로 추정가능한데, 본 발명에서는 아래의 크루프(KRUPP)식을 추천한다. 실제 연속주조로 생산된 슬라브의 단면을 절단하여 두께 방향으로 델타-페라이트 함량을 측정한 결과, 크루프식으로 계산된 값과 일치하였다. 상기 표 1도 크루프식으로 델타-페라이트 함량을 계산한 것이다.The delta-ferrite content in austenitic stainless steels can be estimated by various formulas. In the present invention, the following KRUPP formula is recommended. The section of the slab produced by continuous casting was cut and the delta-ferrite content was measured in the thickness direction. Table 1 also calculates the delta-ferrite content by the Krupp formula.

[관계식][Relationship]

본 발명에서는 델타-페라이트 함량이 8이상이면서도 특히, Cr+Mo+1.5×Si의 합이 22이상의 강을 대상강종으로 한다. 델타-페라이트의 함량이 8이상이더라도 Cr+Mo+1.5×Si의 합이 22미만의 강종에서는 열간압연전에 장시간 가열만 하면 델타-페라이트의 분해가 잘되어 표면결함이 별다른 문제가 없다. 그 대표적인 예가 STS304강종이다.In the present invention, the delta-ferrite content is 8 or more, and in particular, the sum of Cr + Mo + 1.5 x Si is 22 or more steel. Even if the delta-ferrite content is 8 or more, if the sum of Cr + Mo + 1.5 × Si is less than 22, the delta-ferrite is easily decomposed if heated for a long time before hot rolling. A representative example is the STS304 steel grade.

Cr, Mo, Si는 페라이트 안정화원소로 이들 성분의 함량이 높으면 가열후에도 델타-페라이트의 분해가 미흡하여 초기상태와 비슷한 델타-페라이트 함량을 유지하기 때문에 Cr+Mo+1.5×Si의 합이 22이상의 강은 본 발명에 따라 처리한다. 도 1은 아래 표 2에 제시된 강종을 1250℃에서 가열했을때 재로시간에 따른 잔류 델타-페라이트량을 조사한 것으로, 상기 Cr+Mo+1.5×Si의 영향을 잘 보여주고 있다.Cr, Mo, and Si are ferrite stabilizing elements. If the content of these components is high, the decomposition of delta-ferrite is insufficient even after heating, and the delta-ferrite content similar to the initial state is maintained, so the sum of Cr + Mo + 1.5 × Si is 22 or more. Steel is treated according to the invention. Figure 1 shows the residual delta-ferrite amount according to the re-heating time when the steel grades shown in Table 2 below at 1250 ℃, showing the effect of the Cr + Mo + 1.5 × Si well.

구분division 슬라브 상태에서 실측한델타-페라이트 함량()Delta-ferrite content measured in slab state () Cr+Mo+1.5×SiCr + Mo + 1.5 × Si CC CrCr NiNi SiSi STS304STS304 0.050.05 18.318.3 8.38.3 0.50.5 77 STS XM151J1STS XM151J1 0.050.05 19.419.4 13.313.3 3.43.4 6.7(13.3)6.7 (13.3) 24.624.6 309S309S 0.060.06 22.222.2 13.513.5 0.50.5 9.3(8.9)9.3 (8.9) 23.323.3 ()는 크루프식으로 계산된 델타-페라이트의 함량() Is the content of delta-ferrite calculated by the Krupp formula.

도 1에서 알 수 있듯이, STS304강종의 경우에는 재로시간이 길어짐에 따라 큰 폭으로 델타-페라이트가 감소하고 있으나, Cr+Mo+1.5×Si의 합이 22이상인 STSXM15J1, STS309S강종의 경우은 델타-페라이트의 감소폭이 상대적으로 적어 짐을 알 수 있다.As can be seen in Figure 1, in the case of STS304 steel delta-ferrite is greatly reduced as the length of time is longer, but in the case of STSXM15J1, STS309S steel that the sum of Cr + Mo + 1.5 × Si is 22 or more delta-ferrite It can be seen that the decrease of R is relatively small.

따라서, 본 발명에서는 크루프식으로 계산된 델타-페라이트의 함량이 8이상이면서 Cr+Mo+1.5×Si의 합이 22이상의 경우를 본 발명의 대상강종으로 한다.Therefore, in the present invention, the case where the content of delta-ferrite calculated by the Krupp formula is 8 or more and the sum of Cr + Mo + 1.5 × Si is 22 or more is used as the target steel grade of the present invention.

본 발명에서는 상기와 같은 조건의 오스테나이트 스테인레스강을 열간압연하기전에 열처리한 다음, 동일한 조건으로 열처리하고 통상의 방법으로 열간압연을 한다. 주조상태에서는 델타-페라이트와 오스테나이트 상간에 성분농도의 구배가 크기 때문에 열처리시 초기에는 도 1과 같이 델타-페라이트의 분해속도가 매우 빠르게 된다. 따라서, 델타-페라이트의 분해를 촉진하기 위해서는 주조후 바로 열처리하는 것이 매우 효과적이며, 이를 통해 전처리의 시간을 크게 단축할 수 있다.In the present invention, the austenitic stainless steel having the above conditions is heat-treated before hot rolling, and then heat-treated under the same conditions and hot-rolled in a conventional manner. In the casting state, since the gradient of the component concentration is large between the delta-ferrite and austenite phase, the decomposition rate of the delta-ferrite is very fast as shown in FIG. Therefore, in order to accelerate the decomposition of the delta-ferrite, it is very effective to heat treatment immediately after casting, thereby greatly reducing the time for pretreatment.

열처리의 온도는 슬라브 가열시 슬라브내 델타-페라이트의 분해, 편석해소, 숙열 및 최종압연온도를 고려하여 결정되어야 한다. 각 열간압연의 설비특성에 따라 가열하는 온도가 상이하겠으나, 가열에 의한 델타-페라이트의 분해를 위해서는 1150∼1250℃로 가열하는 것이 적당하다. 가열온도가 1250℃ 보다 높으면 상태도상에서 델타-페라이트 안정구역이므로 오히려 델타-페라이트량이 증가하게 되며, 가열온도가 1150℃미만으로 낮으면 상태도상으로는 오스테나이트 안정구역이나 온도가 낮아 델타-페라이트의 분해속도가 늦어 적당하지 않다. 도 2는 STS304강종을 가열온도별 210분간 가열할때 강중 델타-페라이트의 량을 나타낸 것이다. 도 2에서 보듯이, 가열온도가 1150℃미만으로 과도하게 낮거나 1300℃이상으로 과도하게 높으면 분해가 미흡하고, 특히 1300℃이상에서는 오히려 증가함을 알 수 있다.The temperature of the heat treatment should be determined taking into account the decomposition of delta-ferrite in the slab, segregation, aging and final rolling temperature during slab heating. The temperature to be heated may be different depending on the equipment characteristics of each hot rolling, but heating to 1150 to 1250 ° C. is appropriate for decomposition of delta-ferrite by heating. If the heating temperature is higher than 1250 ℃, the amount of delta-ferrite is increased because of the delta-ferrite stable zone in the state diagram. If the heating temperature is lower than 1150 ℃, the decomposition rate of delta-ferrite is low due to the austenite stable zone or temperature in the state diagram. It is not suitable late. Figure 2 shows the amount of delta-ferrite in the steel when heated STS304 steel 210 minutes by heating temperature. As shown in Figure 2, if the heating temperature is excessively low or less than 1150 ℃ excessively high or more than 1300 ℃ insufficient decomposition, in particular it can be seen that the increase rather than 1300 ℃.

가열시간은 길게할수록 델타-페라이트의 분해에는 유리하나, 가열시간이 길어지면 슬라브표면의 입계산화가 심하게 되어 산화요인의 결함이 발생되기 쉬우며 또 델타-페라이트의 분해속도도 가열초기에는 빠르나 시간이 길어짐에 따라 분해속도가 늦어진다. 이를 고려할때 가열시간의 상한은 슬라브두께×1.8이다. 또, 가열시간은 슬라브두께×0.7분이상은 가열하여야 열간압연을 위한 최소한의 균열온도를 확보할 수 있다. 도 2에는 가열시간과 가열온도에 따른 승온곡선이 참고로 도시되어 있다.The longer the heating time is, the more favorable for the decomposition of delta-ferrite, but the longer the heating time, the more severe grain boundary oxidation of the slab surface is likely to cause oxidative defects. As it gets longer, the decomposition rate becomes slower. Considering this, the upper limit of the heating time is slab thickness x 1.8. In addition, heating time should be heated more than slab thickness × 0.7 minutes to ensure minimum cracking temperature for hot rolling. 2 shows a heating curve according to heating time and heating temperature for reference.

상기와 같이 가열한 다음, 5∼50의 압하율로 열간압연하고 다시 동일한 조건으로 가열하는데, 그 이유는 다음과 같다.After heating as above, hot rolling at a reduction ratio of 5 to 50 and heating under the same conditions again, are as follows.

슬라브를 가열로에 장입하여 가열시 슬라브내 델타-페라이트의 분해가 이루어진다. 델타-페라이트는 상태도상 오스테나이트 안정구역에서 가능한 가열온도가 높을수록(약 1250℃부근), 가열시간이 길수록 델타-페라이트의 분해가 잘 이루어진다. 그러나, 가열시간이 길어진다고 해서 델타-페라이트가 무한정으로 계속 분해되는 것은 아니다. 가열초기에는 델타-페라이트가 급격히 분해되나, 시간이 경과함에 따라 분해속도가 느려져 나중에는 거의 분해가 일어나지 않는다(도 1). 도 1에서 보듯이, 재로시간이 약 200분을 넘으면 강종에 관계없이 재로시간이 길어지더라도 델타-페라이트의 분해는 거의 일어나지 않고 있다. 이 상태에서 슬라브를 냉각한 다음 다시 가열해도 분해속도는 거의 증가하지 않는다. 따라서, 추가적인 델타-페라이트의 분해를 위해서는 델타-페라이트 분해를 위한 구동력이 필요한데, 그 방법으로 압연이 가장 효과적이다. 슬라브를 압연하면 조직이 연신되고 델타-페라이트 및 오스테나이트 계면이 변하여 재가열시 델타-페라이트의 분해가 다시 촉진된다.The slab is charged into a furnace to decompose the delta-ferrite in the slab upon heating. Delta-ferrite has a higher decomposition temperature (approximately 1250 ° C) in the austenite stable zone in the state diagram, and the longer the heating time, the better the decomposition of delta-ferrite. However, the longer heating time does not mean that delta-ferrite continues to decompose indefinitely. In the initial stage of heating, delta-ferrite is rapidly decomposed, but as time passes, the decomposition rate is slowed down, so that little decomposition occurs later (FIG. 1). As shown in FIG. 1, when the rework time exceeds about 200 minutes, the decomposition of the delta-ferrite hardly occurs even if the rework time is longer regardless of the steel type. In this state, even if the slab is cooled and then heated again, the decomposition rate hardly increases. Therefore, the driving force for delta-ferrite decomposition is required for the further delta-ferrite decomposition, in which rolling is most effective. Rolling the slab stretches the tissue and changes the delta-ferrite and austenite interface, which in turn promotes the decomposition of delta-ferrite again upon reheating.

아래 표 3은 델타-페라이트를 8.7함유한 STS309S강종을 가열-압연-재가열할 때 중간압연 압하율의 변화에 따른 델타-페라이트의 분해속도를 나타낸 것이다.Table 3 below shows the decomposition rate of delta-ferrite according to the change of the intermediate rolling reduction rate when heating-rolling-reheating STS309S steel containing delta-ferrite 8.7.

강종Steel grade 주조후 델타-페라이트의 양The amount of delta-ferrite after casting 슬라브 두께(mm)Slab thickness (mm) 1차열처리 조건Primary heat treatment condition 중간압연의 압하율()Rolling rate of intermediate rolling 2차열처리조건Secondary heat treatment condition 냉각조건Cooling condition 압연후 델타페라이트의 양()Amount of delta ferrite after rolling () 309S309S 8.78.7 200200 1250℃×10분1250 ℃ × 10 minutes 4(192mm)4 (192 mm) 1255℃×191분1255 ℃ × 191 minutes 수냉Water cooling 4.14.1 8(184mm)8 (184 mm) 3.53.5 14(172mm)14 (172 mm) 2.32.3 ()는 중간압연후의 슬라브 두께() Is the slab thickness after intermediate rolling

표 3에서 확인할 수 있듯이, 가열-압연후 재가열시 델타-페라이트의 분해속도가 증가됨을 알 수 있다.As can be seen in Table 3, it can be seen that the decomposition rate of delta-ferrite increases when reheating after heating-rolling.

이와 같이 가열하고 열간압연한 다음 재가열하는 것이 델타-페라이트의 분해에 효과적인데, 이때의 열간압연은 5∼50의 압하율로 행한다. 압하율이 높을수록 델타-페라이트의 분해속도가 증가되므로 최소한 압하율은 5이상은 되어야 하나 압하율이 50보다 높아지면 델타-페라이트, 오스테나이트의 계면에서 균열이 시발되므로 무한정으로 압하량을 높일수 없다.This heating, hot rolling and then reheating are effective for the decomposition of the delta-ferrite, wherein the hot rolling is carried out at a reduction ratio of 5 to 50. As the reduction ratio increases, the decomposition rate of delta-ferrite increases, so the reduction ratio should be at least 5, but if the reduction ratio is higher than 50, cracks start at the interface of delta-ferrite and austenite, and thus the reduction ratio cannot be increased indefinitely. .

본 발명에서는 가열-열간압연-가열-통상의 방법으로 열간압연하는 공정으로 이루어지는데, 이들 공정은 통상의 열간압연설비에서 다음과 같이 행할 수 있다. 슬라브를 본 발명에 따라 가열하고 열간압연설비의 조압연기에서 5∼50의 압하율로 열간압연한 다음, 이를 냉각하고 다시 가열하여 열간압연설비의 조압연기와 사상압연기에서 소정의 두께로 열간압연하는 것이다.In this invention, it consists of the process of hot-rolling by a heating-hot rolling-heating-normal method, These processes can be performed as follows in a normal hot rolling facility. The slab is heated in accordance with the present invention and hot rolled at a rolling reduction ratio of 5 to 50 in the rough rolling mill of the hot rolling mill, and then cooled and heated again to hot roll the slab to a predetermined thickness in the rough rolling mill and the finishing mill of the hot rolling mill. will be.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

식1로 계산된 델타페라이트량이 8.9이고, Cr+Mo+1.5×Si가 23.3인 STS309S 강종의 두께 200mm의 슬라브를 대상으로 종래의 열간압연방법과 본 발명의 열간압연 방법에 따른 표면품질상태를 알아보았다.The surface quality state according to the conventional hot rolling method and the hot rolling method of the present invention is investigated for slabs having a thickness of 8.9 mm and a thickness of 200 mm of STS309S steel whose Cr + Mo + 1.5 × Si is 23.3. saw.

(종래방법)Conventional Method

상기 슬라브를 1250℃의 균열온도로 229분 가열후에 두께 4mm의 열연판으로 압연하였다.The slab was heated to a hot rolled sheet having a thickness of 4 mm after heating for 229 minutes at a cracking temperature of 1250 ° C.

(본 발명의 방법)(Method of the present invention)

상기 슬라브를 1255℃의 균열온도에서 209분 동안 1차 가열한 후 2단계에 걸쳐 14(슬라브 두께 200→172)로 압연하고 공냉한 다음, 이 슬라브를 다시 장입하여 1259℃에서 204분동안 2차 가열한 후 4mm의 열연판으로 압연하였다.The slab was first heated at a cracking temperature of 1255 ° C. for 209 minutes, then rolled to 14 (slab thickness 200 → 172) in two steps and air cooled, then reloaded and re- charged at 1259 ° C. for 204 minutes. After heating, it was rolled into a 4 mm hot rolled sheet.

구분division 델타페라이트량Delta Ferrite Amount 압연전전처리조건Pretreatment Condition Before Rolling 가열로조건(균열온도×재로시간)Furnace Condition (Cracking Temperature × Ashing Time) 열간압연 결과Hot rolling result 제품화여부Product Availability 종래예Conventional example 8.98.9 미실시Not carried 1250℃×229분1250 ° C × 229 minutes 코일사이드부에 에지크랙 10mm 발생, 코일표면에 50∼100mm 수준의 균열결함발생10mm edge crack occurs at the coil side and 50-100mm crack defects occur at the coil surface. 불가Impossible 발명예Inventive Example 1차균열:1255℃×209분중간압연 압연율:14(200→172mm)Primary crack: 1255 ° C × 209 minutes Middle rolling ratio: 14 (200 → 172mm) 1259℃×204분1259 ° C × 204 minutes 에지크랙 및 표면 균열결함 발생무No edge cracks or surface crack defects 가능possible

표 4에서 알 수 있듯이, 종래예는 열연판으로 압연할 때, 코일 양 모서리부에 에지크랙이 약 10mm깊이로 발생되었으며, 표면에도 전장, 전폭에 50∼100mm 크기의 표면 균열성 결함이 심하게 발생되어 제품화가 불가능하였다. 그런데, 본 발명의 경우에는 표면균열성 결함의 발생없이 양호한 품질의 열연코일을 얻을 수 있었다.As can be seen from Table 4, when the conventional example is rolled with a hot-rolled sheet, edge cracks are generated at about 10 mm deep at both corners of the coil, and surface cracking defects of 50 to 100 mm in length and width are also severely generated on the surface. It was not possible to commercialize. By the way, in the case of the present invention it was possible to obtain a hot rolled coil of good quality without the occurrence of surface cracking defects.

[실시예 2]Example 2

식1로 계산된 델타페라이트량이 13.3이고, Cr+Mo+1.5×Si가 24.6인 STSXM15J1 강종(19.4Cr-13.3Ni-3.4Si)의 두께 200mm의 슬라브를 대상으로 종래의 열간압연방법과 본 발명의 열간압연 방법에 따른 표면품질상태를 알아보았다.The conventional hot rolling method and the present invention of a slab having a thickness of 200 mm of STSXM15J1 steel grade (19.4Cr-13.3Ni-3.4Si) having a delta ferrite amount of 13.3 and Cr + Mo + 1.5 × Si is 24.6 The surface quality condition of hot rolling was investigated.

(종래방법)Conventional Method

상기 슬라브를 1249℃의 균열온도로 197분 가열후에 두께 4mm의 열연판으로 압연하였다.The slabs were rolled into a hot rolled sheet having a thickness of 4 mm after 197 minutes of heating at a crack temperature of 1249 ° C.

(본 발명의 방법)(Method of the present invention)

상기 슬라브를 1251℃의 균열온도에서 188분 동안 1차 가열한 후 2단계에 걸쳐 15(슬라브 두께 200→170mm)로 압연하고 공냉한 다음, 이 슬라브를 가열로에 다시 장입하여 1250℃에서 219분동안 2차 가열한 후 4mm의 열연판으로 압연하였다.The slab was first heated at a cracking temperature of 1251 ° C. for 188 minutes, then rolled to 15 (slab thickness 200 → 170 mm) in two steps, air-cooled, and then re-loaded into the heating furnace for 219 minutes at 1250 ° C. After the secondary heating for 4 mm hot rolled plate was rolled.

구분division 델타페라이트량Delta Ferrite Amount 압연전전처리조건Pretreatment Condition Before Rolling 가열로조건(균열온도×재로시간)Furnace Condition (Cracking Temperature × Ashing Time) 열간압연 결과Hot rolling result 제품화여부Product Availability 종래예Conventional example 13.313.3 미실시Not carried 1249℃×197분1249 ℃ × 197 minutes 코일사이드 200mm이내에 심한 균열결함 발생(에지크랙은 발생무)Severe crack defect occurs within 200mm of coil side (no edge crack) 불가Impossible 발명예Inventive Example 1차균열:1251℃×188분중간압연 압연율:15(200→170mm)1st crack: 1251 ℃ × 188 minutes Intermediate rolling rolling rate: 15 (200 → 170mm) 1250℃×219분1250 ° C × 219 minutes 에지크랙 및 표면 균열결함 발생무No edge cracks or surface crack defects 가능possible

상술한 바와 같이, 본 발명은 1차가열-중간압연-2차가열-압연의 방법으로 델타페라이트 분해후 압연함으로서 조업부하는 거의 없으면서 에지크랙 및 표면균열성 결함 발생없이 양호한 표면품질의 열연코일을 얻을 수 있다. 따라서, 본 발명을 통하여 델타-페라이트 하량이 높으면서 페라이트 안정화원소의 함량이 높은 강종의 실수율을 5높였으며, 코일 그라인딩 처리 실수율을 100에서 5이하로 개선하는 유용한 효과가 있다.As described above, the present invention provides a hot rolled coil having a good surface quality with little cracking and edge crack and surface cracking defects by almost no operation load by rolling after delta ferrite decomposition by primary heating-medium rolling-secondary heating-rolling. You can get it. Therefore, through the present invention, the delta-ferrite loading is high while increasing the real error rate of the steel species having a high content of ferrite stabilizing elements, and has a useful effect of improving the coil grinding treatment error rate from 100 to 5 or less.

Claims (1)

델타 페라이트 함량이 8이상이고, 강성분중 Cr+Mo+1.5×Si의 합이 22이상인 오스테나이트계 스테인레스강 슬라브를 1150∼1250℃에서 0.7분×슬라브 두께∼1.8분×슬라브두께의 시간동안 가열하고 5∼50의 압하율로 열간압연다음, 다시 상기 조건으로 가열하여 통상의 방법으로 열간압연하는 것을 특징으로 하는 고델타-페라이트 함유 오스테나이트계 스테인레스강 열연코일의 균열결함 방지방법.An austenitic stainless steel slab having a delta ferrite content of 8 or more and a sum of Cr + Mo + 1.5 x Si of 22 or more is heated at 1150 to 1250 ° C for 0.7 minutes x slab thickness to 1.8 minutes x slab thickness. And hot rolling at a reduction ratio of 5 to 50, followed by heating under the above conditions and hot rolling in a conventional manner. 2. A method of preventing crack defects in a high delta-ferrite-containing austenitic stainless steel hot rolled coil.
KR1019990052020A 1999-11-23 1999-11-23 Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite KR20010047690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990052020A KR20010047690A (en) 1999-11-23 1999-11-23 Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990052020A KR20010047690A (en) 1999-11-23 1999-11-23 Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite

Publications (1)

Publication Number Publication Date
KR20010047690A true KR20010047690A (en) 2001-06-15

Family

ID=19621271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990052020A KR20010047690A (en) 1999-11-23 1999-11-23 Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite

Country Status (1)

Country Link
KR (1) KR20010047690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562643B1 (en) * 2001-12-19 2006-03-20 주식회사 포스코 method of manufacturing an austenitic stainless plate reducing delta ferrite through controlled rolling
KR20180074322A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenite stainless steel excellent in corrosion resistance and hot workability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935620A (en) * 1982-08-24 1984-02-27 Kawasaki Steel Corp Method for preventing cracking of hot coil of austenitic stainless steel having two-phase structure
JPS59190320A (en) * 1983-04-14 1984-10-29 Kawasaki Steel Corp Manufacture of austenitic stainless steel strip containing large amount of delta-ferrite phase
JPH1017927A (en) * 1996-07-03 1998-01-20 Daido Steel Co Ltd Production of containing delta-ferrite-austenitic stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935620A (en) * 1982-08-24 1984-02-27 Kawasaki Steel Corp Method for preventing cracking of hot coil of austenitic stainless steel having two-phase structure
JPS59190320A (en) * 1983-04-14 1984-10-29 Kawasaki Steel Corp Manufacture of austenitic stainless steel strip containing large amount of delta-ferrite phase
JPH1017927A (en) * 1996-07-03 1998-01-20 Daido Steel Co Ltd Production of containing delta-ferrite-austenitic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562643B1 (en) * 2001-12-19 2006-03-20 주식회사 포스코 method of manufacturing an austenitic stainless plate reducing delta ferrite through controlled rolling
KR20180074322A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenite stainless steel excellent in corrosion resistance and hot workability

Similar Documents

Publication Publication Date Title
EP0320820B1 (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
EP0723026B1 (en) Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil
JPS63219524A (en) Manufacture of silicon iron sheet excellent in soft-magnetic property
JPH0583610B2 (en)
KR20010047690A (en) Method for preventing crack from occuring on hot rolled coil of austenitic stainless steel with high delta-ferrite
JPH05140648A (en) Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss
JP4665417B2 (en) Method for producing grain-oriented electrical steel sheet
JP2804381B2 (en) Method for producing grain-oriented silicon steel sheet having uniform longitudinal magnetic properties
KR100361617B1 (en) Hot rolling method of austenitic-ferritic two-phase stainless steel
JPH09143562A (en) Production of aluminum-containing grain oriented silicon steel sheet excellent in magnetic property and shape of steel sheet end
JPS63162818A (en) Manufacture of ferritic stainless steel sheet extremely excellent in press formability
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3796209B2 (en) Hot rolling method for austenitic stainless steel pieces
JPS6119688B2 (en)
KR20020040438A (en) Manufacturing of low nickel containing stainless steel 304L plate
JPH09184013A (en) Production of hot rolled molybdenum-containing austenitic stainless steel plate excellent in nitric acid corrosion resistance
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPS62278227A (en) Manufacture of silicon steel plate
JP2858310B2 (en) Hot rolling method of low carbon martensitic stainless steel
JPH0369967B2 (en)
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4239276B2 (en) Directional electromagnetic steel hot rolled steel sheet manufacturing method
JP2724080B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties and surface properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application