KR20010039201A - Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System - Google Patents

Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System Download PDF

Info

Publication number
KR20010039201A
KR20010039201A KR1019990047498A KR19990047498A KR20010039201A KR 20010039201 A KR20010039201 A KR 20010039201A KR 1019990047498 A KR1019990047498 A KR 1019990047498A KR 19990047498 A KR19990047498 A KR 19990047498A KR 20010039201 A KR20010039201 A KR 20010039201A
Authority
KR
South Korea
Prior art keywords
shield
lead
low level
gamma
radiation
Prior art date
Application number
KR1019990047498A
Other languages
Korean (ko)
Other versions
KR100395886B1 (en
Inventor
박종묵
김태욱
류창수
Original Assignee
이종훈
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사 filed Critical 이종훈
Priority to KR10-1999-0047498A priority Critical patent/KR100395886B1/en
Publication of KR20010039201A publication Critical patent/KR20010039201A/en
Application granted granted Critical
Publication of KR100395886B1 publication Critical patent/KR100395886B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/02Measuring neutron radiation by shielding other radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • G21F1/085Heavy metals or alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE: A radiation shield apparatus and a shield method for a gamma nuclide analyzer are provided to shield from the external neutron and to improve the shield performance by substituting the lead for the low-level lead. CONSTITUTION: The radiation shield apparatus for a gamma nuclide analyzer comprises two external radiation shield bodies(14,15) for shielding from the external neutron, a supporter(20) for supporting the shield bodies, an opening and closing device(17,18) for opening or closing the shield body, a crane(21) for inserting the gamma nuclide analyzer into the radiation shield apparatus.

Description

감마핵종분석기의 방사선 차폐체 및 차폐방법{Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System}Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System

본 발명은 방사성시료의 감마선을 측정하여 핵종과 방사능을 판별하는 감마핵종분석기의 성능을 향상시키기 위한 차폐체 및 차폐방법에 관한 것이다. 보다 상세하게는 감마핵종분석기에 영향을 주는 외부 방사선의 차폐를 위하여 중성자 감속물질과 흡수물질로 이루어진 중성자차폐체와 환경감마선을 차폐에 사용되는 저준위 납의 일부를 일반 납으로 대체할 수 있는 방법을 개발하였다.The present invention relates to a shield and a shielding method for improving the performance of the gamma nuclide analyzer for measuring the gamma rays of radioactive samples to determine the nuclide and radioactivity. More specifically, in order to shield external radiation affecting the gamma nuclide analyzer, we have developed a method that can replace neutron shielding body consisting of neutron decelerating material and absorbing material and a part of low-level lead used for shielding with ordinary lead. .

종래의 감마핵종분석기의 성능을 향상시키기 위하여 외부 방사선을 차폐하는 차폐체 및 차폐방법으로는 R.J.Arthur 등의(IEEE Transactions on Neclear Scie nce, vol 35, No.1, , 1988)과 Modane 지하 연구소에서 행한 연구(NuclearInstrume nts and Methods in Physics Research A 339, 1994, 309-317)가 있으나 이들은 차폐체에서 발생되는 방사능을 낮추기 위하여 저준위 납을 사용하는 기술과 감마핵종분석기를 지하에 설치하여 자연지형으로 우주선을 차폐하는 내용으로 본 발명과는 기술적 구성이 다르다.Shielding methods and shielding methods for shielding external radiation to improve the performance of conventional gamma nuclide analyzers were conducted by RJArthur et al. (IEEE Transactions on Neclear Science, vol 35, No. 1,, 1988) and the Modane Underground Laboratory. Although there are studies (Nuclear Instruments and Methods in Physics Research A 339, 1994, 309-317), they use a low-level lead and a gamma nuclide to underground the shield to reduce radioactivity generated by the shield. The technical configuration differs from the present invention in that it is described.

본 발명은 감마핵종분석기의 영향을 주는 외부 중성자를 차폐하고, 저준위 납의 일부를 일반 납으로 대체하여 전체를 저준위 납으로 제작한 것과 동일한 효과를 얻는데 목적이 있다.An object of the present invention is to shield external neutrons affecting the gamma nuclide analyzer, and to obtain the same effect as the whole of low level lead by replacing a part of low level lead with general lead.

도 1은 차폐체 배열을 나타내는 개략도1 is a schematic diagram illustrating a shield arrangement

도 2는 차폐체의 개폐 및 작동 설명을 나타내는 개략도2 is a schematic diagram showing an opening and closing operation of the shield

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1: 폴리에틸렌 2: B4C 3: 일반 철1: polyethylene 2: B 4 C 3: common iron

4: 일반 납 5: 저준위 철 6: 플라스틱 검출기4: ordinary lead 5: low-level iron 6: plastic detector

7: 저준위 철 8: 저준위 납 9: 저준위 구리7: low level iron 8: low level lead 9: low level copper

10: 측정공간 11: HPGe 검출기 12: 냉각봉10: measuring space 11: HPGe detector 12: cooling rod

13: 구멍 14: 이동 차폐체 15: 고정 차폐체13: hole 14: moving shield 15: fixed shield

16: 방사선측정기 17: 차폐체 지지판 18: LM 가이드16: radiometer 17: shield support plate 18: LM guide

19: 액체질소통 20: 차폐체 지지대 21: 기중기19: liquid nitrogen communication 20: shield support 21: crane

본 발명의 감마핵종분석기의 방사선 차폐체는 외부방사선 차폐체(14,15)와 차폐체 지지대(20), 차폐체를 열고 닫을 수 있게 하는 개폐장치(17, 18), 방사선측정기를 차폐체 내로 집어넣을 때 사용하는 기중기(21)로 구성된다.The radiation shield of the gamma nucleus analyzer of the present invention is an external radiation shield (14, 15) and the shield support (20), opening and closing devices (17, 18) for opening and closing the shield, used to insert the radiometer into the shield It is comprised with the crane 21.

도 2의 외부방사선차폐체(14)가 닫혀져 외부방사선차폐체(15)와 합쳐지면 방사선측정기는 도1과 같이 차폐체(1∼9)로 둘러 쌓이게 된다.When the external radiation shield 14 of FIG. 2 is closed and combined with the external radiation shield 15, the radiometer is surrounded by the shields 1 to 9 as shown in FIG.

차폐체(14,15)로 입사된 외부방사선은 먼저 폴리에틸렌(1)과 충돌하며, 이때 외부 방사선 중 중성자는 에너지를 잃고 열중성자가 된다. 폴리에틸렌(1)의 두께는 MNCP4b 코드를 이용하여 계산하여 열중성자가 최대로 생성되는 시점인 10cm 정도로 하였다. 폴리에틸렌(1)을 투과한 방사선은 그 다음 B4C(2)와 충돌하며 이 때 열중성자가 흡수된다. B4C(2)는10B가 20%정도 함유되어 있는 분말형태의 B4C를 용제인 불포화폴리에스터와 30w% : 70w%의 비율로 섞어 2mm 두께로 제작하였다. MNCP4b 코드를 이용하여 1.5mm의 두께로 보수적으로 계산한 결과 열중성자가 95.5% 흡수되었으며,252Cf 중성자 선원과3He 검출기를 이용하여 실험한 결과 열중성자가 94% 흡수되었다.External radiation incident on the shields 14 and 15 first collides with the polyethylene 1, where neutrons in the external radiation lose energy and become thermal neutrons. The thickness of the polyethylene (1) was calculated by using the MNCP4b code was about 10cm, which is the point at which the thermal neutron is the maximum generation. The radiation transmitted through the polyethylene 1 then collides with B 4 C (2), at which time the thermal neutrons are absorbed. B 4 C (2) was prepared by mixing B 4 C in powder form containing about 20% of 10B with unsaturated polyester as a solvent in a ratio of 30w%: 70w% to a thickness of 2mm. The conservative calculation of 1.5mm thickness using MNCP4b code resulted in 95.5% absorption of thermal neutrons, and 94% absorption of thermal neutrons with 252 Cf neutron source and 3 He detector.

B4C(2)를 투과한 방사성은 일반 철(3), 일반 납(4), 저준위 철(5), 플라스틱검출기(6), 저준위 철(7), 저준위 납(8), 저준위 구리(9)를 거쳐 측정공간(10)으로 들어간다. 방사선이 일반 납(4) 및 저준위 납(8)과 충돌하면 많은 양의 방사선이 감소된다. 저준위 납(8)을 일반 납으로 대체하면 일반 납에서 발생되는 방사선으로 인하여 측정공간의 백그라운드가 높아지고, 반대로 일반 납(4)을 저준위 납으로 대체하면 제작단가가 높아진다. 전체 납(4,8)의 두께가 작으면 방사선차폐효과가 크면 도리어 우주선과의 작용으로 백그라운드가 증가하기 때문에 최적 두께는 15cm로 알려져 있다. MNCP4b 코드를 이용하여 일반 납(4)과 저준위 납(8)의 두께를 변화시키며 계산한 결과 방사능이 350Bq/kg인 일반 납을 11cm 두께로 사용하고 방사능이 10Bq/kg인 저준위 납(8)을 4cm 두께로 사용하면 전체를 모두 저준위 납을 사용한 것과 같은 수준의 측정공간 백그라운드가 나타나는 것으로 밝혀졌다. 본 차폐체에서는 보수적으로 방사능이 100-500Bq/kg의 일반 납을 10cm 두께로 사용하고 저준위 납(8)을 5cm 두께로 사용하였다. 또한 차폐체를 지탱하기 위한 구조물인 철을 방사능이 1.8Bq/kg 이하의 저준위 철(5,7)을 사용하여 측정공간의 백그라운드가 높아지지 않도록 하였고, 최종적으로 저준위 납(8)에서 발생되는 X선을 차폐하기 위하여 방사능 10Bq/kg 이하의 저준위 구리(9)를 사용하였다. 이렇게 제작한 차폐체의 백그라운드를 측정한 결과 방사능이 50Bq/kg인 중준위 납을 사용한 상용 시스템에 비하여 백그라운드가 1/10정도 낮게 나타났다.B 4 C (2) is radioactive through ordinary iron (3), ordinary lead (4), low-level iron (5), plastic detector (6), low-level iron (7), low-level lead (8), low-level copper ( 9) enters the measurement space (10). When radiation collides with ordinary lead (4) and low level lead (8), a large amount of radiation is reduced. Replacing low-level lead (8) with ordinary lead increases the background of the measurement space due to radiation generated from ordinary lead, and conversely, replacing lead (4) with low-level lead increases manufacturing costs. If the total thickness of lead (4, 8) is small, the radiation shielding effect is large, the background is increased due to the interaction with the spacecraft, the optimum thickness is known as 15cm. The MNCP4b code was used to vary the thicknesses of ordinary lead (4) and low-level lead (8), and the result was calculated by using 11 cm thick normal lead with 350 Bq / kg of radiation and low level lead (8) with 10 Bq / kg of radioactivity. Using a 4 cm thickness revealed the same measurement space background as the entire low level lead. In this shield, conservatively, 100-500 Bq / kg normal lead was used as 10 cm thick and low-level lead (8) was used as 5 cm thick. In addition, the low-level iron (5,7) of less than 1.8Bq / kg of radioactivity is used for the iron, which is a structure for supporting the shield, so that the background of the measurement space is not increased. In order to shield the low level copper (9) having a radioactivity of 10 Bq / kg or less was used. As a result of measuring the background of the shield, the background was about 1/10 lower than that of the commercial system using medium level lead with 50Bq / kg of radioactivity.

본 발명은 종래의 감마핵종분석기를 외부방사선으로부터 차폐하기 위한 방사선 차폐체 및 차폐방법을 이용하여 차폐체 내로 입사되는 감마핵종분석기에 영향을 미치는 중성자를 차폐할 수 있고, 적은 양의 저준위 납을 이용하여 전체를 저준위 납으로 제작한 것과 동일한 효과를 얻을 수 있다.The present invention can shield the neutrons affecting the gamma nucleus analyzer incident into the shield by using a radiation shield and a shielding method for shielding the conventional gamma nuclide analyzer from external radiation, and using a small amount of low-level lead The same effect as that produced with low level lead can be obtained.

Claims (3)

우주선의 중성자가 차폐장치(14,15)를 통과하여 방사선측정기(16)에 직접 영향을 주거나 또는 우주선의 중성자가 차폐장치의 구성물질과 상호작용하여 생성된 방사선이 방사선측정기에 미치는 영향을 방지함에 있어서, 차폐장치(14,15)에 폴리에틸렌(1)과 B4C(2)를 설치하여 중성자를 차폐하는 것을 특징으로 하는 감마핵종분석기의 방사선 차폐체.To prevent the spacecraft's neutrons from passing through the shields 14 and 15 directly to the radiometer 16, or the radiation generated by the spacecraft's neutrons interacting with the shield's components. The radiation shield of the gamma nuclide analyzer, characterized in that the shielding device (14, 15) is provided with polyethylene (1) and B 4 C (2) to shield the neutrons. 일반 납(4)과 저준위 납(8)을 4cm와 11cm의 판 형태로 덧붙여 저준위 납판을 15cm 사용한 것과 동일한 백그라운드 저감효과를 얻는 것을 특징으로 하는 감마핵종분석기의 방사선 차폐방법.A radiation shielding method of a gamma nuclide analyzer characterized by adding a general lead (4) and a low level lead (8) in the form of plates of 4 cm and 11 cm to obtain the same background reduction effect as using a 15 cm low level lead plate. 제 2항에 있어서, 일반 납(4)의 방사능은 10 Bq/kg인 것과 저준위 납(8)의 방사능은 328Bq/kg을 사용하는 것을 특징으로 하는 감마핵종분석기의 방사선 차폐방법.The radiation shielding method of a gamma nuclide analyzer according to claim 2, wherein the radioactivity of the general lead (4) is 10 Bq / kg and the radioactivity of the low level lead (8) is 328 Bq / kg.
KR10-1999-0047498A 1999-10-29 1999-10-29 Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System KR100395886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047498A KR100395886B1 (en) 1999-10-29 1999-10-29 Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047498A KR100395886B1 (en) 1999-10-29 1999-10-29 Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System

Publications (2)

Publication Number Publication Date
KR20010039201A true KR20010039201A (en) 2001-05-15
KR100395886B1 KR100395886B1 (en) 2003-08-27

Family

ID=19617636

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0047498A KR100395886B1 (en) 1999-10-29 1999-10-29 Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System

Country Status (1)

Country Link
KR (1) KR100395886B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676916B1 (en) * 2005-12-30 2007-02-01 주식회사 서린건축사사무소 Horizentally moving-type fire protecting plate
US9824783B2 (en) 2014-12-03 2017-11-21 Korea Institute Of Geoscience And Mineral Resources X-ray shielding apparatus and method
KR20220135550A (en) * 2021-03-30 2022-10-07 한국원자력연구원 Gamma ray measuring device and nondestructive inspection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195449B1 (en) 2010-06-24 2012-10-30 한국수력원자력 주식회사 A multipurpose and fusion gamma spectrometer system shielded background radiation in underground research tunnel
KR101247210B1 (en) 2011-04-29 2013-03-25 한양대학교 산학협력단 Cosmic-ray neutron detection apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930887A1 (en) * 1989-09-15 1991-03-28 Hoechst Ag NEUTRON ABSORBENT MATERIAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676916B1 (en) * 2005-12-30 2007-02-01 주식회사 서린건축사사무소 Horizentally moving-type fire protecting plate
US9824783B2 (en) 2014-12-03 2017-11-21 Korea Institute Of Geoscience And Mineral Resources X-ray shielding apparatus and method
KR20220135550A (en) * 2021-03-30 2022-10-07 한국원자력연구원 Gamma ray measuring device and nondestructive inspection system

Also Published As

Publication number Publication date
KR100395886B1 (en) 2003-08-27

Similar Documents

Publication Publication Date Title
Baudis Direct dark matter detection: The next decade
KR100395886B1 (en) Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System
Abe et al. The XMASS experiment
Muslim et al. Design and Creating a Specific Neutron Irradiation Instrument to Decrease the User’s Radiation Exposure Time
Wong et al. Scintillation crystal detector for low energy neutrino physics
Lombard et al. Fission-to-Indium Age in Water
Rosdi et al. Monte Carlo simulation for designing collimator of neutron diffractometer facility in Malaysia
Dorn et al. Issues in radioactivity for fusion energy: remote maintenance rating
Kiptily et al. Gamma-ray spectrometer for fusion plasma diagnostics
Li et al. A method of lowering the background in low-level radio-activity measurements
Mewaldt et al. Neutral particle background in cosmic ray telescopes composed of silicon solid state detectors.
Harris Jr et al. Fast-neutron spectra in water and graphite
Pancin et al. Piccolo Micromegas: First in-core measurements in a nuclear reactor
Kunow et al. The Kiel University experiment for measuring cosmic radiation between 1.0 and 0.3 AE/E 6
Zdanis et al. Exchange stripping effects in the reaction B11 (d, n) C4. 4312
Sekimoto et al. Fast neutron spectrum in water with a deuterium-tritium neutron source
Aprile The XENON program for dark matter direct detection
Ninkovic Dosimetry of the neutron fields from Bonner to WENDI; Dozimetrija neutronskih polja od Bonera do WENDI-a
Yamadera et al. Neutron and γ-Ray Dosimetry by Means of Solid State Track Detector (CR-39) and TLD
Ninkovic Dosimetry of the neutron fields from Bonner to WENDI
Kuznetsov et al. Experimental investigation of some space-energy characteristics of PF-4F-9M uran-beryllium assembly
Arnikar JOSHI EFFECT IN COUNTERS UNDER VISIBLE AND GAMMA RADIATION
Chung et al. Distribution of {sup 16} N and {sup 19} O in the reactor pool water of the THOR facility
GB882031A (en) Improvements relating to radiation shielding for nuclear equipment
Laubenstein Experimental techniques for low energy neutrino experiments

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E801 Decision on dismissal of amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070802

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee