KR20010039201A - Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System - Google Patents
Ultra-Low Level Shielder and Shielding Method of External Radiation for a Gamma-ray Spectroscopy System Download PDFInfo
- Publication number
- KR20010039201A KR20010039201A KR1019990047498A KR19990047498A KR20010039201A KR 20010039201 A KR20010039201 A KR 20010039201A KR 1019990047498 A KR1019990047498 A KR 1019990047498A KR 19990047498 A KR19990047498 A KR 19990047498A KR 20010039201 A KR20010039201 A KR 20010039201A
- Authority
- KR
- South Korea
- Prior art keywords
- shield
- lead
- low level
- gamma
- radiation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
- G01T3/02—Measuring neutron radiation by shielding other radiation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/08—Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
- G21F1/085—Heavy metals or alloys
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/10—Organic substances; Dispersions in organic carriers
Landscapes
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
본 발명은 방사성시료의 감마선을 측정하여 핵종과 방사능을 판별하는 감마핵종분석기의 성능을 향상시키기 위한 차폐체 및 차폐방법에 관한 것이다. 보다 상세하게는 감마핵종분석기에 영향을 주는 외부 방사선의 차폐를 위하여 중성자 감속물질과 흡수물질로 이루어진 중성자차폐체와 환경감마선을 차폐에 사용되는 저준위 납의 일부를 일반 납으로 대체할 수 있는 방법을 개발하였다.The present invention relates to a shield and a shielding method for improving the performance of the gamma nuclide analyzer for measuring the gamma rays of radioactive samples to determine the nuclide and radioactivity. More specifically, in order to shield external radiation affecting the gamma nuclide analyzer, we have developed a method that can replace neutron shielding body consisting of neutron decelerating material and absorbing material and a part of low-level lead used for shielding with ordinary lead. .
종래의 감마핵종분석기의 성능을 향상시키기 위하여 외부 방사선을 차폐하는 차폐체 및 차폐방법으로는 R.J.Arthur 등의(IEEE Transactions on Neclear Scie nce, vol 35, No.1, , 1988)과 Modane 지하 연구소에서 행한 연구(NuclearInstrume nts and Methods in Physics Research A 339, 1994, 309-317)가 있으나 이들은 차폐체에서 발생되는 방사능을 낮추기 위하여 저준위 납을 사용하는 기술과 감마핵종분석기를 지하에 설치하여 자연지형으로 우주선을 차폐하는 내용으로 본 발명과는 기술적 구성이 다르다.Shielding methods and shielding methods for shielding external radiation to improve the performance of conventional gamma nuclide analyzers were conducted by RJArthur et al. (IEEE Transactions on Neclear Science, vol 35, No. 1,, 1988) and the Modane Underground Laboratory. Although there are studies (Nuclear Instruments and Methods in Physics Research A 339, 1994, 309-317), they use a low-level lead and a gamma nuclide to underground the shield to reduce radioactivity generated by the shield. The technical configuration differs from the present invention in that it is described.
본 발명은 감마핵종분석기의 영향을 주는 외부 중성자를 차폐하고, 저준위 납의 일부를 일반 납으로 대체하여 전체를 저준위 납으로 제작한 것과 동일한 효과를 얻는데 목적이 있다.An object of the present invention is to shield external neutrons affecting the gamma nuclide analyzer, and to obtain the same effect as the whole of low level lead by replacing a part of low level lead with general lead.
도 1은 차폐체 배열을 나타내는 개략도1 is a schematic diagram illustrating a shield arrangement
도 2는 차폐체의 개폐 및 작동 설명을 나타내는 개략도2 is a schematic diagram showing an opening and closing operation of the shield
<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>
1: 폴리에틸렌 2: B4C 3: 일반 철1: polyethylene 2: B 4 C 3: common iron
4: 일반 납 5: 저준위 철 6: 플라스틱 검출기4: ordinary lead 5: low-level iron 6: plastic detector
7: 저준위 철 8: 저준위 납 9: 저준위 구리7: low level iron 8: low level lead 9: low level copper
10: 측정공간 11: HPGe 검출기 12: 냉각봉10: measuring space 11: HPGe detector 12: cooling rod
13: 구멍 14: 이동 차폐체 15: 고정 차폐체13: hole 14: moving shield 15: fixed shield
16: 방사선측정기 17: 차폐체 지지판 18: LM 가이드16: radiometer 17: shield support plate 18: LM guide
19: 액체질소통 20: 차폐체 지지대 21: 기중기19: liquid nitrogen communication 20: shield support 21: crane
본 발명의 감마핵종분석기의 방사선 차폐체는 외부방사선 차폐체(14,15)와 차폐체 지지대(20), 차폐체를 열고 닫을 수 있게 하는 개폐장치(17, 18), 방사선측정기를 차폐체 내로 집어넣을 때 사용하는 기중기(21)로 구성된다.The radiation shield of the gamma nucleus analyzer of the present invention is an external radiation shield (14, 15) and the shield support (20), opening and closing devices (17, 18) for opening and closing the shield, used to insert the radiometer into the shield It is comprised with the crane 21.
도 2의 외부방사선차폐체(14)가 닫혀져 외부방사선차폐체(15)와 합쳐지면 방사선측정기는 도1과 같이 차폐체(1∼9)로 둘러 쌓이게 된다.When the external radiation shield 14 of FIG. 2 is closed and combined with the external radiation shield 15, the radiometer is surrounded by the shields 1 to 9 as shown in FIG.
차폐체(14,15)로 입사된 외부방사선은 먼저 폴리에틸렌(1)과 충돌하며, 이때 외부 방사선 중 중성자는 에너지를 잃고 열중성자가 된다. 폴리에틸렌(1)의 두께는 MNCP4b 코드를 이용하여 계산하여 열중성자가 최대로 생성되는 시점인 10cm 정도로 하였다. 폴리에틸렌(1)을 투과한 방사선은 그 다음 B4C(2)와 충돌하며 이 때 열중성자가 흡수된다. B4C(2)는10B가 20%정도 함유되어 있는 분말형태의 B4C를 용제인 불포화폴리에스터와 30w% : 70w%의 비율로 섞어 2mm 두께로 제작하였다. MNCP4b 코드를 이용하여 1.5mm의 두께로 보수적으로 계산한 결과 열중성자가 95.5% 흡수되었으며,252Cf 중성자 선원과3He 검출기를 이용하여 실험한 결과 열중성자가 94% 흡수되었다.External radiation incident on the shields 14 and 15 first collides with the polyethylene 1, where neutrons in the external radiation lose energy and become thermal neutrons. The thickness of the polyethylene (1) was calculated by using the MNCP4b code was about 10cm, which is the point at which the thermal neutron is the maximum generation. The radiation transmitted through the polyethylene 1 then collides with B 4 C (2), at which time the thermal neutrons are absorbed. B 4 C (2) was prepared by mixing B 4 C in powder form containing about 20% of 10B with unsaturated polyester as a solvent in a ratio of 30w%: 70w% to a thickness of 2mm. The conservative calculation of 1.5mm thickness using MNCP4b code resulted in 95.5% absorption of thermal neutrons, and 94% absorption of thermal neutrons with 252 Cf neutron source and 3 He detector.
B4C(2)를 투과한 방사성은 일반 철(3), 일반 납(4), 저준위 철(5), 플라스틱검출기(6), 저준위 철(7), 저준위 납(8), 저준위 구리(9)를 거쳐 측정공간(10)으로 들어간다. 방사선이 일반 납(4) 및 저준위 납(8)과 충돌하면 많은 양의 방사선이 감소된다. 저준위 납(8)을 일반 납으로 대체하면 일반 납에서 발생되는 방사선으로 인하여 측정공간의 백그라운드가 높아지고, 반대로 일반 납(4)을 저준위 납으로 대체하면 제작단가가 높아진다. 전체 납(4,8)의 두께가 작으면 방사선차폐효과가 크면 도리어 우주선과의 작용으로 백그라운드가 증가하기 때문에 최적 두께는 15cm로 알려져 있다. MNCP4b 코드를 이용하여 일반 납(4)과 저준위 납(8)의 두께를 변화시키며 계산한 결과 방사능이 350Bq/kg인 일반 납을 11cm 두께로 사용하고 방사능이 10Bq/kg인 저준위 납(8)을 4cm 두께로 사용하면 전체를 모두 저준위 납을 사용한 것과 같은 수준의 측정공간 백그라운드가 나타나는 것으로 밝혀졌다. 본 차폐체에서는 보수적으로 방사능이 100-500Bq/kg의 일반 납을 10cm 두께로 사용하고 저준위 납(8)을 5cm 두께로 사용하였다. 또한 차폐체를 지탱하기 위한 구조물인 철을 방사능이 1.8Bq/kg 이하의 저준위 철(5,7)을 사용하여 측정공간의 백그라운드가 높아지지 않도록 하였고, 최종적으로 저준위 납(8)에서 발생되는 X선을 차폐하기 위하여 방사능 10Bq/kg 이하의 저준위 구리(9)를 사용하였다. 이렇게 제작한 차폐체의 백그라운드를 측정한 결과 방사능이 50Bq/kg인 중준위 납을 사용한 상용 시스템에 비하여 백그라운드가 1/10정도 낮게 나타났다.B 4 C (2) is radioactive through ordinary iron (3), ordinary lead (4), low-level iron (5), plastic detector (6), low-level iron (7), low-level lead (8), low-level copper ( 9) enters the measurement space (10). When radiation collides with ordinary lead (4) and low level lead (8), a large amount of radiation is reduced. Replacing low-level lead (8) with ordinary lead increases the background of the measurement space due to radiation generated from ordinary lead, and conversely, replacing lead (4) with low-level lead increases manufacturing costs. If the total thickness of lead (4, 8) is small, the radiation shielding effect is large, the background is increased due to the interaction with the spacecraft, the optimum thickness is known as 15cm. The MNCP4b code was used to vary the thicknesses of ordinary lead (4) and low-level lead (8), and the result was calculated by using 11 cm thick normal lead with 350 Bq / kg of radiation and low level lead (8) with 10 Bq / kg of radioactivity. Using a 4 cm thickness revealed the same measurement space background as the entire low level lead. In this shield, conservatively, 100-500 Bq / kg normal lead was used as 10 cm thick and low-level lead (8) was used as 5 cm thick. In addition, the low-level iron (5,7) of less than 1.8Bq / kg of radioactivity is used for the iron, which is a structure for supporting the shield, so that the background of the measurement space is not increased. In order to shield the low level copper (9) having a radioactivity of 10 Bq / kg or less was used. As a result of measuring the background of the shield, the background was about 1/10 lower than that of the commercial system using medium level lead with 50Bq / kg of radioactivity.
본 발명은 종래의 감마핵종분석기를 외부방사선으로부터 차폐하기 위한 방사선 차폐체 및 차폐방법을 이용하여 차폐체 내로 입사되는 감마핵종분석기에 영향을 미치는 중성자를 차폐할 수 있고, 적은 양의 저준위 납을 이용하여 전체를 저준위 납으로 제작한 것과 동일한 효과를 얻을 수 있다.The present invention can shield the neutrons affecting the gamma nucleus analyzer incident into the shield by using a radiation shield and a shielding method for shielding the conventional gamma nuclide analyzer from external radiation, and using a small amount of low-level lead The same effect as that produced with low level lead can be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0047498A KR100395886B1 (en) | 1999-10-29 | 1999-10-29 | Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0047498A KR100395886B1 (en) | 1999-10-29 | 1999-10-29 | Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010039201A true KR20010039201A (en) | 2001-05-15 |
KR100395886B1 KR100395886B1 (en) | 2003-08-27 |
Family
ID=19617636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1999-0047498A KR100395886B1 (en) | 1999-10-29 | 1999-10-29 | Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100395886B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100676916B1 (en) * | 2005-12-30 | 2007-02-01 | 주식회사 서린건축사사무소 | Horizentally moving-type fire protecting plate |
US9824783B2 (en) | 2014-12-03 | 2017-11-21 | Korea Institute Of Geoscience And Mineral Resources | X-ray shielding apparatus and method |
KR20220135550A (en) * | 2021-03-30 | 2022-10-07 | 한국원자력연구원 | Gamma ray measuring device and nondestructive inspection system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101195449B1 (en) | 2010-06-24 | 2012-10-30 | 한국수력원자력 주식회사 | A multipurpose and fusion gamma spectrometer system shielded background radiation in underground research tunnel |
KR101247210B1 (en) | 2011-04-29 | 2013-03-25 | 한양대학교 산학협력단 | Cosmic-ray neutron detection apparatus and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3930887A1 (en) * | 1989-09-15 | 1991-03-28 | Hoechst Ag | NEUTRON ABSORBENT MATERIAL |
-
1999
- 1999-10-29 KR KR10-1999-0047498A patent/KR100395886B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100676916B1 (en) * | 2005-12-30 | 2007-02-01 | 주식회사 서린건축사사무소 | Horizentally moving-type fire protecting plate |
US9824783B2 (en) | 2014-12-03 | 2017-11-21 | Korea Institute Of Geoscience And Mineral Resources | X-ray shielding apparatus and method |
KR20220135550A (en) * | 2021-03-30 | 2022-10-07 | 한국원자력연구원 | Gamma ray measuring device and nondestructive inspection system |
Also Published As
Publication number | Publication date |
---|---|
KR100395886B1 (en) | 2003-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baudis | Direct dark matter detection: The next decade | |
KR100395886B1 (en) | Ultra-Low Level Shielder of External Radiation for a Gamma-ray Spectroscopy System | |
Abe et al. | The XMASS experiment | |
Muslim et al. | Design and Creating a Specific Neutron Irradiation Instrument to Decrease the User’s Radiation Exposure Time | |
Wong et al. | Scintillation crystal detector for low energy neutrino physics | |
Lombard et al. | Fission-to-Indium Age in Water | |
Rosdi et al. | Monte Carlo simulation for designing collimator of neutron diffractometer facility in Malaysia | |
Dorn et al. | Issues in radioactivity for fusion energy: remote maintenance rating | |
Kiptily et al. | Gamma-ray spectrometer for fusion plasma diagnostics | |
Li et al. | A method of lowering the background in low-level radio-activity measurements | |
Mewaldt et al. | Neutral particle background in cosmic ray telescopes composed of silicon solid state detectors. | |
Harris Jr et al. | Fast-neutron spectra in water and graphite | |
Pancin et al. | Piccolo Micromegas: First in-core measurements in a nuclear reactor | |
Kunow et al. | The Kiel University experiment for measuring cosmic radiation between 1.0 and 0.3 AE/E 6 | |
Zdanis et al. | Exchange stripping effects in the reaction B11 (d, n) C4. 4312 | |
Sekimoto et al. | Fast neutron spectrum in water with a deuterium-tritium neutron source | |
Aprile | The XENON program for dark matter direct detection | |
Ninkovic | Dosimetry of the neutron fields from Bonner to WENDI; Dozimetrija neutronskih polja od Bonera do WENDI-a | |
Yamadera et al. | Neutron and γ-Ray Dosimetry by Means of Solid State Track Detector (CR-39) and TLD | |
Ninkovic | Dosimetry of the neutron fields from Bonner to WENDI | |
Kuznetsov et al. | Experimental investigation of some space-energy characteristics of PF-4F-9M uran-beryllium assembly | |
Arnikar | JOSHI EFFECT IN COUNTERS UNDER VISIBLE AND GAMMA RADIATION | |
Chung et al. | Distribution of {sup 16} N and {sup 19} O in the reactor pool water of the THOR facility | |
GB882031A (en) | Improvements relating to radiation shielding for nuclear equipment | |
Laubenstein | Experimental techniques for low energy neutrino experiments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E801 | Decision on dismissal of amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070802 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |