KR20010038850A - Method of enhancing releasing effect of mold using low temperature plasma processes - Google Patents

Method of enhancing releasing effect of mold using low temperature plasma processes Download PDF

Info

Publication number
KR20010038850A
KR20010038850A KR1019990046983A KR19990046983A KR20010038850A KR 20010038850 A KR20010038850 A KR 20010038850A KR 1019990046983 A KR1019990046983 A KR 1019990046983A KR 19990046983 A KR19990046983 A KR 19990046983A KR 20010038850 A KR20010038850 A KR 20010038850A
Authority
KR
South Korea
Prior art keywords
coating
mold
pressure
plasma
polymer
Prior art date
Application number
KR1019990046983A
Other languages
Korean (ko)
Inventor
이병철
전배혁
Original Assignee
이병철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이병철 filed Critical 이병철
Priority to KR1019990046983A priority Critical patent/KR20010038850A/en
Publication of KR20010038850A publication Critical patent/KR20010038850A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE: A method for improving the releasing property of a mold using the low temperature plasma process is provided to obtain a method for coating on the mold a polymer thin film which not only is not contaminated by materials such as a releasing agent due to the excellent releasing property but also has the high durability due to the high cohesion to the mold. CONSTITUTION: In a method for improving the releasing property of a mold by coating a polymer thin film comprising pretreatment step of treating the mold with the reactive gas plasma; and plasma polymer coating step of depositing the polymer produced by plasma polymerizing a monomer gas on the mold (11), the polymer coating step comprises a binding layer (12) coating step of coating the pretreated mold by polymerizing as gradually increasing the pressure of a reaction chamber (the pressure of the monomer gas); and a functional layer (13) coating step of coating the binding layer coated mold by polymerizing as constantly maintaining the pressure of the reaction chamber.

Description

저온 플라스마 공정을 이용한 금형의 이형성 향상방법 {METHOD OF ENHANCING RELEASING EFFECT OF MOLD USING LOW TEMPERATURE PLASMA PROCESSES}Improved mold release property using low temperature plasma process {METHOD OF ENHANCING RELEASING EFFECT OF MOLD USING LOW TEMPERATURE PLASMA PROCESSES}

본 발명은 금형과 플라스틱 성형물 사이에 이형성을 확보하기 위한 방법에 관한 것으로 특히, 저온 플라스마 공정에 의하여 금형에 밀착성이 높은 폴리머 박막을 코팅하므로써 금형의 이형성과 함께 내구성을 확보하는 방법에 관한 것이다.The present invention relates to a method for securing mold release property between a mold and a plastic molding, and more particularly, to a method of securing durability with mold release property by coating a polymer thin film having high adhesion to a mold by a low temperature plasma process.

많은 종류의 플라스틱 제품이 금형을 이용하여 성형되는데 이를테면, 반도체봉입(packaging) 공정을 예로 들어 설명하면 다음과 같다.Many kinds of plastic products are molded using a mold. For example, the semiconductor packaging process will be described below.

반도체 봉입 공정에는 리드 프레임 방식, PGA(pin grid array) 방식, BGA(ball grid array) 방식 등이 있는데 어느 방법에 의하든 금형을 사용하며, 성형후 금형과 성형물 사이의 이형성이 확보되도록 봉입제로 사용되는 에폭시 수지 조성물(epoxy molding compound, EMC)에는 이형제(releasing agent)가 함유되어 있다.The semiconductor encapsulation process includes a lead frame method, a pin grid array (PGA) method, a ball grid array (BGA) method, and the mold is used by either method, and is used as an encapsulant to secure mold release properties between the mold and the molded product after molding. The epoxy molding compound (EMC) to be contained contains a releasing agent.

그런데, 이형제는 목적하는 바 성형후 성형물이 금형으로부터 용이하게 분리되도록 하는 한편, EMC를 구성하는 다른 저분자 물질 등과 함께 금형의 표면에 남아 탄화되거나 고분자화되어 금형을 오염시킨다.However, the release agent allows the molded product to be easily separated from the mold after molding as desired, while remaining on the surface of the mold along with other low molecular materials constituting the EMC to carbonize or polymerize to contaminate the mold.

따라서 금형을 주기적으로 세척(cleaning)해 주거나 금형이 오염되는 것을 원천적으로 방지하지 않으면 성형품에 결함(defect)이 발생한다.Therefore, defects occur in the molded article unless the mold is periodically cleaned or the mold is prevented from being inherently contaminated.

현재로서는 금형을 주기적으로 세척하여 오염물을 제거하는 세척공정이 일반적으로 채용되고 있는데 세척공정에는 오염된 금형으로 금형세척용 멜라민 수지를 성형하므로써 오염물을 제거하는 멜라민 클리닝(melamine cleaning)법과, 샌드 블라스트(sand blast)나 구리 칼(Cu knife)로 오염물을 기계적으로 제거하는 방법과, 강알칼리와 유화제 등을 사용하여 오염물을 화학적으로 제거하는 방법 등이 있는데 어느 방법에 의하든 세척을 위하여 작업을 중단하여야 하므로(매일 2시간 정도) 생산성이 저하되는 단점이 있고, 각각 세척용 화합물이 별도로 소요된다든가(멜라민 클리닝법), 오염물 제거가 불완전하거나 금형이 손상될 우려가 있다든가(기계적 방법), 아니면 장치를 완전히 분해하는 경우가 아니면 적용이 어렵다는(화학적 방법)등의 단점이 있다.At present, the cleaning process to remove contaminants by periodically cleaning the mold is generally adopted. In the cleaning process, the melamine cleaning method which removes contaminants by molding the melamine resin for mold cleaning with the contaminated mold, and sand blast ( There is a method of mechanically removing contaminants by sand blast or copper knife, and chemically removing contaminants using strong alkali and emulsifier. Either method requires stopping work for cleaning. (2 hours per day) There is a disadvantage in that the productivity is lowered, and each cleaning compound is consumed separately (melamine cleaning method), dirt removal is incomplete or the mold may be damaged (mechanical method), or the device may be The disadvantage is that it is difficult to apply (chemical method) unless it is completely decomposed.

그리하여 금형의 이형성을 높임으로써 금형표면이 이형제 등의 잔류물로 오염되는 것을 원천적으로 방지하고자 하는 시도가 이루어졌는데, 대한민국 특허출원 제97-58942호에는 반응성 가스 플라스마로 금형표면을 전처리한 후, 모노머 가스를 플라스마 중합시켜 금형표면에 폴리머 박막으로 코팅하므로써 금형의 이형성을 향상시키는 방법이 제시되어 있다.Thus, attempts were made to prevent contamination of the mold surface with residues such as mold release agents by increasing mold release properties. Korean Patent Application No. 97-58942 discloses that a surface of a mold is pretreated with a reactive gas plasma. A method of improving mold release property by plasma polymerizing gas and coating the surface of a mold with a polymer thin film is proposed.

그러나, 금형에 단순히 플라스마 폴리머를 코팅하는 것만으로는 이형성이 높일 수 있지만(임계표면장력: 23∼30m·N/m2), 금형과 이에 코팅된 폴리머 박막 사이의 밀착성이 낮아서 폴리머의 흐름에 의하여 금형에 걸리는 응력(internal stress)에 의하여 박막이 쉽게 벗겨지는 단점이 있다.However, by simply coating the plasma polymer on the mold, the releasability can be increased (critical surface tension: 23 to 30 m · N / m 2 ), but the adhesion between the mold and the polymer thin film coated thereon is low and the polymer flows. The thin film is easily peeled off by internal stress.

본 발명의 목적은 이형성이 뛰어나 이형제 등에 의하여 오염되지 않으면서도 금형과의 밀착성이 높아 내구성이 좋은 폴리머 박막을 금형에 코팅하는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method of coating a polymer thin film having excellent durability and high adhesion to a mold without being contaminated by a release agent or the like.

도 1은 본 발명에 의하여 코팅된 박막의 단면을 도시한다.1 shows a cross section of a thin film coated according to the invention.

도 2는 본 발명의 실시에 사용되는 플라스마 반응기 시스템의 일실시예를 도시한다.2 illustrates one embodiment of a plasma reactor system used in the practice of the present invention.

** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **

11: 금형 12: 결합층11: mold 12: bonding layer

13: 기능층 21: 반응챔버13: functional layer 21: reaction chamber

22: (시료)금형 23: RF 전원22: (sample) mold 23: RF power supply

24: 유량계 25: 밸브24: flow meter 25: valve

26: 진공펌프 27: 스로틀 밸브26: vacuum pump 27: throttle valve

28: 가스28: gas

상기 목적을 달성하기 위한 본 발명은, (A) 금형을 반응성 가스 플라스마로 처리하는 전처리 단계와; (B) 모노머 가스를 플라스마 중합시켜 생성된 폴리머를 금형에 침착시키는 플라스마 폴리머 코팅 단계로 이루어지는 폴리머 박막을 코팅하여 금형의 이형성을 향상시키는 방법에 있어서, 폴리머 코팅 단계(B)가 (b-1) 반응챔버의 압력(모노머 가스의 압력)을 점차로 높여가며 중합시켜 코팅하는 결합층 코팅단계와; (b-2) 반응챔버의 압력을 일정하게 유지하며 중합시켜 코팅하는 기능층 코팅단계로 이루어지는 것을 특징으로 한다.The present invention for achieving the above object, (A) a pretreatment step of treating the mold with a reactive gas plasma; (B) A method of coating a polymer thin film comprising a plasma polymer coating step of depositing a polymer produced by plasma polymerizing monomer gas on a mold to improve mold release property, wherein the polymer coating step (B) is performed by (b-1). Bonding layer coating step of polymerizing and coating while gradually increasing the pressure of the reaction chamber (pressure of the monomer gas); (b-2) It characterized in that the functional layer coating step of coating by polymerization while maintaining a constant pressure in the reaction chamber.

본 발명의 특징을 제1도를 사용하여 다시 설명하면, 본 발명은 금형에 플라스마 폴리머를 코팅하는 단계(B)를 모노머 가스의 압력을 점차로 높여가며(즉, 비정상 상태에서) 플라스마 중합시켜 결합층을 코팅하는 단계(b-1)와; 모노머 가스의 압력을 일정하게 유지하면서(즉, 정상상태에서) 플라스마 중합시켜 기능층을 코팅하는 단계(b-2)로 나누어 실시하므로써, 금형(11)과 높은 이형성을 가지는 기능층(13)과의 사이에 물성이 점진적으로(gradually) 변하는 결합층(12)이 존재하도록 하는 것이다.Referring again to the features of the present invention using FIG. 1, the present invention provides a step (B) of coating the plasma polymer on the mold by plasma polymerization by gradually increasing the pressure of the monomer gas (i.e., in an abnormal state) to bind the bonding layer. Coating (b-1); The mold 11 and the functional layer 13 having high releasability are carried out by dividing into a step (b-2) of coating the functional layer by plasma polymerization while maintaining the pressure of the monomer gas constant (that is, in a steady state). In order to have a bonding layer 12 whose properties change gradually.

본 발명의 시도는 종래의 방법에 의하여 플라스마 폴리머를 코팅한 금형의 폴리머 박막이 쉽게 박리되는 이유가 전처리한 금형에 바로 정상상태에서 플라스마폴리머를 코팅하기 때문에 금형의 기재와 폴리머 박막의 물성 차이가 너무 커서 결합력이 떨어지기 때문이라는 가정과, 플라스마 중합조건을 가혹하게(severe) 할수록 무기질에 가까운 규소 화합물 및/또는 탄소 화합물이 생성되고 중합조건을 온화하게(mild) 할수록 유기질에 가까운 폴리머가 생성된다는 사실에서 비롯된 것이다.The attempt of the present invention is easy because the polymer thin film of the plasma polymer-coated mold is easily peeled off by the conventional method. The assumption is that the bond strength is large, and the fact that the more severe the plasma polymerization conditions, the more inorganic silicon compounds and / or carbon compounds are produced, and the milder the polymerization conditions, the more organic polymers are produced. It comes from.

저온 플라스마 중합 공정에서는 W/FM [여기에서, W는 투입되는 에너지(watt)이고, F와 M은 각각 반응챔버로 유입되는 중합가스의 몰유량과 분자량이다. 따라서, FM은 질량유량이 되며 W/FM의 단위는 Joule/Kg이 된다.]가 중합되는 플라스마폴리머의 물성을 결정하는 가장 중요한 운전변수(operating parameter)로 채용된다. W/FM이 크면 무기질에 가까운 규소 화합물층 및/또는 탄소 화합물층이 형성되고, W/FM이 작으면 모노머 가스의 분자구조가 비교적 잘 보존되는 유기질에 가까운 폴리머가 중합되는 것으로 알려져 있다.In the low temperature plasma polymerization process, W / FM [where W is the energy input (watt), and F and M are the molar flow rates and molecular weights of the polymerization gas flowing into the reaction chamber, respectively. Therefore, FM is mass flow rate and the unit of W / FM is Joule / Kg.] Is employed as the most important operating parameter that determines the physical properties of the plasma polymer to be polymerized. It is known that a large W / FM forms a silicon compound layer and / or a carbon compound layer close to an inorganic material, and a small W / FM polymerizes a polymer close to an organic material in which the molecular structure of the monomer gas is relatively well preserved.

다만, 비정상 상태에서는 반응챔버 내의 중합가스의 압력이 계속하여 증가하게 되므로 W/FM는 의미가 없고, 반응챔버 내의 모노머 가스의 단위질량당 에너지 투입량이 의미를 갖게 된다. 그러나, 이 경우 유효부피가 반응기의 크기와 형태, 전극간의 거리 등에 따라 달라지므로 적정하게 정하기가 어렵다. 따라서, 여기서는 어느 시점에서 반응챔버 내에 존재하는 모노머 가스의 밀도에 대한 에너지 투입량 즉, W/ρ를 정상상태에서의 W/FM 대신 운전변수로 사용하기로 한다. [운전변수에 ρ(밀도)를 포함시키면 p(압력) 및 M(분자량)을 포함시킬 필요가 없으며, W/ρ의 단위는 Joule/(Kg/m3)·min가 된다.]However, in an abnormal state, since the pressure of the polymerization gas in the reaction chamber is continuously increased, W / FM is not meaningful, and the energy input amount per unit mass of the monomer gas in the reaction chamber is meaningful. In this case, however, the effective volume is difficult to determine properly since it depends on the size and shape of the reactor, the distance between the electrodes, and the like. Therefore, the energy input amount to the density of the monomer gas present in the reaction chamber at this point, that is, W / ρ, will be used as an operating variable instead of W / FM at the steady state. [Including ρ (density) in the operating variables, it is not necessary to include p (pressure) and M (molecular weight), and the unit of W / ρ is Joule / (Kg / m 3 ) · min.]

결합층의 코팅(b-1)은 반응성 가스의 압력을 0.1∼10.0 milli torr에서 10∼50 milli torr까지 서서히 증가시키며 실시하는데, W/ρ가 10∼200 mega Joule/(Kg/m3)·min가 되는 범위에서 종료한다. [이 경우, 반응성 가스로 헥사메틸렌디실록산(HMDSO)을 사용하면 초기의 W/ρ의 값은 1,300∼13,000 mega Joule/(Kg/m3)·min이 된다.] 여기에서, W/ρ의 값은 반응성 가스의 압력외에 단위시간당 투입하는 에너지 즉, W의 값에 변화를 주므로써 조절할 수도 있다. 이렇게 하여 코팅된 결합층은 금형과의 계면에서 멀어져 감에 따라 무기질에서 유기질로 점진적으로 변화하는 특징을 갖게 된다.The coating of the bonding layer (b-1) is carried out by gradually increasing the pressure of the reactive gas from 0.1 to 10.0 milli torr to 10 to 50 milli torr, with a W / ρ of 10 to 200 mega Joule / (Kg / m 3 ). Terminate in the range of min. [In this case, when hexamethylenedisiloxane (HMDSO) is used as the reactive gas, the initial value of W / ρ becomes 1,300 to 13,000 mega Joule / (Kg / m 3 ) · min.] Here, W / ρ The value can be adjusted by changing the energy input per unit time, that is, W, in addition to the pressure of the reactive gas. In this way, the coated bonding layer has a characteristic of gradually changing from inorganic to organic as it moves away from the interface with the mold.

또한, 결합층의 코팅(b-1)은 단속적으로(continually) 실시할 수도 있다. 이렇게 하면 결합층 내의 결합력을 크게 손상시키지 않고도 결합층의 두께를 너무 두껍지 않게 하면서 재빨리 기능층의 물성에 접근해 갈 수 있다. 코팅층의 두께가 두꺼우면 박막이 벗겨지기 쉽기 때문이다. 이를테면, 반응성 가스는 계속 공급하면서 전기를 1분(on)→2분(off)→2분(on)→3분(off)→…의 식으로 공급할 수 있다.In addition, the coating of the bonding layer (b-1) may be carried out continuously. This allows quick access to the properties of the functional layer without making the thickness of the bonding layer too thick without significantly impairing the bonding force in the bonding layer. If the thickness of the coating layer is a thin film is likely to peel off. For example, 1 minute (on) → 2 minutes (off) → 2 minutes (on) → 3 minutes (off) →. Can be supplied by

기능층의 코팅(b-2)은 반응성 가스의 압력을 10∼100 milli torr로 하여 정상 상태에서 실시하는데 W/FM의 값이 100∼2,000 mega Joule/Kg이 되도록 한다. W/FM의 값은 결합층의 코팅에서와 마찬가지로 반응성 가스의 압력외에 단위시간당 투입하는 에너지 즉, W의 값에 변화를 주므로써 조절할 수도 있다.The coating of the functional layer (b-2) is carried out at a steady state with a pressure of the reactive gas of 10 to 100 milli torr so that the value of W / FM is 100 to 2,000 mega Joule / Kg. The value of W / FM can be adjusted by changing the energy input per unit time, ie, the value of W, in addition to the pressure of the reactive gas as in the coating of the bonding layer.

또한, 기능층의 코팅(b-2)은 W/FM의 값을 낮춰가며 2∼3 단계의 정상상태에서 실시할 수도 있다. 이는 모노머 가스의 압력을 단계별로 높여가거나 단위시간당 투입되는 에너지를 낮추어 가는 방법에 의하여 달성될 수 있다.In addition, the coating of the functional layer (b-2) may be carried out in a steady state of 2 to 3 steps while lowering the value of W / FM. This can be achieved by increasing the pressure of the monomer gas step by step or by lowering the energy input per unit time.

코팅층의 두께는 결합층과 기능층의 두께를 합해서 2.0μm를 넘지 않게 하는 것이 바람직하다. 코팅층의 두께가 너무 두꺼우면 박리되기 쉽고, 얇으면 오래 사용하지 못한다.It is preferable that the thickness of the coating layer not exceed 2.0 μm by adding the thicknesses of the bonding layer and the functional layer. If the thickness of the coating layer is too thick, it is easy to peel off, and if it is thin, it cannot be used for a long time.

모노머 가스로는 유기실란을 사용하는데 바람직하게는 메틸실란, 에틸실란, 디메틸실란(DMS), 트리메틸실란(TMS), 테트라메틸실란, 트리메틸에톡시실란, 메틸트리에톡시실란, 헥사메틸디실록산(HMDSO), 테트라메틸디실라잔, 헥사메틸디실란, 또는 테트라메틸디실록산에서 선택되는 화합물을 사용한다.As the monomer gas, an organosilane is used. Preferably, methylsilane, ethylsilane, dimethylsilane (DMS), trimethylsilane (TMS), tetramethylsilane, trimethylethoxysilane, methyltriethoxysilane, hexamethyldisiloxane (HMDSO ), Tetramethyldisilazane, hexamethyldisilane, or tetramethyldisiloxane.

플라스마 전처리(A)는 공지된 방법에 의하여 실시하며 산소 또는 공기 플라스마를 사용한다. 특히, 산소 플라스마는 금형 표면의 유기 오염물을 효과적으로 제거하며 에칭(etching)효과가 높아 침착(deposit)되는 플라스마 폴리머와의 접착력을 높이는 것으로 알려져 있다.Plasma pretreatment (A) is carried out by known methods and uses oxygen or air plasma. In particular, it is known that oxygen plasma effectively removes organic contaminants on the surface of the mold and has high etching effect to increase adhesion to the plasma polymer deposited.

또한, 기능층의 코팅이 완료되면 공지된 방법에 의하여 열처리하는 단계를 추가할 수도 있다. 이를테면, 압력 1.0 milli torr이하, 온도 상온∼250℃의 반응챔버 내에 1∼2시간 방치하여 열처리를 한다. 열처리를 하면 코팅층의 프리 라디칼(free radical)이 없어져 접촉각 등 물성에 경시적 변화가 적은 것으로 알려져 있다.In addition, when the coating of the functional layer is completed, a step of heat treatment by a known method may be added. For example, heat treatment is performed by leaving it in a reaction chamber at a pressure of 1.0 milli torr or less and a temperature of room temperature to 250 ° C. for 1 to 2 hours. It is known that the heat treatment eliminates free radicals in the coating layer, so that there is little change over time in physical properties such as contact angle.

본 발명의 구성은 실시예에서 더욱 분명해 질 것이다.The construction of the present invention will become more apparent in the examples.

<실시예 1><Example 1>

제2도에 도시된 시스템을 사용하여 플라스마 전처리와 플라스마 폴리머 코팅을 실시하였으며, 반응기(21)는 용적은 150 lit이다. 제2도에는 시료금형(22)을 반응기 내의 공간에 띄워 놓는 형태를 도시하였으나 금형자체를 전극으로 사용해도 좋고, RF 전원(23) 대신 다른 형태의 전원을 사용해도 된다. 통상의 당업자라면 얼마든지 다른 구성을 할 수 있을 것이다. 반응기의 압력은 유량계(24)의 밸브(25)를 통하여 조절하는 것과 동시에 진공펌프(26)에 연결된 스로틀 밸브(throttle valve)(27)를 통하여도 조절한다.Plasma pretreatment and plasma polymer coating were carried out using the system shown in FIG. 2, and the reactor 21 had a volume of 150 lit. In FIG. 2, although the sample mold 22 is shown floating in the space of the reactor, the mold itself may be used as an electrode, or another type of power source may be used instead of the RF power source 23. Those skilled in the art will appreciate that other configurations can be made. The pressure of the reactor is regulated through a throttle valve 27 connected to the vacuum pump 26 at the same time as it is regulated through the valve 25 of the flow meter 24.

시료금형으로는 반도체 봉입용(BGA 방식) 크롬(Cr) 도금된 금형을, 모노머 가스로는 헥사메틸디실록산을 각각 사용하였다.As a sample mold, a chromium (Cr) plated mold for semiconductor encapsulation (BGA method) was used, and hexamethyldisiloxane was used as a monomer gas.

구체적인 코팅 조건은 다음과 같다.Specific coating conditions are as follows.

(1) 플라스마 전처리: 금형을 수세하여 건조시킨 후, 반응챔버의 압력을 50 milli torr, 단위질량당 에너지투입량(W/FM)을 1.4 giga Joule/Kg (W=100 watt)로 하여 산소 플라스마로 15 분간 전처리하였다.(1) Plasma pretreatment: After washing the mold with water and drying, the pressure of the reaction chamber is 50 milli torr and the energy input amount per unit mass (W / FM) is 1.4 giga Joule / Kg (W = 100 watt). Pretreated for 15 minutes.

(2) 결합층의 코팅: 에너지 투입량(W)을 210 watt로 하여 헥사메틸디실록산의 압력을 1 milli torr에서 20 milli torr까지 서서히 높여가며 코팅하였다. 종료시점에서의 W/ρ는 65.5 mega Joule/(Kg/m3)·min가 되도록 하였고, 박막의 두께는 0.5 μm로 하였다.(2) Coating of the bonding layer: The hexamethyldisiloxane pressure was gradually increased from 1 milli torr to 20 milli torr with an energy input (W) of 210 watts. At the end, W / ρ was 65.5 mega Joule / (Kg / m 3 ) · min, and the thickness of the thin film was 0.5 μm.

(3) 기능층의 코팅: 헥사메틸디실록산의 압력을 20 milli torr, 유량을 2.6 ml/min으로 하여 2 단계로 나누어 코팅하였다. 첫 번째는 에너지 투입량(W)을 190 watt(W/FM = 599.6 mega Joule/Kg)로 하였고, 두 번째는 에너지 투입량을 90 watt(W/FM = 284.0 mega Joule/Kg)로 하였다. 각 단계에서의 코팅의 두께는 각각 0.5 μm로 하였다.(3) Coating of functional layer: The hexamethyldisiloxane was coated in two stages at a pressure of 20 milli torr and a flow rate of 2.6 ml / min. First, the energy input (W) was 190 watts (W / FM = 599.6 mega Joule / Kg), and second, the energy input was 90 watt (W / FM = 284.0 mega Joule / Kg). The thickness of the coating in each step was 0.5 μm each.

이상과 같은 과정을 거쳐 코팅된 금형은 그 표면이 순수(pure water)에 대한 접촉각이 95°, 임계표면장력이 22 N·m/m2로 각각 측정되었으며(5회 측정한 평균치임), 봉입제를 EMC로 하여 사출성형한 결과, 30,000회 이상 성형할 수 있었다.Through the above process, the coated mold was measured with 95 ° contact angle to pure water and 22N · m / m 2 of critical surface tension (average value measured 5 times). As a result of injection molding the product as EMC, it was possible to mold 30,000 times or more.

그리고, 각 박막층의 모오스 경도를 측정한 결과, 결합층의 상층부는 2.7, 기능층의 첫 번째 박막은 2.6, 두 번째 박막은 2.55로 측정되었다.As a result of measuring the Mohs hardness of each thin film layer, the upper layer of the bonding layer was 2.7, the first thin film of the functional layer was 2.6, and the second thin film was 2.55.

<실시예 2><Example 2>

상기 실시예 1에서 사용된 것과 동일한 장치와 시료(금형)를 사용하였으며, 모노머 가스로는 테트라메틸디실록산을 사용하였다.The same apparatus and sample (mold) as used in Example 1 were used, and tetramethyldisiloxane was used as the monomer gas.

구체적인 코팅 조건은 다음과 같다.Specific coating conditions are as follows.

(1) 플라스마 전처리: 금형을 수세하여 건조시킨 후, 반응챔버의 압력을 50 milli torr, 단위질량당 에너지투입량(W/FM)을 1.4 giga Joule/Kg (W=100 watt)로 하여 산소 플라스마로 15분간 전처리하였다.(1) Plasma pretreatment: After washing the mold with water and drying, the pressure of the reaction chamber is 50 milli torr and the energy input amount per unit mass (W / FM) is 1.4 giga Joule / Kg (W = 100 watt). Pretreated for 15 minutes.

(2) 결합층의 코팅: 에너지 투입량(W)을 250 watt로 하여 테트라메틸디실록산의 압력을 1 milli torr에서 20 milli torr까지 서서히 높여가며, 2분간 코팅하고 2분간 쉬는 방식으로 총 10분(코팅시간)간 코팅하였다. 종료시점에서의 W/ρ는 94.8 mega Joule/(Kg/m3)·min가 되도록 하였고, 박막의 두께는 0.5 μm로 하였다.(2) Coating of bonding layer: Increase the pressure of tetramethyldisiloxane from 1 milli torr to 20 milli torr with the energy input amount (W) of 250 watts, coating for 2 minutes and resting for 2 minutes for a total of 10 minutes ( Coating time). At the end, W / ρ was 94.8 mega Joule / (Kg / m 3 ) · min, and the thickness of the thin film was 0.5 μm.

(3) 기능층의 코팅: 테트라메틸디실록산의 압력을 20 milli torr, 유량을 2.6 ml/min으로 하여 3 단계로 나누어 코팅하였다. 첫 번째는 에너지 투입량(W)을 190 watt(W/FM = 599.6 mega Joule/Kg)로 하였고, 두 번째는 에너지 투입량을 140 watt(W/FM = 441.8 mega Joule/Kg)로 하였고, 세 번째는 에너지 투입량을 90 watt(W/FM = 599.6 mega Joule/Kg)로 하였다. 각 단계에서의 코팅의 두께는 각각 0.3 μm로 하였다.(3) Coating of functional layer: Coating was carried out in three steps with a pressure of tetramethyldisiloxane of 20 milli torr and a flow rate of 2.6 ml / min. The first has an energy input (W) of 190 watts (W / FM = 599.6 mega Joule / Kg), the second has an energy input of 140 watts (W / FM = 441.8 mega Joule / Kg), and the third The energy input was 90 watt (W / FM = 599.6 mega Joule / Kg). The thickness of the coating in each step was 0.3 μm each.

이상과 같은 과정을 거쳐 코팅된 금형은 그 표면이 순수(pure water)에 대한 접촉각이 92°, 임계표면장력이 24 N·m/m2로 각각 측정되었으며, 봉입제를 EMC로 하여 사출성형한 결과, 피막에 손상을 주지않고 35,000회 성형할 수 있었다.Through the above process, the coated mold was measured with 92 ° contact angle to pure water and 24N · m / m 2 of critical surface tension. As a result, it was possible to mold 35,000 times without damaging the coating.

그리고, 각 박막층의 모오스 경도를 측정한 결과, 결합층은 2.7, 기능층의 첫 번째 박막은 2.6, 두 번째 박막은 2.55, 세 번째 박막은 2.55로 각각 측정되었다.As a result of measuring the Mohs hardness of each thin film layer, the bonding layer was 2.7, the first thin film of the functional layer was 2.6, the second thin film was 2.55, and the third thin film was 2.55.

본 발명에 의하면 금형에 이형성 및 내구성이 좋은 박막을 코팅할 수 있어 세척제를 사용하지 않아도 되고, 작업중단(shut-down)에 따르는 작업손실도 줄일 수 있어 경제적이다.According to the present invention, the mold can be coated with a thin film having good releasability and durability, thus eliminating the need to use a cleaning agent, and reducing the work loss due to shut-down.

Claims (6)

(A) 금형을 반응성 가스 플라스마로 처리하는 전처리 단계와; (B) 모노머 가스를 플라스마 중합시켜 생성된 폴리머를 금형에 침착시키는 플라스마 폴리머 코팅단계로 이루어지는 폴리머 박막을 코팅하여 금형의 이형성을 향상시키는 방법에 있어서, 폴리머 코팅 단계(B)가 (b-1) 반응챔버의 압력(모노머 가스의 압력)을 점차로 높여가며 중합시켜 코팅하는 결합층 코팅단계와; (b-2) 반응챔버의 압력을 일정하게 유지하며 중합시켜 코팅하는 기능층 코팅단계로 이루어지는 것을 특징으로 하는 금형의 코팅방법.(A) a pretreatment step of treating the mold with a reactive gas plasma; (B) A method of coating a polymer thin film comprising a plasma polymer coating step of depositing a polymer produced by plasma polymerizing monomer gas on a mold to improve mold release property, wherein the polymer coating step (B) is performed by (b-1). Bonding layer coating step of polymerizing and coating while gradually increasing the pressure of the reaction chamber (pressure of the monomer gas); (b-2) A method for coating a mold, comprising a functional layer coating step of coating by polymerization while maintaining a constant pressure in the reaction chamber. 제1항에 있어서, 결합층의 코팅(b-1)이 반응성 가스의 압력을 0.1∼10.0 milli torr에서 시작하여 10∼50 milli torr까지 서서히 증가시키며 이루어지고, 최종적으로 W/ρ의 값이 10∼200 mega Joule/(Kg/m3)·min인 범위에서 종료되도록 하는 것을 특징으로 하는 금형의 코팅방법.The method of claim 1, wherein the coating of the bonding layer (b-1) is achieved by gradually increasing the pressure of the reactive gas from 0.1 to 10.0 milli torr to 10 to 50 milli torr, and finally the value of W / p is 10 A coating method of a mold, characterized in that it terminates in the range of -200 mega Joule / (Kg / m 3 ) · min. 제1항에 있어서, 결합층의 코팅(b-1)이 W/ρ의 값을 낮추어 가며 단속적으로 이루어지는 것을 특징으로 하는 금형의 코팅방법.The method of claim 1, wherein the coating of the bonding layer (b-1) is made intermittently while lowering the value of W / ρ. 제1항에 있어서, 기능층의 코팅(b-2)이 반응성 가스의 압력이 10∼50 milli torr이고, W/FM의 값이 100∼2,000 mega Joule/Kg인 정상상태에서 이루어지도록 하는 것을 특징으로 하는 금형의 코팅방법.The method according to claim 1, wherein the coating of the functional layer (b-2) is made in a steady state in which the pressure of the reactive gas is 10-50 milli torr and the value of W / FM is 100-2,000 mega Joule / Kg. Coating method of mold. 제1항에 있어서, 기능층의 코팅(b-2)이 W/FM의 값을 낮춰가며 2∼3 단계의 정상상태에서 실시되는 것을 특징으로 하는 금형의 코팅방법.The method of claim 1, wherein the coating of the functional layer (b-2) is carried out at a steady state in two to three steps while lowering the value of W / FM. 제1항 내지 제5항의 어느 한 항에 있어서, 모노머 가스로 메틸실란, 에틸실란, 디메틸실란(DMS), 트리메틸실란(TMS), 테트라메틸실란, 트리메틸에톡시실란, 메틸트리에톡시실란, 헥사메틸디실록산(HMDSO), 테트라메틸디실라잔, 헥사메틸디실란, 또는 테트라메틸디실록산에서 선택되는 유기실란을 사용하는 것을 특징으로 하는 금형의 코팅방법.The monomer gas according to any one of claims 1 to 5, wherein the monomer gas is methylsilane, ethylsilane, dimethylsilane (DMS), trimethylsilane (TMS), tetramethylsilane, trimethylethoxysilane, methyltriethoxysilane, hexa A method of coating a mold, characterized by using an organosilane selected from methyldisiloxane (HMDSO), tetramethyldisilazane, hexamethyldisilane, or tetramethyldisiloxane.
KR1019990046983A 1999-10-27 1999-10-27 Method of enhancing releasing effect of mold using low temperature plasma processes KR20010038850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990046983A KR20010038850A (en) 1999-10-27 1999-10-27 Method of enhancing releasing effect of mold using low temperature plasma processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990046983A KR20010038850A (en) 1999-10-27 1999-10-27 Method of enhancing releasing effect of mold using low temperature plasma processes

Publications (1)

Publication Number Publication Date
KR20010038850A true KR20010038850A (en) 2001-05-15

Family

ID=19617261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990046983A KR20010038850A (en) 1999-10-27 1999-10-27 Method of enhancing releasing effect of mold using low temperature plasma processes

Country Status (1)

Country Link
KR (1) KR20010038850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070998A1 (en) * 2002-02-20 2003-08-28 University Of Washington Method and apparatus for ion beam coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070998A1 (en) * 2002-02-20 2003-08-28 University Of Washington Method and apparatus for ion beam coating

Similar Documents

Publication Publication Date Title
KR100250421B1 (en) Method of enhancing releasing effect of mold using low temperature plasma processes
CA2205221C (en) Plasma cvd method and apparatus
US6565776B1 (en) Lens molds with protective coatings for production of contact lenses and other ophthalmic products
AU779530B2 (en) A method of coating the surface of an inorganic substrate with an organic material and the product obtained
EP1644553A4 (en) High rate deposition for the formation of high quality optical coatings
CN111519168A (en) Protective coating and preparation method thereof
JP2022532755A (en) Low dielectric constant film and its manufacturing method
KR20010038850A (en) Method of enhancing releasing effect of mold using low temperature plasma processes
JPS612738A (en) Surface treatment of synthetic resin molded article
CN101023202A (en) Method for improving the electrical connection properties of the surface of a product made from a polymer-matrix composite
Zou et al. Plasma polymerization and deposition of glycidyl methacrylate on Si (100) surface for adhesion improvement with polyimide
Wrobel et al. Preparation, structure, and some properties of organosilicon thin polymer films obtained by plasma polymerization
KR20010094026A (en) Method of Enhancing Releasing Effect of Mold using Plasma Polymerization Process and Sputtering Process
KR100375131B1 (en) A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof
CN110527950A (en) A kind of adhesive
KR100787891B1 (en) Thin film manufacturing method by plasma chemical deposition
CN113286667B (en) Plasma polymerization process for coating a substrate with a polymer
KR20020095805A (en) A Method of Coating Body with Parylene
Shinoda et al. Adhesion between polycarbonate substrate and SiO2 film formed from silane and nitrous oxide by plasma‐enhanced chemical vapor deposition
Guo et al. Amorphous hydrogenated carbon coatings on IC packaging mold by ECR-CVD system
KR20010046335A (en) Method of Enhancing Adherence Coated Metal to Plastic Surface
KR100489639B1 (en) Carbon film coated emc molding die for semiconductor packaging and coating method thereof
Costantino et al. Improvement of the adhesion of silicone to aluminum using plasma polymerization
KR0133431B1 (en) Method for carbon coating
KR20230020710A (en) Method and device for coating with parylene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application