KR20010036249A - Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials - Google Patents

Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials Download PDF

Info

Publication number
KR20010036249A
KR20010036249A KR1019990043181A KR19990043181A KR20010036249A KR 20010036249 A KR20010036249 A KR 20010036249A KR 1019990043181 A KR1019990043181 A KR 1019990043181A KR 19990043181 A KR19990043181 A KR 19990043181A KR 20010036249 A KR20010036249 A KR 20010036249A
Authority
KR
South Korea
Prior art keywords
pmma
peo
polymethylmethacrylate
cells
formula
Prior art date
Application number
KR1019990043181A
Other languages
Korean (ko)
Other versions
KR100367041B1 (en
Inventor
김영하
박기동
김수현
박형달
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR10-1999-0043181A priority Critical patent/KR100367041B1/en
Publication of KR20010036249A publication Critical patent/KR20010036249A/en
Application granted granted Critical
Publication of KR100367041B1 publication Critical patent/KR100367041B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: A poly-methyl methacrylate having hydrophilic surface and a use thereof as ophthalmic material are provided, which maintains an optical property of PMMA and which reduces adhesion growth of cell and protein. CONSTITUTION: A preparation method of poly-methyl methacrylate having hydrophilic surface is formed by bonding poly-ethylene oxide derivative of formula: NH2-R1-O-(CH2CH2O)n-X containing amino group at the end in the presence of catalyst at the surface of poly-methyl methacrylate chemically. In formula, R1 is (CH2CH2)2-3, n is 15-300, X is hydrogen, CH3, (CH2CH2)2-3-NH2 or (CH2CH2)2-3-NH-(CH2)3-SO3H. The molecular weight of poly-ethylene oxide is 200-10,000. The catalyst is tri-ethylamine.

Description

표면이 친수화된 폴리메틸메타크릴레이트 및 안과용 재료로서의 그의 용도 {Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials}Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials}

본 발명은 생체적합성이 우수한 안과용 재료 및 그의 제조 방법에 관한 것이다. 더욱 구체적으로는 폴리메틸메타크릴레이트 (PMMA) 표면에 친수성 폴리에틸렌옥사이드 (PEO, 일명 폴리에틸렌글리콜 (PEG)으로도 부름)계 화합물을 화학적으로 결합시키거나 또는 그라프트중합하여 친수화 처리함으로써 제조되는 생체적합성이 우수하고, 단백질 및 세포의 점착이 억제되는 안과용 재료 및 그의 제조 방법에 관한 것이다.The present invention relates to an ophthalmic material excellent in biocompatibility and a manufacturing method thereof. More specifically, a biological body prepared by chemically bonding a hydrophilic polyethylene oxide (PEO, also called polyethylene glycol (PEG))-based compound to the surface of polymethyl methacrylate (PMMA) or graft polymerization to hydrophilize The present invention relates to an ophthalmic material having excellent suitability and suppressing adhesion of proteins and cells, and a method for producing the same.

종래, PMMA는 광학적으로 투명하고 내후성 및 체내 안정성이 우수하여 경성 콘택트렌즈, 인공수정체, 인공각막 등의 안과용 재료로 폭넓게 이용되고 있다.Conventionally, PMMA has been widely used in ophthalmic materials such as hard contact lenses, intraocular lenses, and artificial corneas because of its optical transparency, excellent weather resistance and stability in the body.

그러나, PMMA 소재의 경성 콘택트렌즈는 착용시에 이물감이 크고, 산소투과성이 낮은 단점이 있어, 뒤이어 개발된 폴리히드록시에틸메타크릴레이트 (PHEMA)계의 연성 콘택트렌즈에게 경쟁력을 거의 상실하고 있다.However, a hard contact lens made of PMMA material has a disadvantage of having a large foreign matter when worn and low oxygen permeability, and thus loses competitiveness to a polyhydroxyethyl methacrylate (PHEMA) -based flexible contact lens.

또한, PMMA는 안구내에 삽입되는 인공수정체로서 실리콘과 함께 보편적으로 사용되고 있다. 또한, PMMA의 생체적합성을 개선하기 위하여 표면이 친수화된 제품들도 개발되고 있다. 그 예로서 헤파린이 코팅된 인공수정체가 개발 이용되었으며, 이는 염증반응이 상대적으로 감소된다는 보고도 있다 (M. Spangberg등, ″Improved biocompatibility of intraocular lenses by heparin surface modification: a 12-month implantation study in monkeys″, J. Cataract Refract Surg 16, 170-7, 1990).PMMA is also commonly used with silicone as an intraocular lens inserted into the eye. In addition, products with surface-hydrophilic properties have also been developed to improve the biocompatibility of PMMA. For example, heparin-coated intraocular lenses have been developed and used, which has been reported to reduce inflammatory response (M. Spangberg et al., ″ Improved biocompatibility of intraocular lenses by heparin surface modification: a 12-month implantation study in monkeys ″, J. Cataract Refract Surg 16, 170-7, 1990).

한편, PMMA를 소재로 한 인공각막은 1950년대부터 연구되었고, 1960년대에는 카도나 (Cardona)가 볼트-너트형 제품을 개발하여 최근까지 이용되고 있으나, 만족한 결과를 얻지 못하고 있다. 이제까지 개발된 인공각막이 실패한 원인은 크게 두 가지로서, 첫째 안구 표면에 이식된 인공각막이 주위 조직에 견고하게 유착되지 않아 (즉, 생체적합성이 부족하여) 이탈되는 경우와, 둘째 반흔조직이 인공각막 표면에 부착 성장되어 광학부를 덮어버려 빛의 통과가 불가능하게 되는 경우로 나눌 수 있다. 따라서, 이상적인 인공각막의 개발을 위해서는 적합한 디자인과 함께, 이식된 주위 조직과의 생체적합성이 우수하고 반흔조직의 부착 성장이 억제되는 재료의 개발이 필수적이다.On the other hand, artificial corneas based on PMMA have been studied since the 1950s, and in the 1960s, Cardona developed bolt-nut products and used them until recently, but has not been satisfactory. There have been two major causes of failure of the developed corneals: first, the cornea implanted on the ocular surface is detached (ie, lack of biocompatibility) due to tight adhesion to surrounding tissues, and the second scar tissue is artificial. It can be divided into a case where the growth of the adhesion to the corneal surface and covering the optical part to pass the light is impossible. Therefore, in order to develop an ideal artificial cornea, it is essential to develop a material that has a suitable design and excellent biocompatibility with the transplanted surrounding tissue and suppresses the adhesion growth of scar tissue.

현재, 상기한 바와 같이, 인공수정체 및 인공각막으로 사용되고 있는 PMMA는 매우 큰 소수성을 갖는 고분자 소재로서, 세포 및 단백질의 부착 성장은 친수성 재료의 표면에서는 어려운 반면 소수성 재료에서는 매우 용이하게 이루어질 수 있다는 것이 알려지면서, 이들 PMMA의 표면을 친수화시키기 위한 노력들이 있어 왔다.Currently, as described above, PMMA, which is used as an intraocular lens and an artificial cornea, is a polymer material having a very high hydrophobicity, and it can be seen that adhesion growth of cells and proteins is difficult on the surface of the hydrophilic material, but very easily on the hydrophobic material. As is known, efforts have been made to hydrophilize the surfaces of these PMMAs.

이와 관련하여, 폴리에틸렌옥시드 (PEO)가 표면에 결합된 소재는 혈액 성분, 단백질, 세포, 박테리아 등의 부착이 현저하게 감소된다는 사실이 알려졌으며, 술폰산기로 치환된 PEO 유도체가 결합된 소재의 경우 더욱 효과적이라는 사실이 입증된 바 있다 (Ki Dong Park and Young Ha Kim et al. ″Bacterial adhesion on PEG modified PU surfaces″, Biomaterials, 19, 851, 1998; ″Plasma protein adsorption to sulfonated PEO-grafted PU surface″, J. Biomed. Mater. Res., 30, 23, 1996).In this regard, it has been known that polyethylene oxide (PEO) -bound materials significantly reduce adhesion of blood components, proteins, cells, bacteria, etc. More effective (Ki Dong Park and Young Ha Kim et al. ″ Bacterial adhesion on PEG modified PU surfaces ″, Biomaterials, 19, 851, 1998; ″ Plasma protein adsorption to sulfonated PEO-grafted PU surface ″ , J. Biomed. Mater. Res., 30, 23, 1996).

또한, PEO를 함유하는 공중합체 (예로서, 미국 특허 제5,115,056호 및 제4,871,785호) 또는 PEO를 함유하는 코팅용 화합물 (예로서, 미국 특허 제5,525,691호) 등을 사용하여 콘택트렌즈의 단백질 흡착을 억제함으로써 착용 중의 혼탁화를 방지하는 방법도 제안되었다.In addition, protein adsorption of contact lenses may be carried out using copolymers containing PEO (e.g., U.S. Pat.Nos. 5,115,056 and 4,871,785) or coating compounds containing PEO (e.g., U.S. Patent No. 5,525,691). There has also been proposed a method of preventing cloudiness during wear by suppressing it.

그러나, 상기 방법에서, 이들 코팅용 화합물은 단지 소재의 표면에 물리적으로 결합되므로 사용 중에 눈물 등에 의하여 코팅층이 씻겨 나갈 가능성이 커서 항구적이지 못하며 이들 화합물들이 코팅된 공중합체는 소재 전체의 특성을 변화시킨다는 단점이 있다.However, in this method, these coating compounds are only physically bonded to the surface of the material, so that the coating layer is likely to be washed away by tears or the like during use, which is not permanent, and the copolymer coated with these compounds changes the properties of the entire material. There are disadvantages.

따라서, PMMA의 광학적 특성을 그대로 유지하면서, 세포 및 단백질의 부착 성장을 감소시킬 수 있는 방법의 개발이 요망되고 있다.Therefore, there is a desire for development of a method capable of reducing the adhesion growth of cells and proteins while maintaining the optical properties of PMMA.

따라서, 본 발명의 목적은 PMMA 표면을 친수화시켜, 세포 및 단백질의 부착 성장을 보다 감소시키면서, PMMA의 광학적 특성은 그대로 유지하는 방법을 제공하는 것이다.It is therefore an object of the present invention to provide a method of hydrophilizing the surface of PMMA, which further reduces the adhesion growth of cells and proteins, while maintaining the optical properties of the PMMA.

상기 본 발명의 목적은 PMMA 등의 고분자 소재의 표면을 화학적 표면 개질법을 사용하여 친수화하는 방법에 의하여 달성될 수 있다.The object of the present invention can be achieved by a method of hydrophilizing the surface of a polymer material such as PMMA using chemical surface modification.

본 발명에 따라, PMMA의 고분자 표면을 친수화하는 방법은 PEO 유도체의 친수성 화합물을 고분자 표면에 화학적으로 결합시키거나, 또는 친수성 단량체를 고분자 표면에 그라프트중합시킴으로써 친수화된 PMMA가 제조된다. 이러한, PEO 유도체의 화학적 결합이나 그라프트중합법은 비교적 균일한 표면을 얻는 장점이 있고 화학적인 결합이므로 물리적 세척 등에 의하여 소실될 가능성이 없는 안정한 방법이다.According to the present invention, the method of hydrophilizing the polymer surface of the PMMA hydrophilized PMMA is prepared by chemically bonding the hydrophilic compound of the PEO derivative to the polymer surface, or by graft polymerization of the hydrophilic monomer on the polymer surface. Such chemical bonding or graft polymerization of PEO derivatives has the advantage of obtaining a relatively uniform surface and is a stable method that is unlikely to be lost by physical washing since it is a chemical bond.

본 발명의 한 구현예에 따라, PMMA 고분자 표면에 친수성 화합물인 PEO 유도체를 화학적으로 결합시킴으로써 표면 친수화된 PMMA가 제조된다.According to one embodiment of the present invention, surface hydrophilized PMMA is prepared by chemically bonding a PEO derivative, which is a hydrophilic compound, to the surface of the PMMA polymer.

일반적으로, PMMA는 에스테르 결합을 가지고 있는 고분자로서 화학적으로 상당히 안정한 고분자이다. 그러나, 적당한 촉매 존재하에서는 에스테르기가 활성화되어 1급- 또는 2급 아민 화합물과 반응하여 치환될 수 있다. 따라서, 말단에 아미노기를 함유하는 PEO 유도체와 PMMA를 반응시킴으로써 PMMA의 표면에 PEO 유도체를 결합시킬 수 있다.In general, PMMA is a chemically stable polymer that has an ester bond. However, in the presence of a suitable catalyst, the ester group can be activated and reacted with the primary- or secondary amine compound to be substituted. Accordingly, the PEO derivative can be bonded to the surface of the PMMA by reacting the PMO with the PEO derivative containing an amino group at the terminal.

상기 방법에서 사용될 수 있는 촉매로는 강염기성 화합물인 수산화알칼리금속, 트리알킬아민 등을 들 수 있다.Catalysts that can be used in the above method include alkali metal hydroxides, trialkylamines and the like which are strong base compounds.

사용되는 PEO 유도체는 양 말단 또는 한쪽 말단에 아미노기를 함유한 화합물로서 하기 화학식 1의 구조를 갖는다.The PEO derivative to be used is a compound containing an amino group at both ends or one end, and has a structure represented by the following formula (1).

(식중, R1은 (CH2CH2)2-3이고, n은 15 내지 300이며, X는 수소, CH3, (CH2CH2)2-3-NH2또는 (CH2CH2)2-3-NH-(CH2)3-SO3H이다)Wherein R 1 is (CH 2 CH 2 ) 2-3 , n is 15 to 300, X is hydrogen, CH 3 , (CH 2 CH 2 ) 2-3 -NH 2 or (CH 2 CH 2 ) 2-3 -NH- (CH 2 ) 3 -SO 3 H)

상기 식에서 X가 술폰산 말단기인 경우는 PEO 말단의 히드록실기 또는 아미노기에 프로판술폰 등을 반응시켜 쉽게 도입할 수 있다 (참조. Dong Keun Han and Young Ha Kim et al. ″Preparation and surface properties of PEO-sulfonate grafted PU for enhanced blood compatibility″, J. Biomater. Sci., Polymer Ed., 4, 579, 1993; Ki Dong Park and Young Ha Kim et al. ″Bacterial adhesion on PEG modified PU surfaces″, Biomaterials, 19, 851, 1998).In the above formula, when X is a sulfonic acid end group, it can be easily introduced by reacting propane sulfone with a hydroxyl group or an amino group at the PEO terminal (see Dong Keun Han and Young Ha Kim et al. ″ Preparation and surface properties of PEO- sulfonate grafted PU for enhanced blood compatibility ″, J. Biomater.Sci., Polymer Ed., 4, 579, 1993; Ki Dong Park and Young Ha Kim et al. ″ Bacterial adhesion on PEG modified PU surfaces ″, Biomaterials, 19, 851, 1998).

일반적으로, 본 발명에 사용되는 PEO 유도체의 분자량에는 특별한 제한은 없으나, 친수화의 효과 및 생리학적인 기능을 고려할 때 분자량 200 내지 10,000이 바람직하며, 500 내지 5,000의 범위가 더욱 바람직하다. 이러한 PEO 유도체는 물에 잘 녹으므로 수용액 상에서 반응을 진행할 수 있으나, 경우에 따라 유기용매를 첨가할 수 있다. 이 경우, 유기용매로 인한 PMMA의 팽윤 및 표면 손상이 야기될 수도 있어, 미반응된 PEO 유도체는 반응 후에 물로 충분히 세척하여 제거하는 것이 바람직하다.In general, the molecular weight of the PEO derivative used in the present invention is not particularly limited, but considering the effect of hydrophilization and physiological function, the molecular weight of 200 to 10,000 is preferred, and the range of 500 to 5,000 is more preferred. Since the PEO derivative is well dissolved in water, the reaction may proceed in an aqueous solution, but in some cases, an organic solvent may be added. In this case, swelling and surface damage of PMMA due to the organic solvent may be caused, so that the unreacted PEO derivative is preferably washed with water sufficiently after the reaction and removed.

본 발명의 또 다른 구현예에 따라, PMMA 표면에 PEO를 함유하는 아크릴산계 또는 메타크릴산계 친수성 단량체를 그라프트중합시킴으로써 친수화된 PMMA가 제조된다.According to another embodiment of the present invention, a hydrophilized PMMA is prepared by graft polymerizing an acrylic or methacrylic acid based hydrophilic monomer containing PEO on the surface of the PMMA.

PMMA 자체에 중합을 개시할 수 있는 관능기가 없으므로, PMMA 표면에 친수성 단량체를 그라프트중합시키기 위해서는 전자선 조사, 플라즈마 처리, 오존 처리 등의 방법으로 반응점을 도입하여야 한다. 그러나, 전자선 또는 플라즈마 처리법은 시편의 모양이나 부위에 따라 균일하게 처리하는 것이 어려우므로, 기체인 오존을 사용하여 균일하게 반응시키는 것이 바람직하다.Since PMMA itself does not have a functional group capable of initiating polymerization, in order to graft polymerize the hydrophilic monomer on the surface of PMMA, a reaction point should be introduced by electron beam irradiation, plasma treatment, ozone treatment, or the like. However, since the electron beam or the plasma treatment method is difficult to uniformly treat according to the shape and the part of the specimen, it is preferable to uniformly react with ozone which is a gas.

즉, 오존으로 고분자 표면을 처리하면 과산화기가 생성되고, 생성된 과산화기는 약 50 ℃ 이상에서 분해되어 과산화 라디칼이 생성되므로 단량체의 그라프트중합을 개시할 수 있다.That is, when the surface of the polymer is treated with ozone, peroxide groups are generated, and the generated peroxide groups are decomposed at about 50 ° C. or more to generate peroxide radicals, thereby enabling graft polymerization of monomers.

본 발명의 방법에 사용될 수 있는 아크릴산계 또는 메타크릴산계 친수성 단량체로는 카르복실산기를 함유하는 아크릴산과 메타크릴산; 히드록실기를 함유하는 히드록시에틸(메트)아크릴레이트와 히드록시프로필(메트)아크릴레이트; N-메틸피롤리돈; 비닐술폰산 등과 곁가지 (pendant)에 PEO를 함유하는 PEO(메트)아크릴레이트 등을 들 수 있다. 이중, PEO를 함유하는 유도체의 구조는 하기 화학식 2로 나타낼 수 있으며, 효과적인 PEO의 분자량의 범위는 상술한 바와 같다.Acrylic or methacrylic acid-based hydrophilic monomers that can be used in the process of the present invention include acrylic acid and methacrylic acid containing carboxylic acid groups; Hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate containing a hydroxyl group; N-methylpyrrolidone; PEO (meth) acrylate etc. which contain PEO in pendant sulfonic acid etc. are mentioned. Of these, the structure of the derivative containing PEO can be represented by the formula (2), the range of the molecular weight of the effective PEO is as described above.

(식중, R2은 수소 또는 CH3이고, n은 15 내지 300이며, Y는 수소, (CH2)3-SO3H 또는 CH3이다)Wherein R 2 is hydrogen or CH 3 , n is 15 to 300 and Y is hydrogen, (CH 2 ) 3 -SO 3 H or CH 3 )

본 발명의 방법에 따라 제조된 친수화된 PMMA의 특성을 평가하기 위하여 친수화 정도, 반흔조직의 부착 정도를 하기 방법에 따라 측정하였다.In order to evaluate the properties of the hydrophilized PMMA prepared according to the method of the present invention, the degree of hydrophilization and adhesion of scar tissue were measured according to the following method.

먼저, 표면의 친수화 정도는 접촉각을 측정하여 정량적으로 평가하였다. 접촉각은 방법에 따라 정적 (static) 접촉각과 동적 (dynamic) 접촉각이 있는데, 동적 접촉각은 후퇴각 (receding angle)이 작을수록 친수성이 큰 것이다. 동적 접촉각 측정 장치 (Wilhelmy balance, 미국, Cahn Instrument Inc., DCA 315)로 5개의 시편을 측정하여 평균하였다.First, the degree of hydrophilization of the surface was evaluated quantitatively by measuring the contact angle. The contact angle has a static contact angle and a dynamic contact angle depending on the method. The dynamic contact angle has a higher hydrophilicity with a smaller receding angle. Five specimens were measured and averaged with a dynamic contact angle measuring device (Wilhelmy balance, Cahn Instrument Inc., DCA 315).

표면이 개질된 PMMA에 반흔조직의 부착 정도는 각막세포 (keratocyte)를 이용한 부착 배양 실험으로 시편에 부착된 세포의 숫자를 측정 평가하였다. 상술하면, 표면개질한 PMMA 시편들을 24 웰 배양접시에 순간접착제로 고정시키고, 10% 소태아 혈청 (FBS)를 함유하는 최소 필수영양액 (minimum essential medium)에 각막세포를 4 x105cells/ml로 부유시킨 영양액을 웰당 1 ml씩 분주한 후에 5% CO2배양기에서 24시간 배양하였다. 배양액을 제거하고, 시편에 부착된 세포를 트립신으로 처리하고 채취하여 트리판블루(trypan blue)로 염색하여 살아있는 세포 수를 측정 비교하였다. 측정시, 10개의 시편을 측정하여 평균하였다.The degree of adhesion of scar tissue to the surface-modified PMMA was evaluated by measuring the number of cells attached to the specimen by an adhesion culture experiment using keratocytes. Specifically, surface-modified PMMA specimens were immobilized in a 24-well culture dish with instant adhesive and corneal cells at 4 x 10 5 cells / ml in a minimum essential medium containing 10% fetal bovine serum (FBS). Suspended nutrient solution was dispensed 1 ml per well and incubated for 24 hours in a 5% CO 2 incubator. The culture solution was removed, and the cells attached to the specimens were treated with trypsin, collected, stained with trypan blue, and the number of living cells was measured and compared. In the measurement, ten specimens were measured and averaged.

하기 실시예를 사용하여 본 발명이 더욱 구체적으로 설명되지만, 본 발명은 이들 실시예에 의하여 제한되는 것은 아니다.Although the present invention is described in more detail using the following examples, the invention is not limited by these examples.

〈실시예 1〉<Example 1>

실험용 PMMA 시이트 (LG화학 제품, 두께 2mm)를 1cm x 3cm 크기로 잘라 에탄올로 세척한 후 건조하였다. 여기에, 양 말단에 아미노기를 함유하는 디아미노 PEO (NH2-CH2CH2-PEO-CH2CH2-NH2, 분자량 1,000, Nippon Oil and Fats Co., 일본 동경 소재) 10 g 및 트리에틸아민 (Yakuri Pure Chemicals Co., 일본 오사카 소재) 10 g을 넣고 6시간 동안 60℃에서 반응시킨 후 2차 증류수로 2일 동안 세척하였다.The experimental PMMA sheet (LG Chemical, 2 mm thick) was cut into 1 cm x 3 cm size, washed with ethanol and dried. 10 g of diamino PEO (NH 2 -CH 2 CH 2 -PEO-CH 2 CH 2 -NH 2 , molecular weight 1,000, Nippon Oil and Fats Co., Tokyo, Japan) containing an amino group at both ends thereof and a tree 10 g of ethylamine (Yakuri Pure Chemicals Co., Osaka, Japan) was added thereto, reacted at 60 ° C. for 6 hours, and then washed with secondary distilled water for 2 days.

동적 접촉각을 측정한 결과, 원래 PMMA의 전진각 (advancing angle)은 97도, 후퇴각 (receding angle)은 55도이었으나 처리 후에는 전진각 75도, 후퇴각 42도로 감소하여 친수성이 증가하였음을 확인하였다.As a result of measuring the dynamic contact angle, the advancing angle of the original PMMA was 97 degrees and the receding angle was 55 degrees, but after treatment, the advancing angle decreased by 75 degrees and the retreat angle by 42 degrees. It was.

각막세포의 부착 배양 실험 결과, 처리 전의 PMMA 표면에는 72x104개/ml의 각막세포가 부착되었으나 표면이 개질된 후의 PMMA에는 15x104개/ml의 세포만이 부착되어 있어, 그 부착 세포수가 크게 감소되었음을 알 수 있었다.Corneal Cell Attachment As a result of culture experiments, 72x10 4 cells / ml of corneal cells were attached to the surface of PMMA before treatment, but only 15x10 4 cells / ml of cells were attached to PMMA after surface modification. It was found.

〈실시예 2〉<Example 2>

분자량이 3,000인 디아미노PEO를 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 표면 개질된 PMMA 시편을 제조하였다. 수득된 PMMA 시편에서의 후퇴각은 40도, 부착된 각막세포는 13x104개/ml이었다.A surface modified PMMA specimen was prepared in the same manner as in Example 1 except that diaminoPEO having a molecular weight of 3,000 was used. The retraction angle in the obtained PMMA specimens was 40 degrees, and the attached corneal cells were 13x10 4 cells / ml.

〈실시예 3〉<Example 3>

분자량이 5,000인 디아미노PEO 15 g과 프로판술폰 1.5 g을 테트라히드로푸란 50 ml에서 반응시킨 후 침전물을 분리 정제하여, 한쪽 끝에 술폰산기가 도입된 아미노PEO술폰산 (NH2-PEO-SO3H)을 제조하였다. 아미노PEO술폰산 15 g, 트리에틸아민 8 g, 물 2 g을 사용하여 실시예 1에서와 동일한 방법을 수행하여 표면처리된 PMMA를 제조하였다. 표면처리된 PMMA의 후퇴각은 32도, 부착된 각막세포는 10x104개/ml이었다.15 g of PEO-diamino-propane sulfone and 1.5 g of purified by separating the precipitate was reacted in 50 ml of tetrahydrofuran, the amino acid groups are introduced at one end PEO acid (NH 2 -PEO-SO 3 H ) having a molecular weight of 5,000 to Prepared. Surface treated PMMA was prepared in the same manner as in Example 1 using 15 g of aminoPEOsulfonic acid, 8 g of triethylamine, and 2 g of water. The retraction angle of the surface-treated PMMA was 32 degrees, and the attached corneal cells were 10 × 10 4 cells / ml.

〈실시예 4〉<Example 4>

아미노PEO술폰산의 분자량이 1,000인 것을 제외하고는 실시예 3과 동일하게 반응시켰다. 처리된 PMMA의 후퇴각은 35도, 부착된 각막세포는 11x104개/ml이었다.The reaction was carried out in the same manner as in Example 3 except that the molecular weight of aminoPEOsulfonic acid was 1,000. The retraction angle of the treated PMMA was 35 degrees, and the attached corneal cells were 11 × 10 4 cells / ml.

〈실시예 5〉<Example 5>

PMMA 시편 (크기 1cm x 3cm, 두께 2mm)을 오존발생기 (Model:OZ06, 미국 Peak Scientific Instruments Ltd.)를 사용하여 상온에서 산소 유량 4.5 리터/분, 산소 압력 1 bar로 2시간 동안 오존 처리한 후, 20 중량%의 PEO 1000 아크릴레이트(PEGA, PEO의 분자량 1,000, Nippon Oil and Fats Co., 일본 동경 소재) 수용액에 넣어 질소 분위기하에서 60 ℃로 24 시간동안 반응시켜 그라프트중합시켰다. 반응 후, 2일 동안 2차 증류수로 세척하여 미반응 PEGA를 제거하였다.PMMA specimens (size 1 cm x 3 cm, thickness 2 mm) were ozonated using an ozone generator (Model: OZ06, Peak Scientific Instruments Ltd., USA) for 2 hours at room temperature with an oxygen flow rate of 4.5 liters / minute and an oxygen pressure of 1 bar. , 20% by weight of PEO 1000 acrylate (PEGA, molecular weight of PEO 1,000, Nippon Oil and Fats Co., Tokyo, Japan) in an aqueous solution was reacted for 24 hours at 60 ℃ under a nitrogen atmosphere was graft polymerized. After the reaction, unreacted PEGA was removed by washing with distilled water for 2 days.

그라프트 중합처리후의 PMMA의 후퇴 접촉각은 44도로서 미처리된 PMMA의 97도보다 크게 감소하였고, 부착된 각막세포는 72x104개/ml에서 13x104개/ml으로 감소하였다.The receding contact angle of PMMA after graft polymerization was 44 degrees, which was significantly lower than 97 degrees of untreated PMMA, and attached corneal cells decreased from 72x10 4 cells / ml to 13x10 4 cells / ml.

〈실시예 6〉<Example 6>

사용된 PEGA의 PEO 분자량이 3,000인 것을 제외하고는 실시예 5와 동일하게 수행하였다. 처리된 PMMA의 후퇴각은 41도, 부착된 각막세포는 11x104개/ml이었다.The same procedure as in Example 5 was carried out except that the PEO molecular weight of PEGA used was 3,000. The retraction angle of the treated PMMA was 41 degrees and the attached corneal cells were 11 × 10 4 cells / ml.

〈실시예 7〉<Example 7>

PEGA 대신 PEO의 분자량이 1,000인 PEO메타크릴레이트 (PEGMA)를 사용한 것을 제외하고는 실시예 5와 동일하게 수행하였다. 처리된 PMMA의 후퇴각은 36도, 부착된 각막세포는 14x104개/ml이었다.The same procedure as in Example 5 was used except that PEO methacrylate (PEGMA) having a molecular weight of PEO of 1,000 was used instead of PEGA. The retraction angle of the treated PMMA was 36 degrees and the attached corneal cells were 14 × 10 4 cells / ml.

〈실시예 8〉<Example 8>

PEGMA의 PEO 히드록실기 말단을 술폰산기로 치환하였다. PEGMA 12 g을 무수 테트라히드로푸란에서 나트륨과 반응시킨 후 프로판술폰 3 g과 반응시켜, 분리 정제한 후, 수득된 술폰산PEGMA를 사용하여 실시예 5와 동일하게 수행하였다. 처리된 PMMA의 후퇴각은 23도, 부착된 각막세포는 9x104개/ml이었다.The PEO hydroxyl group ends of PEGMA were substituted with sulfonic acid groups. 12 g of PEGMA was reacted with sodium in anhydrous tetrahydrofuran followed by 3 g of propanesulfone to separate and purify, and then the same was carried out as in Example 5 using the sulfonic acid PEGGMA obtained. The retraction angle of the treated PMMA was 23 degrees, and the attached corneal cells were 9 × 10 4 cells / ml.

〈실시예 9〉<Example 9>

임상실험Clinical trial

상하면의 직경이 각각 4mm 및 7mm이고, 길이가 3.5mm인 실린더형의 인공각막을 PMMA로 제작하여 각막과 수정체가 제거된 환자의 안구 내에 이식하였다. 직경이 작은 부위가 안구 바깥 쪽으로 노출되어 광학부를 이루고 광학부 주위에는 전면 플랜지가 부착되었으며 직경이 큰 쪽은 지지부가 부착되어 안구 내 후낭에 설치되었다. 통상의 PMMA 인공각막은 광학부 표면의 눈물이 쉽게 마르고 실린더 및 광학부에 세포가 부착 성장하여 시력에 장애가 되었으나 표면이 친수화된 PMMA 제품은 이러한 문제점들이 제거되어 우수한 기능을 나타내었다.Cylindrical artificial corneas of 4 mm and 7 mm in diameter and 3.5 mm in length were respectively made of PMMA and implanted into the eye of the patient with the cornea and lens removed. A small diameter part was exposed to the outside of the eyeball to form an optical part, and a front flange was attached around the optical part. Conventional PMMA corneas were easily impaired by tears on the optical surface and cells attached to the cylinders and optical parts. However, the surface-hydrophilic PMMA products showed excellent function by removing these problems.

본 발명에 따라, 친수성이 커서 체액의 습윤성이 우수하고 안구에 시술시 반흔조직의 부착이 감소되는 표면 친수화된 PMMA의 안과용 재료가 수득될 수 있다.According to the present invention, an ophthalmic material of surface-hydrophilized PMMA can be obtained, which has a high hydrophilicity, is excellent in wettability of body fluids, and reduces adhesion of scar tissue at the time of procedure to the eye.

Claims (7)

폴리메틸메타크릴레이트의 표면에 촉매의 존재하에서 말단에 아미노기를 함유하는 화학식 1로 표시되는 폴리에틸렌옥시드 유도체를 화학적으로 결합시키는 것을 포함하는 표면이 친수화된 폴리메틸메타크릴레이트의 제조 방법.A method for producing a surface-hydrophilized polymethyl methacrylate comprising chemically bonding a polyethylene oxide derivative represented by the formula (1) containing an amino group at an end thereof in the presence of a catalyst on the surface of the polymethyl methacrylate. 〈화학식 1〉<Formula 1> (식중, R1은 (CH2CH2)2-3이고, n은 15 내지 300이며, X는 수소, CH3, (CH2CH2)2-3-NH2또는 (CH2CH2)2-3-NH-(CH2)3-SO3H이다)Wherein R 1 is (CH 2 CH 2 ) 2-3 , n is 15 to 300, X is hydrogen, CH 3 , (CH 2 CH 2 ) 2-3 -NH 2 or (CH 2 CH 2 ) 2-3 -NH- (CH 2 ) 3 -SO 3 H) 제1항에 있어서, 상기 폴리에틸렌옥시드의 분자량이 200 내지 10,000, 더욱 바람직하기로는 500 내지 5,000인 방법.The method of claim 1 wherein the polyethylene oxide has a molecular weight of 200 to 10,000, more preferably 500 to 5,000. 제1항에 있어서, 상기 촉매가 트리에틸아민인 방법.The process of claim 1 wherein the catalyst is triethylamine. 폴리메틸메타크릴레이트의 표면에, 하기 화학식 2로 표시되는 분지쇄에 폴리에틸렌옥시드를 함유하는 아크릴산 또는 메타크릴산 단량체를 그라프트중합시키는 것을 포함하는 표면이 친수화된 폴리메틸메타크릴레이트의 제조 방법.Preparation of the surface-hydrophilized polymethylmethacrylate including graft-polymerizing acrylic acid or methacrylic acid monomer containing polyethylene oxide in the branched chain represented by following General formula (2) on the surface of polymethylmethacrylate. Way. 〈화학식 2〉<Formula 2> (식중, R2은 수소 또는 CH3이고, n은 15 내지 300이며, Y는 수소, (CH2)3-SO3H 또는 CH3이다)Wherein R 2 is hydrogen or CH 3 , n is 15 to 300 and Y is hydrogen, (CH 2 ) 3 -SO 3 H or CH 3 ) 제4항에 있어서, 상기 폴리에틸렌옥시드의 분자량이 200 내지 10,000, 더욱 바람직하기로는 500 내지 5,000인 방법.The method of claim 4 wherein the polyethylene oxide has a molecular weight of 200 to 10,000, more preferably 500 to 5,000. 제4항에 있어서, 상기 그라프트중합은 폴리메틸메타크릴레이트를 오존으로 처리하여 생성되는 과산화기에 의하여 수행되는 방법.The method of claim 4, wherein the graft polymerization is performed by a peroxide group generated by treating polymethylmethacrylate with ozone. 제1항 또는 제4항에 따른 방법으로 제조된 안과용 재료로서의 친수화된 폴리메틸메타크릴레이트.Hydrophilized polymethylmethacrylate as an ophthalmic material prepared by the process according to claim 1.
KR10-1999-0043181A 1999-10-07 1999-10-07 Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials KR100367041B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0043181A KR100367041B1 (en) 1999-10-07 1999-10-07 Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0043181A KR100367041B1 (en) 1999-10-07 1999-10-07 Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials

Publications (2)

Publication Number Publication Date
KR20010036249A true KR20010036249A (en) 2001-05-07
KR100367041B1 KR100367041B1 (en) 2003-01-15

Family

ID=19614300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0043181A KR100367041B1 (en) 1999-10-07 1999-10-07 Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials

Country Status (1)

Country Link
KR (1) KR100367041B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725147A (en) * 2022-11-14 2023-03-03 广州悦清再生医学科技有限公司 Hydrophilic modified polymethyl methacrylate material and application thereof in preparing amnion ring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156056A (en) * 1991-12-10 1993-06-22 Seiko Epson Corp Plastic film and its production
US6509098B1 (en) * 1995-11-17 2003-01-21 Massachusetts Institute Of Technology Poly(ethylene oxide) coated surfaces
KR100222387B1 (en) * 1996-10-22 1999-10-01 윤덕용 A composite of polyelectrolyte
KR100333277B1 (en) * 1999-05-31 2002-04-24 전흥재 The manufacturing process of PMMA-graft-acrylic acid-acrylamide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725147A (en) * 2022-11-14 2023-03-03 广州悦清再生医学科技有限公司 Hydrophilic modified polymethyl methacrylate material and application thereof in preparing amnion ring
CN115725147B (en) * 2022-11-14 2023-08-29 广州悦清再生医学科技有限公司 Hydrophilic modified polymethyl methacrylate material and application thereof in preparation of amniotic membrane ring

Also Published As

Publication number Publication date
KR100367041B1 (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US6387379B1 (en) Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
TWI441835B (en) Novel polymers
US5290548A (en) Surface modified ocular implants, surgical instruments, devices, prostheses, contact lenses and the like
US4961954A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
US5094876A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
US5100689A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
ES2235935T3 (en) MATERIALS FOR OTORRINOLARINGOLOGICAL DEVICES AND FOLDING OPHTHALMICS.
US6586038B1 (en) Process for the modification of a material surface
US6533415B2 (en) Ocular lens material having hydrophilic surface and process for preparing the same
US5652014A (en) Medicament coated refractive anterior chamber ocular implant
AU2003225338B2 (en) Biomedical adhesive
JP2992556B2 (en) Surface-modified medical instruments
US6582754B1 (en) Coating process
CN107698720B (en) Artificial nasolacrimal duct and preparation method thereof
AU1440295A (en) Polyethylene oxide coated intraocular lens
US20020128346A1 (en) Hydrogels
KR20010030994A (en) Four component copolymer and the ocular lens made thereof
Kim et al. Effect of poly (ethylene glycol) graft polymerization of poly (methyl methacrylate) on cell adhesion: In vitro and in vivo study
Wang et al. A double network strategy to improve epithelization of a poly (2-hydroxyethyl methacrylate) hydrogel for corneal repair application
CN110872364A (en) Gel with shape memory function, preparation method and anticoagulation blood vessel stent
JP2003503160A (en) Ophthalmic moldings
EP1095966A2 (en) Process for the modification of a material surface
KR100367041B1 (en) Polymethylmethacrylate with Hydrophilic Surfaces and Use Thereof for Opthalmic Materials
US7892284B2 (en) Intraocular lens and process for producing the same
JPH03103264A (en) Medical implement having surface excellent in bioadaptability and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071130

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee