KR20010020823A - Control apparatus for direct injection type internal combustion engine - Google Patents

Control apparatus for direct injection type internal combustion engine Download PDF

Info

Publication number
KR20010020823A
KR20010020823A KR1020000024691A KR20000024691A KR20010020823A KR 20010020823 A KR20010020823 A KR 20010020823A KR 1020000024691 A KR1020000024691 A KR 1020000024691A KR 20000024691 A KR20000024691 A KR 20000024691A KR 20010020823 A KR20010020823 A KR 20010020823A
Authority
KR
South Korea
Prior art keywords
internal combustion
combustion engine
fuel
cylinder
amount
Prior art date
Application number
KR1020000024691A
Other languages
Korean (ko)
Other versions
KR100383533B1 (en
Inventor
가도타요오이치
Original Assignee
다니구찌 이찌로오, 기타오카 다카시
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다니구찌 이찌로오, 기타오카 다카시, 미쓰비시덴키 가부시키가이샤 filed Critical 다니구찌 이찌로오, 기타오카 다카시
Publication of KR20010020823A publication Critical patent/KR20010020823A/en
Application granted granted Critical
Publication of KR100383533B1 publication Critical patent/KR100383533B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE: A control device of an internal-cylinder injection type engine are provided to maximize the performance of an internal combustion engine by suppressing the knocking of the engine under particular conditions. CONSTITUTION: The control device injectors(11), an air flow sensor(2), a crank angle sensor(5), a throttle valve opening sensor(4), a cylinder discriminator, a knock sensor(15), and an operation controller(8). The injector(11) directly injects fuel to respective cylinders of an internal combustion engine(1). The operation controller(8) calculates the fuel injection amount of the internal combustion engine(1) in accordance with the detection signals of the air flow sensor, the crank angle sensor and the throttle valve opening sensor as well as transmits the fuel injection amount to the injector as an electric signal and controls the fuel injection of the engine.

Description

통내분사식 엔진의 제어장치{CONTROL APPARATUS FOR DIRECT INJECTION TYPE INTERNAL COMBUSTION ENGINE}CONTROL APPARATUS FOR DIRECT INJECTION TYPE INTERNAL COMBUSTION ENGINE}

본 발명은 통내(실린더내)에 연료를 직접 분사하는 통내 분사식의 자동차용 내연기관(엔진)의 연료분사 제어에 관한것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fuel injection control of an internal combustion engine (engine) for automobiles in a cylinder injection type that directly injects fuel into a cylinder (in a cylinder).

도 5는 통내분사시스템을 구비한 내연기관 및 제어장치의 구성을 개략적으로 표시하는 도면이다.FIG. 5 is a diagram schematically showing the configuration of an internal combustion engine and a control device provided with a cylinder injection system. FIG.

도 5에서 자동차용 통내 분사식의 내연기관(1)은 내연기관의 흡기량을 계측하기위한 에어 플로센서(2) 통상은 자동차의 운전자가 조작하는 엑셀 페달과 연동해서 동작하며 상기내연기관의 흡기량을 조절하는 스로틀 밸브(3),스로틀 밸브(3)의 위치를 검출하는 스로틀개도 센서(4),내연기관의 속도와 크랭크축의 위치를 검출하기 위한 크랭크각센서(5), 내연기관의 난기 상태를 검출하는 수단으로 냉각 수온을 검출하는 수온센서(6),내연기관으로부터 배출되는 배기가스의 산소농도를 검출하기위한 O₂센서(7),운전제어장치(8),점화플러그(9),에어바이패스밸브(10),실린더내에 연료를 공급하기위한 인잭터(11),캠축에 장착되어 연소기 통을 식별하는 기통식별센서(14)및 내연기관의 녹킹 발생상태를 검출하는 녹센서(15)를 구비하고 있다.In Fig. 5, the internal combustion engine 1 of the in-vehicle injection type for automobiles operates with an air flow sensor 2 for measuring the intake air amount of the internal combustion engine. The throttle valve 3 for detecting the position of the throttle valve 3, the throttle opening degree sensor 4 for detecting the position of the throttle valve 3, the crank angle sensor 5 for detecting the speed of the internal combustion engine and the position of the crankshaft, and the warming state of the internal combustion engine. Water temperature sensor (6) for detecting cooling water temperature, O2 sensor (7) for detecting oxygen concentration of exhaust gas discharged from internal combustion engine, operation control device (8), ignition plug (9), air bypass Valve 10, an injector 11 for supplying fuel into the cylinder, a cylinder identification sensor 14 mounted on the camshaft for identifying the combustion cylinder, and a rust sensor 15 for detecting the knocking state of the internal combustion engine. Doing.

또, 연료분사량의 제어에서는 흡기량에 한하지않고 흡기압, 스로틀개도체적효율 또는 충전효율에 따라 연료분사량을 제어해도 된다.In addition, in the control of the fuel injection amount, the fuel injection amount may be controlled in accordance with the intake pressure, the throttle opening volumetric efficiency, or the filling efficiency.

운전제어장치(8)은 에어플로센서(2), 스로틀개도센서 및 크랭크각센서(5)로부터의 검출신호에 따라 내연기관의 운전상태를 판단해 운전상태에 따른 각종제어량을 연산해서 내연기관을 일정한 공연비로 연소시키기 위한 제어장치(ECU)이다. 에어바이 패스 밸브(10)는 스로틀 밸브(3)를 바이패스하는 공기량을 제어하고, 스로틀이 전폐의 경우의 이이들링 운전시의 내연기관 회전수 제어를 하는것이다. 인덱터(11)는 인덱터 드라이버(13)로 부터 송신되는 전기적 지령신호에 의해 구동된다. EGR 밸브(12)는 NO×저감의 목적으로 내연기관의 배기가스를 다시 연소실로 돌리고(EGR) 재연소 시키는 EGR량을 제어하는 밸브이다. 또 점화플러그(9), 에어바이패스 밸브(10), EGR밸브(12)및 인젝터(11)는 인젝터 드라이버(13)는 어느것이나 운전제어장치(8)에 의해 제어되고 인젝터(11)는 인젝터 드라이버(13)을 통해서 구동 된다.The operation control device 8 judges the operation state of the internal combustion engine according to the detection signals from the airflow sensor 2, the throttle opening sensor, and the crank angle sensor 5, calculates various control quantities according to the operation state, and calculates the internal combustion engine. It is a control unit (ECU) for burning at a constant air-fuel ratio. The air bypass valve 10 controls the amount of air that bypasses the throttle valve 3, and controls the internal combustion engine speed during the idling operation when the throttle is fully closed. The indexer 11 is driven by an electrical command signal transmitted from the indexer driver 13. The EGR valve 12 is a valve for controlling the amount of EGR for returning (EGR) the combustion gas of the internal combustion engine back to the combustion chamber (EGR) for the purpose of reducing NO x. In addition, the spark plug 9, the air bypass valve 10, the EGR valve 12, and the injector 11 are all controlled by the operation control device 8, and the injector 11 is controlled by the injector 11. It is driven by the driver (13).

이같은 구성의 통내분사식 내연기관의 제어시스템을 구비한 내연기관은 아래의 4개의 효과가 기대되는 이상적인 내연기관으로 주목되고 있다.The internal combustion engine equipped with the control system of the internal injection type internal combustion engine having such a configuration is attracting attention as an ideal internal combustion engine in which the following four effects are expected.

(1) 배기가스의 배출량의 저감(1) Reduction of emissions of exhaust gas

종래의 실린더 외부에서 연료를 분사하는 방식에서는 분사 연료의 일부가 실린더에흡입되기 전에 흡기밸브 흡기관벽에 부착하므로 특히 연료가 기화하기 힘든 저온시의 시동운동시 및 비교적 빠른 공급연료변화 응답이 필요한 과도 운전시에는 부착연료를 고려할 필요가 있다. 이에 대해 통내 분사식의 내연기관에서는 연료의 수송지연을 고려하지 않고 공연비를 희박하게 할수있으므로 HC.CO의 배출량을 저감할수가 있다.In the conventional method of injecting fuel from outside of the cylinder, a part of the injected fuel is attached to the intake valve intake pipe wall before being sucked into the cylinder, which requires a relatively quick supply fuel change response during a low temperature start-up movement that is difficult to vaporize. In transient operation, it is necessary to consider attached fuel. On the other hand, the internal combustion engine of in-cylinder injection type can reduce the air-fuel ratio without considering fuel transportation delay, thereby reducing the emission of HC.CO.

(2) 연비의 절감(2) fuel economy

통내에 연료를 분사하는 경우 점화직전에 점화 타이밍에 맞추어 연료를 분사하고 점화시에 점화플러그 주변에 가연연료가 형성되는 혼합기 분포가 불균일 하게 되는 연소상태 즉 성층연소가 가능해진다. 이때문에 통내로 흡입되는 공기량과 연료량의 겉보기의 공급 공연비를 대폭적으로 희박화 하는것이 가능해지고 또 성층연소를 실현 함으로써 ERG을 대량으로 도입해도 연소악화에의 영향이 적고 펌핑 로스의 저감도 달성되는 것과 함께 연비의 향상을 도모할수가 있다.When the fuel is injected into the barrel, the fuel is injected at the ignition timing immediately before ignition, and the combustion state, that is, the stratified combustion, becomes uneven in the mixture of the combustible fuel formed around the ignition plug at the ignition plug. As a result, it is possible to significantly reduce the apparent air-fuel ratio of the amount of air sucked into the barrel and the amount of fuel, and to realize stratified combustion, even if the ERG is introduced in a large amount, the impact on combustion deterioration is reduced and the pumping loss is also reduced. In addition, the fuel efficiency can be improved.

(3)내연기관의 출력의 향상(3) Improvement of output of internal combustion engine

성층연소의 실현에의해 점화플러그 주변에 혼합기가 모임으로써 녹킹의 원인인 앤드가스를 저감시킬수 있으므로 내녹성이 향상되고 내연기관의 압축비를 크게 하는 것이가능해진다. 또 실린더내에서 연료가 기화하므로 실린더내에서 흡입공기의 기화열을 뺏음으로서 흡입공기밀도가 상승하고 체적효율이 상승하므로 내연기관의 출력을 향상시킬수가 있다.By realizing stratified combustion, by mixing the mixer around the spark plug, the end gas, which is the cause of knocking, can be reduced, thereby improving rust resistance and increasing the compression ratio of the internal combustion engine. In addition, since the fuel vaporizes in the cylinder, the heat of vaporization of the intake air is taken out of the cylinder, thereby increasing the intake air density and increasing the volumetric efficiency, thereby improving the output of the internal combustion engine.

(4) 드라이버 빌리티의 향상(4) Improvement of driver ability

통내에 직접연료를 분사하므로 종래의 내연기관과 비교해 연료를 공급한 후 연료가 연소하고 출력이 발생할때까지의 지연이 짧고 운전자의 요구에 대한 레스펀스가 좋은 내연기관을 실현 하는것이 가능해진다. 상술한 바와 같은 효과를 나타내는 종래의 통내분사식 내연기관에 관해 녹 제어에 관한 종래기술로는 일본국 특개평 4-183951호 공보에 기재된 발명이 있다. 동공보에 기재된 발명에서는 녹 발생시에 점화시기를 지각시는 동시에 압축행정의 분사시기를 진각시켜 녹킹의 억제를 도모하고 있다.By directly injecting the fuel into the cylinder, it is possible to realize an internal combustion engine that has a shorter delay between the fuel supply and the output after the fuel is supplied compared to the conventional internal combustion engine and responds to the needs of the driver. As a conventional technique related to rust control with respect to a conventional in-cylinder injection type internal combustion engine having the above-described effects, there is an invention described in Japanese Patent Laid-Open No. 4-183951. In the invention described in the publication, the timing of ignition at the time of rust generation and the timing of injection of the compression stroke are advanced to suppress the knocking.

녹킹은 점화플러그에의한 본래의 점화 타이밍과는 다른 타이밍으로 실린더내의 엔드가스가 자기 착화 해서 연소함으로써 발생된다. 그래서 압축행정분사와 같이 점화플러그의 주변에만 연료가 존재하는 경우에는 녹킹을 발생하기 힘드나 내연기관 자체의 압축비가 높게 설정되고 점화시기도 진각측에 설정되고 또 흡기 온도 자체가 높고 휘발성이 높은 연료가 사용되고 연료의 층상확산이 완전하지 못한 특수한 상황에서는 자기착화해서 녹킹이 발생하는 가능성이 있다.Knocking occurs when the end gas in the cylinder self-ignites and burns at a timing different from the original ignition timing by the spark plug. Therefore, when fuel is present only in the vicinity of the spark plug, such as compression stroke injection, it is hard to cause knocking, but the compression ratio of the internal combustion engine itself is set high, the ignition timing is set on the true side, and the intake temperature itself is high, and the volatile fuel is high. There is a possibility that knocking occurs due to self ignition in special situations where the fuel is used and the lamination of the fuel is not complete.

통내분사제어시스템에서는 상기한 바와같이 압축형정시에 연료를 공급해서 초희박성층연소시켜서 에미숀과 연비를 향상시키는 운전모드(린모드)와 흡기 행정시에 연료를 공급해 통상의 균일 배합연소에의해 운전하는 통상운전모드가 존재한다.In the cylinder injection control system, as described above, the fuel is supplied at the time of compression type, the ultra thin layer is burned to improve the emission and fuel efficiency, and the fuel is supplied at the time of the intake stroke. There is a normal operation mode of operation.

상기 압축 행정분사모드(린모드)에서는 상기(2)에 표시하는 바와같이 연료 소비량의 저감에 큰 효과가 있고 또 상기(3)에 표시하는 바와같이 원리적으로 녹킹이 발생하기 힘들다는 장점이 있다. 이때문에 내연기관의 압축비 및 점화시기를 설정하는데 있어서 내연기관 출력의 향상을 우선시키는 바와같은 설정으로 할수가 있다.In the compression stroke injection mode (lean mode), as shown in (2), the fuel consumption is greatly reduced, and as shown in (3), knocking is difficult in principle. . For this reason, in setting the compression ratio and ignition timing of an internal combustion engine, it can be set as the setting which gives priority to the improvement of an internal combustion engine output.

그러나 실제로 차량이 운진 할수있는 상황으로 상당한 고온이고 건조된 환경하에서 휘발성이 높은 연료로 운전되는것과 같은 특수한 상황을 상정하면 연비나 내연기관 출력을 어느정도 희생한 압축비 및 점화시기의 설정으로 안 할수가없다.However, assuming a special situation, such as driving a vehicle with high volatility under a very high temperature and dry environment in which a vehicle can operate, the compression ratio and the ignition timing that sacrifice some fuel economy or internal combustion engine power cannot be avoided.

이 결과 대부분의 사용자가 사용하는 일이 없는 상황도 상정한 내연기관의 특성에 설정하게 되어 일박적인 상황에서의 차량의 연비를 어느정도 희생하게 되는 것이다. 이는 압축행정 분사모드 에서의 연소가 연료분사 타이밍과 점화시기의 미묘한 타이밍에 의해 성립되어 있으므로 연료분사 점화의 어느곳인가의 타이밍 또는 양쪽의 타이밍을 크게 변화시키면 연소성의 저하를 초래할 가능성이 크다. 만일 녹킹이 발생했을때에 종래의 녹제어같이 점화시기를 지각 시킬수 없는 것에 기인하고 있다.As a result, even the situation that most users do not use is set to the characteristics of the internal combustion engine, which is assumed, and at the expense of fuel economy of the vehicle in the overnight situation. Since the combustion in the compression stroke injection mode is established by the fuel injection timing and the subtle timing of the ignition timing, a large change in the timing of either or both of the fuel injection ignitions is likely to cause combustibility. If knocking occurs, it is due to the inability to perceive the ignition timing like conventional rust control.

도 6은 종래의 통내 분사식 내연기관의 운전제어 장치에의한 내연기관의 동작내용을 표시하는 도면이다. 도6에 표시된 특성은 상단으로부터 순서대로 기통식별센서(14)의 출력신호 SGC 크랭크각 센서(5)의 출력신호 SGT,출력신호 SGC및 SGT에 따라 검출되는 각기통의 연소 행정상태 각 인젝터의 분사시기 녹킹의 발생시기를 각각 표시하고 있다. 또 도면 중 좌측에서 우측으로 각센서의 출력신호나 연소공정의 시간변화의 모양을 표시하고 있다.Fig. 6 is a view showing the operation contents of the internal combustion engine by the operation control apparatus of the conventional in-cylinder injection type internal combustion engine. The characteristic shown in Fig. 6 is the combustion stroke state of each cylinder detected according to the output signal SGT, the output signal SGC and the SGT of the output signal SGC crank angle sensor 5 of the cylinder identification sensor 14 in order from the top. Timing Each time of knocking is displayed. In addition, from left to right in the figure, the output signal of each sensor and the shape of the time change of the combustion process are shown.

도 6에서 표시하는 바와같이 종래장치에서는 제3기통(#3)의 연소에서 시각 T9에서 녹킹이 발생한 경우 시각 T4(크랭크각센서의 출력 참도)에서 녹센서의 출력신호를 운전제어 장치가 판독하나 압축행정 분사이므로 녹제어를 하는일없이 시각 T14에서 제4기통 (#4)의 인젝터의 연료분사량과 점화시기를 제어 하는것으로 되어 있었다 이때문에 시각 T10에서도 계속 제4기통(#4)에서 녹킹이 발생하고 이후 녹제어가 되는일없이 연료분사량및 점화시기의 제어량이 변화하지 않으므로 시각 T11,T12에서도 녹킹이 계속적으로 발생했었다.As shown in FIG. 6, in the conventional apparatus, when knocking occurs at time T9 in the combustion of the third cylinder # 3, the operation control device reads the output signal of the rust sensor at time T4 (output degree of crank angle sensor). However, since it is a compression stroke injection, the fuel injection amount and the ignition timing of the injector of the fourth cylinder (# 4) are controlled at time T14 without rust control. Therefore, at the time T10, the fourth cylinder (# 4) is continuously controlled. Since knocking occurred and the control amount of fuel injection amount and ignition timing did not change without knock control afterwards, knocking occurred continuously at times T11 and T12.

따라서 본 발명은 상술한 통내분사식 내연기관에서 압축행정 분사 운전시에 만일 녹킹이 발생한 경우에도 녹킹의 억제를 가능하게 하는것이다. 따라서 본발명은 이런 구성에서 연비 향상을 목적으로 출력 우선의 내연기관 특성에 설정함으로써 통내분사식 내연기관의 포텐셜을 충분히 발휘시키는것을 목적으로 한다.Accordingly, the present invention is to enable the suppression of knocking even if knocking has occurred during the compression stroke injection operation in the above-described cylinder injection internal combustion engine. Therefore, the present invention aims to fully exhibit the potential of the internal injection type internal combustion engine by setting the characteristics of the output priority internal combustion engine for the purpose of improving fuel economy in such a configuration.

본 발명의 통내 분사식 내연기관의 운전제어장치는 내연기관의 각통내에 연료를 직접분사 하도록 설치된 인젝터와 내연기관의 흡기량을 검출하는 흡기량 검출수단과 내연기관의 크랭크각을 검출하는 크랭크각 검출수단과 스로틀 밸브개도를 검출하는 스로틀 밸브 검출수단과 연소가 되는 기통을 식별하는 기통식별수단과 내연기관의 녹킹을 검출하는 녹 검출수단과 흡기량 검출수단 크랭크각 검출수단 또는 스로틀 밸브개도 검출수단의 검출신호에따라 내연기관의 연료분사량을 연산하는 동시에 이연료분사량을 전기 신호로 헤서 인덱터에 송신하고 내연기관의 연료분사 제어를 하는 운전제어장치를 구비하고 압축행정에서 연료분사하고있는 운전상태에서 녹킹이 발생하면 이녹킹 발생시에 흡기 형정에 있는 통내에 연료를 분사하는 것을 특징으로 한다.The operation control apparatus of the in-cylinder injection type internal combustion engine of the present invention includes an injector installed to directly inject fuel into each cylinder of the internal combustion engine, an intake amount detecting means for detecting an intake amount of the internal combustion engine, a crank angle detection means for detecting a crank angle of the internal combustion engine, and a throttle According to the detection signal of the throttle valve detecting means for detecting the valve opening, the cylinder identifying means for identifying the cylinder to be burned, the rust detecting means for detecting the knocking of the internal combustion engine, the intake air amount detecting means, the crank angle detecting means or the throttle valve opening detecting means. When the fuel injection amount of the internal combustion engine is calculated, and the fuel injection amount is transmitted to the indexer as an electric signal and the fuel injection control of the internal combustion engine is provided, and the knocking occurs in the operation state where the fuel injection is performed in the compression stroke. When inknock occurs, fuel is injected into the cylinder in the intake type. The.

또 녹킹상태에 따라 흡기행정에 있는 통내에 분사하는 연료량을 가변제어 하는것을 특징으로 한다.In addition, it is characterized in that the amount of fuel injected into the cylinder in the intake stroke is variably controlled according to the knocking state.

또 흡기행정에서 통내에 분사하는 연료량은 통내에서 발화하는 일이 없는 공연비가 되도록 설정되는 것을 특징으로 한다.In addition, the amount of fuel injected into the cylinder by the intake stroke is set so as to have an air-fuel ratio which does not ignite in the cylinder.

또 흡기행정에서 통내에 분사하는 연료량은 이 연료량과 흡기행정에 계속되는 압축행정에서 통내에 분사하는 연료량과의 합계의 연료를 연소하므로서 얻어지는 출력토크가 녹킹이 발생하지 않았을때 압축행정에서 분사하는 연료량에 따른 출력토크와 대략 같게 되도록 설정 되는것을 특징으로 한다.The amount of fuel injected into the cylinder at the intake stroke is the amount of fuel injected from the compression stroke when the output torque obtained by burning the sum of the fuel amount and the amount of fuel injected into the cylinder at the compression stroke following the intake stroke is not knocked. It is characterized in that it is set to be approximately equal to the output torque.

도 1은 본 발명의 통내분사식 내연기관의 운전제어장치에의한 내연 기관의 동작 내용을 표시하는 도면1 is a view showing the operation of the internal combustion engine by the operation control device of the internal injection internal combustion engine of the present invention;

도 2는 도1에서의 시각 TDC(SGT 시들의 하장 타이밍)에서의 제어장치의 처리내용을 표시하는 플로챠트FIG. 2 is a flowchart showing the processing contents of the control apparatus at the time TDC (loading timing of SGT times) in FIG.

도 3은 도1의 시각 70。B에서의 제어장치의 처리내용을 표시하는 플로챠트FIG. 3 is a flow chart showing the processing contents of the control device at time 70 ° B in FIG.

도 4는 일정시간마다 실시되는 제어장치의 제어량산출처리 내용을 표시하는 플로챠트Fig. 4 is a flowchart showing the contents of the control amount calculation processing of the control device performed at a predetermined time;

도 5는 통내 분사 시스템을 구비한 내연기관 및 제어장치의 구성을 개략적으로 표시하는 도면FIG. 5 is a diagram schematically showing the configuration of an internal combustion engine and a control device having an in-cylinder injection system; FIG.

도 6은 국내의 통내분사식 내연기관의 운전 제어장치에 대한 내연기관의 동작 내용을 표시하는 도면6 is a view showing the operation content of the internal combustion engine for the operation control device of the internal combustion internal combustion engine

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1:내연기관, 2:에어플로센서(흡기량검출수단),1: internal combustion engine, 2: airflow sensor (air intake detection means),

4:스로틀개도센서(스로틀밸브 개도 검출수단),4: throttle opening degree sensor (throttle valve opening degree detecting means),

5:크랭크각 센서(크랭크각 검출수단), 8:운전제어장치,5: crank angle sensor (crank angle detection means), 8: operation control device,

11:인텍터, 14: 기통식별센서(기통식별수단),11: detector, 14: cylinder identification sensor (cylinder identification means),

15:녹센서(녹검출수단).15: Rust sensor (rust detection means).

실시의 형태 1Embodiment 1

도1은 본 발명의 통내분사식 내연기관의 운전제어장치에 의한 내연기관의 동작내용을 표시하는 도면이다. 또 도면중 좌측에서 우측에 걸쳐 각 센서의 출력신호나 연소공정의 시간변화를 표시하고 있다. 또 실시의 형태 1에 관한 내연기관의 구성은 도5에 표시하는 종래 장치와 같고 본 발명에 관한 통내분사식 내연기관의 운전제어장치는 운전제어장치(8)의 처리내용에 특징이 있는것이다. 또 에어플로센서 (2)는 흡기량검출수단으로서 스로틀개도센서(4)는 스로틀밸브개도 검출수단으로서 크랭크각 센서(5)는 크랭크각 검출수단으로서 기통식별센서(14)는 기통식별수단으로서 녹센서(15)는 녹 검출수단으로 각각 기능한다. 또 연료분사량의 제어에 있어서는 흡기량에 한하지 않고 흡기압 스로틀개도 체적효율 또는 충전효율에따라 연료분사량을 제어해도 된다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the operation contents of an internal combustion engine by an operation control apparatus of an internal injection type internal combustion engine of the present invention. Moreover, the output signal of each sensor and the time change of a combustion process are shown from left to right in the figure. The configuration of the internal combustion engine according to the first embodiment is the same as that of the conventional apparatus shown in Fig. 5, and the operation control apparatus of the internal injection type internal combustion engine according to the present invention is characterized by the processing contents of the operation control apparatus 8. The air flow sensor 2 is an intake air amount detecting means, the throttle opening degree sensor 4 is a throttle valve opening degree detecting means, the crank angle sensor 5 is a crank angle detecting means, and the cylinder identification sensor 14 is a rust sensor. 15 each function as a rust detection means. In the control of the fuel injection amount, not only the intake amount but also the intake pressure throttle dog may control the fuel injection amount according to the volumetric efficiency or the filling efficiency.

구체적으로는 SGT의 레벨 변화시(시각 T1~T8)에 SGC신호의 레벨을 검출해 (H:Higl,L:Low,H,H,L,L,L,H), 이를 SGT상승타이밍 (도에서는 70`B)에서 전회 SGTSpecifically, the level of the SGC signal is detected when the level of the SGT changes (times T1 to T8) (H: Higl, L: Low, H, H, L, L, L, H), and the SGT rise timing (Fig. Last SGT at 70`B)

하강타이밍(TDC)에서 검출된 SGC레벨과 2개씩의 그룹핑 (H.L )(H.H)(L.L) (L.H)함으로써 4종류의 기통식별을 하고 연료공급기통 (압축행정 또는 흡기행정)과 점화 타이밍기통(압축행정기통)을 인식하고 본 타이밍엥서 해당기통에 대해 인젝터의 제어를 한다.The SGC level detected by the falling timing (TDC) and two groupings (HL) (HH) (LL) (LH) are used to identify four types of cylinders, the fuel supply cylinder (compression stroke or intake stroke) and the ignition timing cylinder ( Compression stroke cylinder) is recognized and the injector controls the cylinder in this timing.

도1에 표시하는 바와같이 본 발명의 제어장치에서는 시각 T21에서 제3기통 (#3)의 연소에서 녹킹이 발생된경우 시각 T4(크랭크각 센서의 출력신호 참조)에서 녹센서의 출력신호를 운전제어장치(8)가 판독한 후 흡기행정 분사를 추가하나 제4기통(#4)에서는 이미 압축행정이 되고 있기 때문에 시각 T22에서는 그대로 압축행정분사를 속행하고 동시에 흡기행정이 진행되고 있는 제2기통(#2)에서 흡기 행정분사제어를 한다.As shown in Fig. 1, in the control apparatus of the present invention, when knocking occurs in the combustion of the third cylinder # 3 at time T21, the output signal of the rust sensor is operated at time T4 (see the output signal of the crank angle sensor). After the control device 8 reads out, the intake stroke injection is added, but since the compression stroke is already performed in the fourth cylinder # 4, the second cylinder continues the compression stroke injection as it is at time T22 and at the same time the intake stroke is in progress. Intake stroke control is performed at (# 2).

이결과 시각T21에서는 제4기통(#4)이 압축행정분사만을 위해 시각 T23에서 녹킹이 발생하나 다음의 제2기통(#2)이후의 연소에서는 흡기/압축행정분사가 되어 시각 T25,T26에서의 녹킹이 억제된다.As a result, at the time T21, the fourth cylinder (# 4) is knocked out at time T23 only for the compression stroke injection, but in the combustion after the second cylinder (# 2), the intake / compression stroke injection is performed at the times T25 and T26. Knocking is suppressed.

다음 도2내지 도4를 사용해서 본 발명에 관한 통내분사식 내연기관의 운전제어장치의 제어 처리내용에 대해 설명한다. 도2는 도1에서의 시각 TDC(SGT신호의 하강타이밍)에서의 제어장치의 처리내용을 표시하는 플로차트이다. 또 도3은 도1의 시각70。B(SGT신호의 상승타이밍:TDC로부터 크랭크각으로 해서 70。전의시각에서의제어장치외 처리내용을 표시하는 플로차트이다. 도4는 일정시간 마다에 실행되는 제어장치의 제어량 산출처리 내용을 표시하는 플로차트이다.Next, the control processing contents of the operation control apparatus of the internal injection type internal combustion engine according to the present invention will be described with reference to Figs. FIG. 2 is a flowchart showing the processing contents of the control device at the time TDC (falling timing of the SGT signal) in FIG. Fig. 3 is a flowchart showing the processing contents other than the control device at the time of 70 ° before the time of 70 ° B (SGT signal rising timing: TDC to the crank angle of Fig. 1) in Fig. 1. Fig. 4 is a control executed at a predetermined time. A flowchart showing the control amount calculation processing contents of the apparatus.

우선 도2에 표시하는 스텝 101에서는 시각 TDC(SGT신호와 하강타이밍)에서의 신호SGC1의 신호레벨을 판독한다.First, in step 101 shown in Fig. 2, the signal level of the signal SGC1 at the time TDC (SGT signal and falling timing) is read.

다음 도3에 표시하는 스텝(102)에서는 시각 700B(SGT신호의 상승타이밍)에서 신호 SGC2의 신호 레벨을 판독한다. 단 스텝 103에서는 상기신호 SGC 1 및 SGC 2의 신호레벨의 조합에의해 처리를 하는 현재의 내연기관의 기통을 식별한다.Next, in step 102 shown in Fig. 3, the signal level of the signal SGC2 is read out at time 70 0 B (rise timing of the SGT signal). In step 103, however, the cylinder of the current internal combustion engine that is processed by the combination of the signal levels of the signals SGC 1 and SGC 2 is identified.

계속되는 스텝(104)에서는 스텝(103)에서 식별한 통내에서 압축행정분사가 되고 있는지의 여부를 판정한다.Subsequent to step 104, it is determined whether or not compression stroke injection is performed in the cylinder identified in step 103.

압축공정분사가 되고 있지 않다고 판정된 경우에는 플로는 스텝(109)으로 진행하고 흡기행정분사를 한다. 이것은 종래와 같은 제어처리이고 내연기관의 운전상태가 압축앵정분사 가능한 상태인지 아닌지를 판정하고 후술하는 스텝(112)에서 압축행정 또는 흡기 행정의 어느쪽에서 분사처리를 하는가를 판정해서 이 판정결과에 따라 일정한 인젝션펄스루 출력하고 인젝터를 구동한다.If it is determined that no compression process injection is made, the flow advances to step 109 to perform intake stroke injection. This is the same as the conventional control process, and it is determined whether or not the operating state of the internal combustion engine is in the state of compression angle injection, and in step 112, which will be described later, it is determined whether the injection process is performed in the compression stroke or the intake stroke. Output constant injection pulse and drive the injector.

한편 스텝(104)에서 압축행정분사가 되고 있다고 판정된 경우에는 플로는 스텝(105)으로 진행하고 녹킹이 발생하고 있는지의 여부를 판정한다. 압출행정분사모드라도 스텝(105)에서 녹킹이 발생하고 있다고 판정된 경우에는 플로는 스텝(106)으로 진행하고 녹킹강도를 검출하는 동시에 녹킹 강도에 따라 흡기 행정기통에 분사하는 연료량을 연산한다.On the other hand, if it is determined in step 104 that the compression stroke is being injected, the flow advances to step 105 to determine whether knocking has occurred. If it is determined that knocking has occurred in step 105 even in the extrusion stroke injection mode, the flow advances to step 106 to detect the knocking strength and calculate the amount of fuel injected into the intake stroke cylinder in accordance with the knocking strength.

계속되는 스텝(107)에서는 스텝(106)에서 연산한 흡기 행정분사량에 따라 흡기행정에 있는 기통에서 연료를 분사한다. 또 플로는 스텝(108)으로 진행하고 스텝 (107)에서 흡기행정분사를 한 기통에 대해 압축행정분사를 한다. 이 압축행정에서 분사하는 연료량은 녹킹이 발생하고 있지 않은 경우의 압축행정에서 분사되는 연료량으로부터 스텝(107)의 흡기행정분사의 연료량을 제외한 열료량으로 한다. 또 스텝(105)에서 녹킹이 발생하고 있지 않다고 판정한 경우에는 플로는 스텝(108)로 진행해 압축행정분사를 한다.In subsequent step 107, fuel is injected from the cylinder in the intake stroke in accordance with the intake stroke injection amount calculated in step 106. The flow advances to step 108, where compression stroke injection is carried out for the cylinder in which intake stroke injection is carried out in step 107. The amount of fuel to be injected in this compression stroke is the amount of heat generated by subtracting the amount of fuel in the intake stroke injection in step 107 from the amount of fuel injected in the compression stroke when no knocking has occurred. If it is determined in step 105 that no knocking has occurred, the flow advances to step 108 to perform compression stroke injection.

도4에 표시하는 목표제어량 산출루틴에서는 스텝(108)에서의 압축행정분사 처리및 스텝(109)에서의 흡기행정분사처리로 제어되는 제어량을 산출한다.도4에 표시하는 바와 같이 우선 스텝(111)에서 스로틀개도센서(4)의 출력에의해 내연기관의 부하상태를 검출하고 크랭크각센서(5)의 출력신호 SGT에 의해 내연기관(1)의 기관속도를 검출한다. 그리고 계속되는 스텝(112)에서는 내연기관(1)의 기관속도에 따라 내연기관(1)의 운전상태를 판정하고 이 판정결과에 따라 내연기관제어 모드를 결정한다.In the target control amount calculation routine shown in FIG. 4, the control amount controlled by the compression stroke injection process in step 108 and the intake stroke injection process in step 109 is calculated. As shown in FIG. ) Detects the load state of the internal combustion engine by the output of the throttle opening sensor 4 and detects the engine speed of the internal combustion engine 1 by the output signal SGT of the crank angle sensor 5. In the following step 112, the operating state of the internal combustion engine 1 is determined according to the engine speed of the internal combustion engine 1, and the internal combustion engine control mode is determined according to the determination result.

구체적으로는 인젝션 분사모드(압축행정분사 또는 흡기행정분사의 어느 모드에서 연료분사를 하는가),A/F제어모드(O₂피드백모드 또는 오픈 루프제어모드의 어느것인가),주행모드(아이들운전, 정상주행운전 또는 과도운전의 어느것인가)를 판정한다. 그후, 스텝(113)에서는 스텝(112)에서 판정된 운전모드에 따라 압축행정분사가 되고 있는 지의 여부를 판정한다. 스텝(113)에서 압축행정분사가 되고 있느지의 여부를 판정한다. 스텝(113)에서 압축행정 분사가 되고 있다고 판정된경우에는 플로는 스텝(114)로 진행하고 압축행정분사용의 각종제어 목표치의 산출을 실행한다. 한편 스텝(113)에서 압축행정분사가 되고 있지 않다고 판정된 경우에는 플로는 스텝(115)에 진행하고 흡기행정분사용 각종 제어 목표치를 산출한다.Specifically, injection injection mode (which mode of compression stroke injection or intake stroke injection), A / F control mode (either O₂ feedback mode or open loop control mode), driving mode (idle operation, normal operation) Whether driving or overdriving). Thereafter, in step 113, it is determined whether or not compression stroke injection is performed in accordance with the operation mode determined in step 112. In step 113, it is determined whether or not compression stroke injection is performed. If it is determined in step 113 that the compression stroke injection is performed, the flow advances to step 114 to calculate the various control target values for the use of the compression stroke component. On the other hand, when it is determined in step 113 that no compression stroke injection is performed, the flow advances to step 115 to calculate various control target values for intake stroke injection.

이상과 같이 본 발명은 통내 분사식의 내연기관에서 이론상녹킹이 발생하기 힘든 압축행정 분사운전시에 특수한 운전 상황에 처했을때 등에 의해 만일 녹킹이 발생한 경우에 압축행정분사에 더해서 흡기 행정분사를 함으로써 통내의 온도를 효과적으로 저하시켜서 녹킹을 억제 할수가 있다. 따라서 상술한 바와같은 특수한 상황(내연기관자체의 압축비가 높게 설정되고 점화시기도 진각측에 설정되고 또 흡기온도 자체가 높고 휘발성이 높은 연료가 사용되고 연료의 층상확산이 완전하지 못한 상황)을 고려하지 않고 압축비나 점화시기를 설정할 수가 있고 고출력이고 드라이버 빌리티가 좋은 내연기관을 제공할수가있나.As described above, the present invention provides an intake stroke injection in addition to the compression stroke injection in the case of knocking caused by a special operation situation during a compression stroke injection operation in which a theoretical knocking is hardly generated in an internal combustion engine of a cylinder injection type. Knocking can be suppressed by lowering the internal temperature effectively. Therefore, it is not necessary to take into account the above-mentioned special situation (when the combustion ratio of the internal combustion engine is set high, the ignition timing is set on the advance side, the intake temperature itself is high, the volatile fuel is used, and the fuel layer diffusion is not complete). Compression ratio and ignition timing can be set and can provide a high-power and good driver internal combustion engine.

구체적으로는 녹킹이 발생한 경우에 압축행정분사에 앞서 압축행정에서 분사 해야 할 연료의 일부를 흡기 행정에의 분사 함으로써 기화열로 통내의 온도를 저하시켜 연료의 자기착화를 억제하는것이 가능해진다. 본래 상술된바와 같은 특수한 상황이외의 경우에는 압축행정에서는 녹킹이 발생하지 않는 설정으로 되어있으나 운전상황의 변화에 의해 상술한 바와같은 특수한 상황으로 운전하게 되어도 흡기 행정에서 연료를 분사 함으로써 실린더 내 온도의 상승을 억제해서 녹킹의 발생을 억제할수가 있다.Specifically, when knocking has occurred, it is possible to suppress the self-ignition of the fuel by lowering the temperature in the barrel by the heat of vaporization by injecting a part of the fuel to be injected in the compression stroke prior to the compression stroke injection into the intake stroke. Originally, except in the above-mentioned special circumstances, knocking does not occur in the compression stroke. However, even if the operation is carried out in the special situation as described above by the change of operating conditions, the fuel is injected in the intake stroke. By suppressing the rise, it is possible to suppress the occurrence of knocking.

또 흡기행정에서 분사하는 연료량은 흡기행정에서의 분사량만으로는 연소 되는일이 없는 공연비로 설정하고, 또 흡기 행정직후의 압축행정시에 동일 통내에 분사되는 연료량과의 합계열효량에의한 연소로 발생하는 출력토크가 녹킹발생직전에 다른 총내의 압축행정 분사시에 발생하고 있던 출력토크와 같은 정도가 되도록 설정하는것이 필요하다.이와같이 흡기행정에서의 연료분사량을 설정하면 드라이버빌리티를 손상되지 않고 쾌적한 운전성능을 확보할수가 있다.The amount of fuel to be injected at the intake stroke is set to an air-fuel ratio that is not burned only by the amount of injection at the intake stroke, and is generated by combustion by the total thermal effective amount of the fuel injected into the same cylinder during the compression stroke immediately after the intake stroke. It is necessary to set the output torque to be about the same as the output torque generated at the time of injection of the compression stroke in another gun just before the occurrence of knocking. Performance can be secured.

본 발명의 통내 분사식 내연기관의 운전제어장치는 내연기관의 각 통내에 연료를 직접 분사하도록 배치된 인젝터와 내연기관의 흡기량을 검출하는 흡기량 검출수단과 내연기관의 크랭크각을 검출하는 크랭크각 검출수단과, 스로틀밸브의 개도를 검출하는 스로틀 밸브개도 검출수단과, 연소가 되는 기통을 식별하는 기통식별수단과 내연기관의 녹킹을 검출하는 녹 검출수단과, 흡기량검출수단, 크랭크각 검출수단 또는 스로특 밸브 개도 검출수단의 검출신호에 따라 내연기관의 연료분사량을 연산하는 동시에 이 연료분사량을 전기신호로 해서 인젝터에 송신하고 내연기관의 연료분사 제어를 하는 운전제어 장치를 구비하고 압축행정에서 연료분사하고 있는 운전상태에서 녹킹이 발생하면 이 녹킹발생시에 흡기 행정에 있는 통내에 연료를 분사하는것을 특징으로 하므로 녹킹이 발생하기 힘든 압축행정분사운전시에 운전상황이 특수한 상황이 되어 녹킹이 발생한 경우에도 압축행정의 앞의 흡기 행정에서 연료를 분사해서 통내의 온도를 저하시켜 녹킹을 억제할수가 있다.The operation control apparatus of the in-cylinder injection type internal combustion engine of the present invention includes an injector arranged to directly inject fuel into each cylinder of the internal combustion engine, an intake amount detecting means for detecting an intake amount of the internal combustion engine, and a crank angle detection means for detecting a crank angle of the internal combustion engine. And a throttle valve opening degree detecting means for detecting the opening degree of the throttle valve, a cylinder identifying means for identifying the cylinder to be burned, a rust detecting means for detecting knocking of the internal combustion engine, an intake air amount detecting means, a crank angle detecting means or a throttle characteristic The fuel injection amount of the internal combustion engine is calculated according to the detection signal of the valve opening detection means, and the fuel injection amount is transmitted as an electric signal to the injector and the fuel injection control of the internal combustion engine is provided. If knocking occurs in the operating state, fuel is injected into the barrel on the intake stroke. In this case, it is possible to suppress the knocking by lowering the temperature in the cylinder by injecting fuel in the intake stroke in front of the compression stroke even when knocking occurs because the operation situation becomes special during the compression stroke injection operation that is hard to knock. have.

따라서 본 발명의 제어 장치에 의하면 특수한 운전상황을 상정해서 통상의 운전상태에서의 출력 연비등의 특성을 희생하는 일이 없이, 고 레벨로 내연기관의 성능을 끌어내는 설정이 가능해진다.Therefore, according to the control device of the present invention, it is possible to assume a special driving situation and to set the performance of the internal combustion engine at a high level without sacrificing the characteristics such as output fuel efficiency in a normal driving state.

또 녹킹의 상태에 따라 흡기행정에 있는 통내에 분사하는 연료량을 가변제어 하는것을 특징으로 하므로 녹킹을 효과적으로 억제 할수가 있다.In addition, according to the knocking condition, the amount of fuel injected into the cylinder in the intake stroke is variably controlled, so knocking can be effectively suppressed.

또 흡기 행정에서 통내에 분사하는 연료량을 통내에서 발화하는일이 없는 공연비가 되도록 설정되는것을 특징으로 하므로 녹킹을 효과적으로 억제 할수가 있다.In addition, the amount of fuel injected into the cylinder in the intake stroke is set so that the air-fuel ratio does not ignite in the cylinder, so knocking can be effectively suppressed.

또 흡기행정에서 통내에 분사하는 연료량은 이연료량과 흡기행정에 계속되는 압축행정에서 통내에 분사하는 연료량과의 합계의 연료를 연소함으로써 얻어지는 출력토크가 녹킹이 발생하고 있지 않을 때에 압축행정에서 분사하는 연료량에 따른 출력토크와 대략 같게 되도록 설정 되는것을 특징으로 하므로 내연기관의 드라이버 벨리티를 향상시킬수가 있다.In addition, the amount of fuel injected into the cylinder by the intake stroke is the amount of fuel injected by the compression stroke when the output torque obtained by burning the fuel of the sum of the fuel amount injected into the cylinder in the compression stroke following the intake stroke does not occur. It is characterized in that it is set to be approximately equal to the output torque according to, so that the driver belliness of the internal combustion engine can be improved.

Claims (3)

내연기관의 각 통내에 연료를 직접분사하도록 배치된 인젝터와, 내연기관의 흡기량을 검출하는 흡기량 검출수단과 내연기관의 크랭크각을 검출하는 크랭크각 검출수단과 스로틀 밸브의 개도를 검출하는 스로틀 밸브개도 검출수단과 연소가 되는 기통을 식별하는 기통식별 수단과 내연기관의 녹킹을 검출하는 녹 검출수단과 상기 흡기량 검출수단, 상기크랭크각 검출수단 또는 상기 스로틀 밸브개도 검출수단의 검출신호에 따라 상기 내연기관의 연료 분사량을 연산하는 동시에 이연료분사량을 전기신호로서 상기 인젝터에 송신하고 내연기관의 연료분사제어를 하는 운전제어장치를 구비하고 있고, 압축행정에서 연료분사 하고 있는 운전상태에서 녹킹이 발생하면 이 녹킹 발생시에 흡기 행정에 있는 통내에 연료를 분사하는 통내 분사식 내연기관의 운전제어장치An injector arranged to directly inject fuel into each cylinder of the internal combustion engine, an intake amount detecting means for detecting the intake amount of the internal combustion engine, a crank angle detection means for detecting the crank angle of the internal combustion engine, and a throttle valve opening for detecting the opening degree of the throttle valve. The internal combustion engine in accordance with a detection signal and a cylinder identification means for identifying a cylinder to be burned, a rust detection means for detecting knocking of an internal combustion engine, an intake air amount detecting means, the crank angle detecting means or a throttle valve opening degree detecting means. And an operation control device which calculates the fuel injection amount of the fuel injection and transmits the fuel injection amount to the injector as an electric signal and controls the fuel injection of the internal combustion engine. When knocking occurs in the operation state where fuel injection is performed in the compression stroke, In the cylinder injection type internal combustion engine which injects fuel into the cylinder in the intake stroke at the time of knocking. Operation control device 제 1항에 있어서The method of claim 1 상기 녹킹의 상태에 따라 상기흡기 행정에 있는 통내에 분사하는 연료량을 가변 제어하는 통내 분사식 내연기관의 운전제어 징치Operation control device of the in-cylinder injection type internal combustion engine which variably controls the amount of fuel injected into the canister in the intake stroke according to the state of the knocking. 제 1항에 있어서The method of claim 1 상기흡기행정에서 통내에 분사하는 연료량을 통내에서 발화하는 일이 없는 공연비가 되도록 설정되는 통내 분사식 내연기관의 운전제어장치Operation control apparatus of the in-cylinder injection type internal combustion engine which is set so that the fuel quantity injected in the inhalation stroke may be an air-fuel ratio which does not ignite in the inside of the cylinder.
KR10-2000-0024691A 1999-08-31 2000-05-09 Control apparatus for direct injection type internal combustion engine KR100383533B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1999-245062 1999-08-31
JP24506299 1999-08-31

Publications (2)

Publication Number Publication Date
KR20010020823A true KR20010020823A (en) 2001-03-15
KR100383533B1 KR100383533B1 (en) 2003-05-12

Family

ID=17128032

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0024691A KR100383533B1 (en) 1999-08-31 2000-05-09 Control apparatus for direct injection type internal combustion engine

Country Status (2)

Country Link
KR (1) KR100383533B1 (en)
DE (1) DE10006640B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401626B1 (en) * 2000-12-27 2003-10-11 현대자동차주식회사 Method and apparatus of knocking controlling when off-idle
KR100853270B1 (en) * 2007-05-09 2008-08-20 전남대학교산학협력단 Ignition control method of hcci combustion and hcci engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853354B1 (en) 2003-04-04 2006-06-09 Peugeot Citroen Automobiles Sa INTERNAL COMBUSTION ENGINE WITH DIRECT FUEL INJECTION AND IGNITION CONTROL
FR2853356B1 (en) * 2003-04-04 2006-06-30 Peugeot Citroen Automobiles Sa INTERNAL COMBUSTION ENGINE WITH GASOLINE AND IGNITION CONTROL COMPRISING A VERY HIGH PRESSURE INJECTION SYSTEM
DE102009001904A1 (en) * 2009-03-26 2010-09-30 Robert Bosch Gmbh Method for operating an internal combustion engine, control device for an internal combustion engine and internal combustion engine with direct injection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929708B2 (en) * 1990-11-16 1999-08-03 トヨタ自動車株式会社 In-cylinder direct injection spark ignition engine
JP4036906B2 (en) * 1996-05-15 2008-01-23 三菱電機株式会社 In-cylinder injection internal combustion engine control device
JP3189734B2 (en) * 1996-12-19 2001-07-16 三菱自動車工業株式会社 Spark ignition direct injection internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401626B1 (en) * 2000-12-27 2003-10-11 현대자동차주식회사 Method and apparatus of knocking controlling when off-idle
KR100853270B1 (en) * 2007-05-09 2008-08-20 전남대학교산학협력단 Ignition control method of hcci combustion and hcci engine

Also Published As

Publication number Publication date
DE10006640B4 (en) 2007-07-12
KR100383533B1 (en) 2003-05-12
DE10006640A1 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
JP3233039B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
EP0826869B1 (en) Exhaust gas heating system for in-cylinder injection internal combustion engine
US6330796B1 (en) Control device for direct injection engine
US7841316B2 (en) Controller for direct injection engine
US7252069B2 (en) Gas fuel engine and control method for the same
US6173691B1 (en) Compression-ignition type engine
EP1019623A1 (en) Catalyst light-off method and device for direct injection engine
US6899077B2 (en) Method for operating a multiple injection internal combustion engine in the starting phase
JP3799898B2 (en) In-cylinder injection engine control device
JP2009036086A (en) Direct injection engine and method for controlling the same
JP2007064187A (en) Knock suppression device for internal combustion engine
KR20010020823A (en) Control apparatus for direct injection type internal combustion engine
US7000586B2 (en) Control device for compression ignition operation of internal combustion engine
JP3828221B2 (en) In-cylinder injection fuel control apparatus and method for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP4171909B2 (en) In-cylinder injection internal combustion engine control device
JP2002038995A (en) Fuel injection device for diesel engine
JP6866871B2 (en) Engine control device and control method
JP2007162540A (en) Engine system and vehicle equipped with it
GB2619025A (en) Method of operating a hydrogen internal combustion engine
JP4464901B2 (en) Control device for compression ignition internal combustion engine
KR100241042B1 (en) Control device for cylinder injection type internal-combustion engine
JP4115819B2 (en) Fuel injection control method for internal combustion engine
JP2004232577A (en) Engine capable of compressed self-ignition operation
JPH11148408A (en) Spark ignition cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110318

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee