KR20010020395A - Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation - Google Patents

Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation Download PDF

Info

Publication number
KR20010020395A
KR20010020395A KR1019997010017A KR19997010017A KR20010020395A KR 20010020395 A KR20010020395 A KR 20010020395A KR 1019997010017 A KR1019997010017 A KR 1019997010017A KR 19997010017 A KR19997010017 A KR 19997010017A KR 20010020395 A KR20010020395 A KR 20010020395A
Authority
KR
South Korea
Prior art keywords
dimethyl
butylamido
methyl
silanetitanium
silane titanium
Prior art date
Application number
KR1019997010017A
Other languages
Korean (ko)
Other versions
KR100488833B1 (en
Inventor
데브라 제이. 맨골드
다니엘 디. 밴더렌데
로렌스 티. 캐일
디팍 알. 패리크
Original Assignee
리챠드 지. 워터맨
더 다우 케미칼 캄파니
진 엠.보스
듀폰 다우 엘라스토마스 엘. 엘. 씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 리챠드 지. 워터맨, 더 다우 케미칼 캄파니, 진 엠.보스, 듀폰 다우 엘라스토마스 엘. 엘. 씨. filed Critical 리챠드 지. 워터맨
Publication of KR20010020395A publication Critical patent/KR20010020395A/en
Application granted granted Critical
Publication of KR100488833B1 publication Critical patent/KR100488833B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Abstract

베르누이안 (Bernoullian) 보다 더욱 군집한 알파-올레핀 분포를 갖는 랜덤 에틸렌/알파-올레핀/디엔 단량체 공중합체를 4족 금속이 구속된 착물 촉매 및 활성화 조촉매를 사용하여 제조한다. 촉매로는 융합 고리 인데닐 유도 리간드가 포함된다.Random ethylene / alpha-olefin / diene monomer copolymers with alpha-olefin distribution more clustered than Bernoullian are prepared using Group 4 metal constrained complex catalysts and activating promoters. Catalysts include fused ring indenyl derivative ligands.

Description

에틸렌/알파-올레핀/디엔 공중합체 및 그의 제조 방법 {Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation}Ethylene / Alpha-Olefin / Diene Interpolymers and Their Preparation}

본 발명은 에틸렌 (C2), 1종 이상의 알파-올레핀 (α-올레핀), 바람직하게는 프로필렌 (C3), 부텐-1, 헥센-1 또는 옥텐-1, 및 1종 이상의 디올레핀 단량체, 바람직하게는 비공액 디엔 단량체의 공중합체 및 4족 금속 착물 부류로부터 유도된 올레핀 공중합 촉매를 사용하는 이들의 제조 방법에 관한 것이다.The present invention relates to ethylene (C 2 ), at least one alpha-olefin (α-olefin), preferably propylene (C 3 ), butene-1, hexene-1 or octene-1, and at least one diolefin monomer, Preferably, the present invention relates to copolymers of non-conjugated diene monomers and their preparation methods using olefin copolymerization catalysts derived from the Group 4 metal complex class.

구속 (constrained geometry) 금속 착물 및 그의 제조 방법은 유럽 특허 A-416,815호 (1990년 7월 3일자로 출원된 미국 출원 번호 545,403호), 유럽 특허 A-468,651호 (1990년 7월 3일자로 출원된 미국 출원 번호 547,718호), 유럽 특허 A-514,828호 (1991년 5월 20일자로 출원된 미국 출원 번호 702,475호), 유럽 특허 A-520,732호 (1992년 5월 1일자로 출원된 미국 출원 번호 876,268호) 및 국제 공개 제93/19104호 (1993년 1월 21일자로 출원된 미국 출원 번호 8,003호) 뿐만 아니라 미국 특허 제5,055,438호, 동 제5,057,475호, 동 제5,096,867호, 동 제5,064,802호, 동 제5,132,380호, 국제 공개 제95/00526호 및 미국 가출원 60-005913호에 개시되어 있다. 다양하게 치환된 인데닐 함유 금속 착물은 1996년 1월 26일자로 출원된 미국 출원 번호 제592,756호 및 국제 공개 제95/14024호에 교시되어 있다. 모든 선행 특허의 또는 그에 상응하는 미국 특허 출원의 관련된 교시 내용은 본원에서 참고 문헌으로 인용되고 있다.Constrained geometry metal complexes and methods of making them are described in European Patent A-416,815 (US Application No. 545,403, filed Jul. 3, 1990) and European Patent A-468,651 (July 3, 1990). US Application No. 547,718), European Patent A-514,828 (US Application No. 702,475, filed May 20, 1991), European Patent A-520,732 (US Application No. 1, 1992) 876,268) and International Publication No. 93/19104 (US Application No. 8,003, filed Jan. 21, 1993), as well as US Pat. Nos. 5,055,438, 5,057,475, 5,096,867, 5,064,802, 5,132,380, International Publication No. 95/00526, and US Provisional Application 60-005913. Various substituted indenyl containing metal complexes are taught in US Application No. 592,756 and International Publication 95/14024, filed January 26, 1996. Related teachings of all prior patents or equivalent US patent applications are incorporated herein by reference.

본 발명의 제1면은 랜덤 에틸렌/α-올레핀/디엔 단량체 (EAODM) 공중합체이고, 본 공중합체는 (a) C3-20α-올레핀인 α-올레핀에 대한 에틸렌의 중량비가 90:10 내지 10:90의 범위 이내이고, (b) 디엔 단량체의 함량이 공중합체의 중량을 기준으로 하여 0 내지 25 중량% 범위 이내이고, (c)13C NMR 분광법 및 식 B = POE/(2PE·PO) (여기서 PE는 에틸렌으로부터 유도된 에틸렌 유닛의 몰 분율이고, PO는 α-올레핀으로부터 유도된 α-올레핀 유닛의 몰 분율이고, POE는 공중합체 내의 모든 2가 쇄의 수에 대한 α-올레핀/에틸렌쇄 수의 비임)에 의해 결정된 B 값이 0.94 내지 1.0인, 에틸렌/α-올레핀/디엔 단량체 (EAODM) 랜덤 공중합체이다. 란델 (J.C. Randall)의 문헌 [Macromolecules, 15, pg 353 (1982)] 및 레이 (J. Ray)의 문헌 [Macromolecules, 10, pg 773 (1977)]는 B 값을 보다 상세하게 설명하고 있다. 베르누이안 (Bernoullian) 분포는 B 값 1을 제공하고, 완벽하게 교대된 중합체는 B 값 2를 제공할 것이며, 에틸렌/프로필렌 이블록 공중합체와 같은 블록 공중합체는 0에 근접한 B 값을 제공할 것이다. 실제적 표현에서, 1 미만의 B 값은 중합체가 베르누이안 분포보다 더욱 군집된 α-올레핀 분포를 가지고, 1 이상의 B 값은 중합체가 베르누이안 분포보다 더욱 고립된 α-올레핀 분포를 가지는 것을 나타낸다.The first aspect of the present invention is a random ethylene / α-olefin / diene monomer (EAODM) copolymer, wherein the copolymer has a weight ratio of ethylene to α-olefin, which is (a) C 3-20 α-olefin. To 10:90, (b) the content of diene monomer is in the range of 0 to 25% by weight based on the weight of the copolymer, (c) 13 C NMR spectroscopy and formula B = P OE / (2P E · P O ) (where P E is the mole fraction of ethylene units derived from ethylene, P O is the mole fraction of α-olefin units derived from α-olefins, and P OE is the mole fraction of all divalent chains in the copolymer) Ethylene / α-olefin / diene monomer (EAODM) random copolymer, having a B value determined by α-olefin / ethylene chain number to water ratio) of 0.94 to 1.0. JC Randall (Macromolecules, 15, pg 353 (1982)) and J. Ray (Macromolecules, 10, pg 773 (1977)) describe B values in more detail. The Bernoullian distribution will give a B value of 1, a perfectly alternating polymer will give a B value of 2, and block copolymers such as ethylene / propylene diblock copolymers will give a B value close to zero. . In practical terms, a B value of less than 1 indicates that the polymer has an α-olefin distribution more clustered than the Bernoulli distribution, and a B value of 1 or more indicates that the polymer has an isolated α-olefin distribution that is more isolated than the Bernoulli distribution.

B 값 결정을 위한13C NMR 시료는, 크로뮴(III) 아세틸아세톤 중 농도가 0.05M인 NMR 용매를 제조하기에 충분한 상자성 완화제를 포함하고 있는, 1,1,2,2-테트라클로로에탄-d2및 1,2,4-트리클로로벤젠의 50% / 50% (부피 기준) 용매 블렌드로 적합하게 제조된다. 시료는 중합체 및 NMR 용매를 질소-세척되고 뚜껑이 덮힌 10 mm의 NMR 튜브에서 부피비 10:90으로 혼합함으로써 제조된다. 튜브의 내용물을 가열하여 규칙적으로 재순환시켜서 균일도를 성취한다. 섭씨 130℃에서 90℃의 펄스 너비로 5 내지 9 초 동안 지연시키는 역출입구 탈결합 방식을 사용하여 스펙트럼을 얻었다.The 13 C NMR sample for determination of B value contains 1,1,2,2-tetrachloroethane-d containing a paramagnetic mitigating agent sufficient to prepare an NMR solvent having a concentration of 0.05 M in chromium (III) acetylacetone. Suitably prepared in a 50% / 50% (by volume) solvent blend of 2 and 1,2,4-trichlorobenzene. Samples are prepared by mixing the polymer and NMR solvent in a volume ratio of 10:90 in a nitrogen-washed and capped 10 mm NMR tube. Uniformity is achieved by heating and recirculating the contents of the tube regularly. Spectra were obtained using a back-out decoupling scheme that delayed for 5-9 seconds with a pulse width of 130 ° C. to 90 ° C.

본 발명의 제2 면은 에틸렌, 1종 이상의 C3-20α-올레핀 단량체 및 디엔 단량체를 하기 화학식의 금속 착물인 촉매 및 활성화 조촉매와 접촉시키는 것을 포함하는 (comprising), 제1면의 공중합체를 제조하기 위한 방법이다.The second aspect of the present invention comprises the process of contacting ethylene, at least one C 3-20 α-olefin monomer and diene monomer with a catalyst and activating promoter which is a metal complex of the formula It is a method for preparing coalesce.

상기 식에서, M은 +2, +3 또는 +4의 형식 산화 상태의 티타늄, 지르코늄, 또는 하프늄이고,Wherein M is titanium, zirconium, or hafnium in a formal oxidation state of +2, +3 or +4,

A'는 40개 이하의 비수소 원자를 포함하는, 2개 이상의 위치에서 히드로카르빌, 플루오로-치환된 히드로카르빌, 히드로카르빌옥시 치환된 히드로카르빌, 디알킬아미노 치환된 히드로카르빌, 실릴, 게르밀 및 그들의 혼합물로부터 선택되는 기로 치환된 치환 인데닐 기이며, A'는 또한 2가의 Z 기에 의해 M에 공유 결합되어 있고,A ′ is hydrocarbyl, fluoro-substituted hydrocarbyl, hydrocarbyloxy substituted hydrocarbyl, dialkylamino substituted hydrocarbyl at two or more positions containing up to 40 non-hydrogen atoms Is a substituted indenyl group substituted with a group selected from silyl, germanyl and mixtures thereof, A 'is also covalently bonded to M by a divalent Z group,

Z는 σ-결합을 통해 A' 및 M 모두에 결합된 2가의 잔기이며, Z는 붕소, 또는 원소 주기율표의 14족 구성 원소 및 또한 질소, 인, 황 또는 산소를 포함하고,Z is a divalent moiety bonded to both A 'and M via σ-bond, Z comprises boron or a Group 14 constituent element of the periodic table of the elements and also nitrogen, phosphorus, sulfur or oxygen,

X는 시클릭, 비편재, π-결합된 리간드 기인 리간드 부류를 제외한 원자수 60 이하의 음이온 또는 2가 음이온 리간드 기이며,X is an anionic or divalent anionic ligand group of up to 60 atoms excluding the class of ligands that are cyclic, unlocalized, π-bonded ligands,

X'는 각각 독립적으로 중성 루이스 염기 리게이팅 (ligating) 화합물이고 원자수 20 이하이고,Each X ′ is a neutral Lewis base ligating compound and has 20 or less atoms,

p는 0, 1, 또는 2 이고, M의 형식 산화 상태보다 2가 작으며, 단, X가 2가 음이온 리간드일 경우 p는 1이며,p is 0, 1, or 2, 2 is less than the formal oxidation state of M, except that when X is a divalent anionic ligand, p is 1,

q는 0, 1 또는 2이다.q is 0, 1 or 2.

바람직한 X' 기는 일산화탄소, 특히 트리메틸포스핀, 트리에틸포스핀, 트리페닐포스핀 및 비스(1,2-디메틸포스피노)에탄인 포스핀, P(OR)3(여기서 R은 C1-20히드로카르빌임), 특히 테트라히드로퓨란 (THF)인 에테르, 특히 피리딘, 비피리딘, 테트라메틸에틸렌디아민 (TMEDA) 및 트리에틸아민인 아민, 올레핀, 및 공액 디엔, 바람직하게는 탄소원자수 4 내지 40인 중성 공액 디엔이다. 후자의 X' 기를 포함하는 착물은 형식 산화 상태가 +2인 금속을 포함한다.Preferred X 'groups are phosphines which are carbon monoxide, in particular trimethylphosphine, triethylphosphine, triphenylphosphine and bis (1,2-dimethylphosphino) ethane, P (OR) 3 , where R is C 1-20 hydro Carbil), in particular tetrahydrofuran (THF) ether, in particular pyridine, bipyridine, tetramethylethylenediamine (TMEDA) and triethylamine amines, olefins, and conjugated dienes, preferably neutrals having 4 to 40 carbon atoms Conjugated diene. Complexes containing the latter X 'group include metals with a formal oxidation state of +2.

상기 금속 착물은 단리된 결정, 경우에 따라 순수한 형태 또는 다른 착물과 혼합된 형태, 용매화합된 부가물의 형태, 경우에 따라 특히 유기 액체인 액체 형태, 및 이량체 또는, 킬레이트화제가 유기 물질, 바람직하게는 중성 루이스 염기, 특히 트리히드로카르빌아민, 트리히드로카르빌포스핀 또는 할로겐화 유도체 킬레이트화 유도체의 형태로 존재할 수 있다.The metal complex is in isolated form, optionally in pure form or in admixture with other complexes, in the form of solvated adducts, optionally in liquid form, especially in organic liquids, and dimers or chelating agents are organic substances, preferably Preferably in the form of a neutral Lewis base, in particular trihydrocarbylamine, trihydrocarbylphosphine or halogenated derivative chelated derivative.

도 1은 실시예 4 내지 7 및 비교 실시예 A에 사용된 방법을 설명하는 대략적인 순서도이다.1 is a schematic flow chart illustrating the method used in Examples 4-7 and Comparative Example A. FIG.

본 발명 방법은 결과적으로 넓은 범위의 중합 조건, 특히 승온에서 높은 중량 평균 분자량 (Mw)의 EAODM 공중합체 또는 중합체를 고효율로 생산할 수 있게 한다. 이들은 특히 디엔이 5-에틸디엔-2-노르보르넨 (ENB), 1,4-헥사디엔 또는 유사한 비공액 디엔 또는 1,3-펜타디엔과 같은 공액 디엔인 EAODM 중합체의 용액 중합에 유용하다. 승온을 사용하면, 승온에서의 증가된 중합체의 용해도가 중합 장비의 용액 점도의 한계선을 넘어서지 않고 전환율 (더 높은 농도의 중합체 생성물)을 향상시킬 뿐만아니라 반응 생성물을 탈휘발화하는데에 필요한 에너지 비용을 감소시킨다는 사실 때문에 이러한 방법의 생산력이 획기적으로 향상된다.The process of the invention consequently makes it possible to produce high efficiency of EAODM copolymers or polymers of high weight average molecular weight (M w ) at a wide range of polymerization conditions, in particular at elevated temperatures. These are particularly useful for solution polymerization of EAODM polymers in which the diene is a conjugated diene such as 5-ethyldiene-2-norbornene (ENB), 1,4-hexadiene or similar non-conjugated diene or 1,3-pentadiene. With elevated temperatures, the increased solubility of the polymer at elevated temperatures not only exceeds the limit of solution viscosity of the polymerization equipment, but also improves the conversion rate (higher concentration of polymer product) as well as improves the energy costs required to devolatilize the reaction product. Due to the fact that it reduces, the productivity of this method is greatly improved.

본원에서 언급한 모든 원소 주기율표는 CRC 프레스 (CRC Press, Inc.)에서 1989년에 출판되고 저작권 보호되는 문헌 [Periodic Table of Elements]를 참고한다. 또한, 족 또는 족들에 대한 모든 언급은 IUPAC의 족 넘버링 시스템을 사용하는 상기 문헌 [Periodic Table of Element]에 나타난 바와 같다.All periodic table of elements mentioned herein is referred to the Periodic Table of Elements, published in 1989 by CRC Press, Inc. Further, all references to foot or foots are as shown in the Periodic Table of Element, above, using the IUPAC foot numbering system.

본 발명의 EAODM 공중합체는 3 가지의 뚜렷한 특징을 갖는다. 첫번째 특징은 190℃에서 레올로지 비 (V0.1/V100)가 약 3 내지 약 90인 점이다. 두번째 특징은 1 내지 150, 바람직하게는 10 내지 120, 특히 바람직하게는 15 내지 100 범위의 무니 점도 또는 MV (125℃에서 ML1+4,ASTM D1646-94)이다. 세번째 특징은 1 내지 1.25 미만의 반응성 비 곱 (RRP; Reactivity ratio product)이다.The EAODM copolymer of the present invention has three distinct features. The first feature is that the rheology ratio (V 0.1 / V 100 ) at 190 ° C. is from about 3 to about 90. The second feature is a Mooney viscosity or MV (ML 1 + 4 at 125 ° C. , ASTM D1646-94) in the range of 1 to 150, preferably 10 to 120, particularly preferably 15 to 100. A third feature is the Reactivity ratio product (RRP) of 1 to less than 1.25.

40 내지 185℃의 접촉 온도에서 제조하고 (테트라메틸시클로펜타디에닐)-디메틸(t-부틸아미도)실란티타늄 디메틸 또는 (테트라메틸시클로펜타디에닐)-디메틸(t-부틸아미도)실란티타늄 1,3-펜타디엔을 촉매로 사용하여 동일한 온도에서 동일한 단량체로부터 제조된 상응하는 EAODM 중합체와 비교할 때, 본 발명의 EAODM 중합체는 특정한 개선점을 제공한다. 예를 들어, 이들은 상응하는 EAODM 중합체의 레올로지 비보다 10% 이상 더 높은 레올로지 비를 가진다. 이들은 또한, 상응하는 EAODM 중합체에 비해 50 중량% 이상 높은 디엔의 함량, 1.5 배 이상 더 높은 Mw, 온도의 1차 미분을 사용한 시차주사열계량기 (differential scanning calorimeter; DSC) 곡선으로부터 얻어지는 1℃ 이상 더 낮은 유리 전이 온도 (Tg) 및 2.5배 이상 더 높은 MV를 갖는다. Tg의 비교의 목적상, 상응하는 EAODM 중합체는 0 보다 크고 5% 미만인 결정화도를 가진다.(Tetramethylcyclopentadienyl) -dimethyl (t-butylamido) silanitanium dimethyl or (tetramethylcyclopentadienyl) -dimethyl (t-butylamido) silanitanium prepared at a contact temperature of 40 to 185 ° C. When compared to corresponding EAODM polymers prepared from the same monomers at the same temperature using 1,3-pentadiene as a catalyst, the EAODM polymers of the present invention provide certain improvements. For example, they have a rheological ratio of at least 10% higher than the rheological ratio of the corresponding EAODM polymer. They are also at least 1 ° C. obtained from differential scanning calorimeter (DSC) curves using a first derivative of temperature of at least 50% by weight higher diene, at least 1.5 times higher M w , compared to the corresponding EAODM polymer. Has a lower glass transition temperature (Tg) and at least 2.5 times higher MV. For the purpose of comparing Tg, the corresponding EAODM polymer has a degree of crystallization that is greater than zero and less than 5%.

본 발명 방법은 C2를 1종 이상의 C3-20α-올레핀 (에틸렌 불포화된) 단량체 및 C4-40디엔 단량체와 함께 중합하는데 사용될 수 있다. α-올레핀은 지방족 또는 방향족 화합물일 수 있으며, 시클로부텐, 시클로펜텐 및 5 및 6 위치에서 C1-20히드로카르빌 기로 치환된 노르보르넨을 포함하는 노르보르넨과 같은 시클릭 화합물 또는 불포화 비닐 화합물을 포함할 수 있다. α-올레핀은 바람직하게는 C3-20지방족 화합물, 더욱 바람직하게는 C3-16지방족 화합물이다. 바람직한 에틸렌계 불포화 단량체는 4-비닐시클로헥센, 비닐시클로헥산, 노르보르나디엔, C3-10지방족 α-올레핀 (특히 에틸렌, 프로필렌, 이소부틸렌, 부텐-1, 펜텐-1, 헥센-1, 3-메틸-1-펜텐, 4-메틸-1-펜텐, 옥텐-1, 데센-1 및 도데센-1) 및 그들의 혼합물을 포함한다. 가장 바람직한 단량체는 에틸렌, 및 에틸렌 혼합물, 1종 이상의 프로필렌, 부텐-1, 헥센-1 및 옥텐-1, 및 비공액 디엔, 특히 ENB이다.The process of the invention can be used to polymerize C 2 with at least one C 3-20 α-olefin (ethylenically unsaturated) monomer and C 4-40 diene monomer. α-olefins may be aliphatic or aromatic compounds and unsaturated vinyl or cyclic compounds such as cyclobutene, cyclopentene and norbornene, including norbornene substituted with C 1-20 hydrocarbyl groups at positions 5 and 6 It may include a compound. α-olefins are preferably C 3-20 aliphatic compounds, more preferably C 3-16 aliphatic compounds. Preferred ethylenically unsaturated monomers are 4-vinylcyclohexene, vinylcyclohexane, norbornadiene, C 3-10 aliphatic α-olefins (especially ethylene, propylene, isobutylene, butene-1, pentene-1, hexene-1 , 3-methyl-1-pentene, 4-methyl-1-pentene, octene-1, decene-1 and dodecene-1) and mixtures thereof. Most preferred monomers are ethylene and ethylene mixtures, one or more propylene, butene-1, hexene-1 and octene-1, and nonconjugated dienes, especially ENB.

C4-40디올레핀 또는 디엔 단량체는 바람직하게는 비공액 디올레핀이다. 비공액 디올레핀은 C6-15직쇄, 분지쇄 또는 시클릭 탄화수소 디엔일 수 있다. 비공액 디엔의 예는 1,4-헥사디엔, 1,5-헵타디엔, 및 1,6-옥타디엔과 같은 직쇄 비고리 디엔, 5-메틸-1,4-헥사디엔, 2-메틸-1,5-헥사디엔, 6-메틸-1,5-헵타디엔, 7-메틸-1,6-옥타디엔, 3,7-디메틸-1,6-옥타디엔, 3,7-디메틸-1,7-옥타디엔, 5,7-디메틸-1,7-옥타디엔, 1,7-옥타디엔, 1,9-데카디엔 및 디히드로미르센의 혼합 이성질체와 같은 분지쇄 비고리 디엔, 1,4-시클로헥사디엔, 1,5-시클로옥타디엔 및 1,5-시클로도데카디엔과 같은 단일 고리 알리시클릭 디엔, 테트라히드로인덴, 메틸 테트라히드로인덴, 디시클로펜타디엔, 비시클로-(2,2,1)-헵타-2,5-디엔 (노르보르나디엔), 메틸노르보르나디엔과 같은 다중 고리 알리시클릭 융합 및 가교된 고리 디엔, 알케닐, 알킬리덴, 시클로알케닐 및 5-메틸렌-2-노르보르넨 (MNB), ENB, 5-비닐-2-노르보르넨, 5-프로페닐-2-노르보르넨, 5-이소프로필리덴-2-노르보르넨, 5-(4-시클로펜테닐)-2-노르보르넨 및 5-시클로헥실리덴-2-노르보르넨과 같은 시클로알킬리덴 노르보르넨이다.The C 4-40 diolefin or diene monomer is preferably a nonconjugated diolefin. Non-conjugated diolefins can be C 6-15 straight, branched or cyclic hydrocarbon dienes. Examples of nonconjugated dienes include straight chain acyclic dienes such as 1,4-hexadiene, 1,5-heptadiene, and 1,6-octadiene, 5-methyl-1,4-hexadiene, 2-methyl-1 , 5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 3,7-dimethyl-1,6-octadiene, 3,7-dimethyl-1,7 Branched chain acyclic dienes, such as mixed isomers of octadiene, 5,7-dimethyl-1,7-octadiene, 1,7-octadiene, 1,9-decadiene and dihydromircene, 1,4- Monocyclic alicyclic dienes such as cyclohexadiene, 1,5-cyclooctadiene and 1,5-cyclododecadiene, tetrahydroindene, methyl tetrahydroindene, dicyclopentadiene, bicyclo- (2 Multiple ring alicyclic fused and crosslinked ring dienes, alkenyl, alkylidene, cycloalkenyl and 5, such as 2,1) -hepta-2,5-diene (norbornadiene), methylnorbornadiene Methylene-2-norbornene (MNB), ENB, 5-vinyl-2-norbornene, 5-propenyl-2-norbornene, 5-isopro Vinylidene-2-norbornene is norbornene, 5- (4-cyclopentenyl) -2-norbornene and 5-cyclohexylidene-2-norbornene and cycloalkylidene norbornene, such as.

디올레핀이 공액 디엔인 경우, 1,3-펜타디엔, 1,3-부타디엔, 2-메틸-1,3-부타디엔, 4-메틸-1,3-펜타디엔, 또는 1,3-시클로펜타디엔일 수 있다.When the diolefin is a conjugated diene, 1,3-pentadiene, 1,3-butadiene, 2-methyl-1,3-butadiene, 4-methyl-1,3-pentadiene, or 1,3-cyclopentadiene Can be.

디엔은 바람직하게는 ENB, 1,4-헥사디엔 및 노르보르나디엔으로부터 선택되는 비공액 디엔이고, 더욱 바람직하게는 ENB이다. EAODM 디엔 단량체의 함량은 바람직하게는 0을 초과하고 25중량% 이하, 더욱 바람직하게는 0.3 내지 20 중량%, 가장 바람직하게는 0.5 내지 15 중량%이다.The diene is preferably a nonconjugated diene selected from ENB, 1,4-hexadiene and norbornadiene, more preferably ENB. The content of the EAODM diene monomer is preferably greater than 0 and up to 25% by weight, more preferably 0.3 to 20% by weight, most preferably 0.5 to 15% by weight.

본 발명에 따라 사용되는 바람직한 배위 착물은 하기 화학식 IA에 따른 착물이다.Preferred coordination complexes used according to the invention are complexes according to formula (IA).

상기 식에서,Where

R1및 R2는 독립적으로 수소, 히드로카르빌, 퍼플루오로 치환된 히드로카르빌, 실릴, 게르밀 및 그들의 혼합물로부터 선택된 기이고, 이러한 기들은 20개 이하의 비수소원자를 가지며, 단 R1또는 R2중 하나는 수소가 아니며,R 1 and R 2 are independently a group selected from hydrogen, hydrocarbyl, perfluoro substituted hydrocarbyl, silyl, germanyl and mixtures thereof, provided that these groups have up to 20 non-hydrogen atoms, provided that R 1 Or one of R 2 is not hydrogen,

R3, R4, R5, 및 R6은 독립적으로 수소, 히드로카르빌, 퍼플루오로 치환된 히드로카르빌, 실릴, 게르밀 및 그들의 혼합물로부터 선택된 기이며, 이러한 기들은 20 이하의 비수소원자를 가지며,R 3 , R 4 , R 5 , and R 6 are independently groups selected from hydrogen, hydrocarbyl, perfluoro-substituted hydrocarbyl, silyl, germanyl, and mixtures thereof, these groups having up to 20 non-hydrogen sources Have a ruler,

M은 티타늄, 지르코늄 또는 하프늄이고,M is titanium, zirconium or hafnium,

Z는 붕소 또는 원소 주기율표의 14족의 구성 원소를 포함하고 또한 질소, 인, 황 또는 산소를 포함하며, 60 이하의 비수소 원자를 가지는 2가의 잔기이고,Z is a divalent moiety containing boron or a constituent element of group 14 of the periodic table of elements and comprising nitrogen, phosphorus, sulfur or oxygen and having up to 60 non-hydrogen atoms,

p는 0,1 또는 2이며,p is 0,1 or 2,

q는 0 또는 1이고,q is 0 or 1,

단, p가 2 이고, q가 0이고, M의 형식 산화 상태가 +4이면, X는 할라이드, 히드로카르빌, 히드로카르빌옥시, 디(히드로카르빌)아미도, 디(히드로카르빌)포스피도, 히드로카르빌술피도, 및 실릴기 뿐만아니라 할로-, 디(히드로카르빌아미노)-, 히드로카르빌옥시-, 및 디(히드로카르빌)포스피노 치환된 그들의 유도체로 이루어진 군으로부터 선택되는 음이온 리간드이고, 이러한 X 기는 20 이하의 비수소원자를 가지고,Provided that p is 2, q is 0, and the formal oxidation state of M is +4, then X is halide, hydrocarbyl, hydrocarbyloxy, di (hydrocarbyl) amido, di (hydrocarbyl) Phosphido, hydrocarbyl sulfido, and silyl groups as well as halo-, di (hydrocarbylamino)-, hydrocarbyloxy-, and di (hydrocarbyl) phosphino substituted derivatives thereof. Is an anionic ligand, and such X groups have 20 or less non-hydrogen atoms,

p가 1이고, q가 0이고, M의 형식 산화 상태가 +3이면, X는 알릴 2-(N,N-디메틸아미노메틸)페닐, 및 2-(N,N-디메틸)-아미노벤질로 이루어진 군으로부터 선택되는 안정화 음이온 리간드 기이거나, 또는 M의 형식 산화 상태가 +4이면, X는 공액 디엔의 2가 유도체이고, M 및 X가 함께 메탈로시클로펜텐 기를 형성하고,If p is 1, q is 0 and the formal oxidation state of M is +3, then X is allyl 2- (N, N-dimethylaminomethyl) phenyl, and 2- (N, N-dimethyl) -aminobenzyl Or a stabilizing anionic ligand group selected from the group consisting of or when the formal oxidation state of M is +4, X is a divalent derivative of conjugated diene, and M and X together form a metallocyclopentene group,

p가 0이고, q가 1이고, M의 형식 산화 상태가 +2이면, X'는 경우에 따라 1개 이상의 히드로카르빌 기로 치환된 중성의 공액 또는 비공액 디엔이고, 이 X'는 40 이하의 탄소원자수를 갖고 M과 함께 π-착물을 형성한다.If p is 0, q is 1 and the formal oxidation state of M is +2, then X 'is a neutral conjugated or nonconjugated diene optionally substituted with one or more hydrocarbyl groups, which X' is 40 or less It has a carbon atom of and forms a π-complex with M.

본 발명에 따라 사용되는 더욱 바람직한 배위 착물은 하기 화학식 IB에 따른 착물이다.More preferred coordination complexes used according to the invention are complexes according to formula (IB).

상기 식에서,Where

R1및 R2는 수소 또는 C1-6알킬이고, 단 R1또는 R2중 적어도 하나는 수소이고,R 1 and R 2 are hydrogen or C 1-6 alkyl, provided that at least one of R 1 or R 2 is hydrogen,

R3, R4, R5및 R6는 독립적으로 수소 또는 C1-6알킬이고,R 3 , R 4 , R 5 and R 6 are independently hydrogen or C 1-6 alkyl,

M은 티타늄이고,M is titanium,

Y는 -O-, -S-, -NR*-, -PR*- 이고,Y is -O-, -S-, -NR * -, -PR * -,

Z*는 SiR* 2, CR* 2, SiR* 2SiR* 2, CR* 2CR* 2, CR*= CR*, CR* 2SiR* 2또는 GeR* 2이고,Z * is SiR * 2 , CR * 2 , SiR * 2 SiR * 2 , CR * 2 CR * 2 , CR * = CR * , CR * 2 SiR * 2 or GeR * 2 ,

R*는 각각 독립적으로 수소, 또는 히드로카르빌, 히드로카르빌옥시, 실릴, 할로겐화 알킬, 할로겐화 아릴, 및 그들의 배합물로부터 선택되는 구성원이며, R*는 20 미만의 비수소원자를 가지고, 경우에 따라, Z로부터의 2개의 R*기(R*가 수소가 아닌 경우) 또는 Z로부터의 R*기 및 Y로부터의 R*기는 고리 계를 형성하고,Each R * is independently a member selected from hydrogen or hydrocarbyl, hydrocarbyloxy, silyl, halogenated alkyl, halogenated aryl, and combinations thereof, and R * has a non-hydrogen atom of less than 20, optionally, Two R * groups from Z (if R * is not hydrogen) or R * groups from Z and R * groups from Y form a ring system,

p는 0,1 또는 2이며,p is 0,1 or 2,

q는 0 또는 1이고,q is 0 or 1,

단, p는 2 이고, q는 0이고, M의 형식 산화 상태가 +4이면, X는 각각 독립적으로 메틸 또는 벤질이고,Provided that when p is 2, q is 0, and the formal oxidation state of M is +4, each X is independently methyl or benzyl,

p가 1이고, q가 0이고, M의 형식 산화 상태가 +3이면, X는 2-(N,N-디메틸)아미노벤질이거나, 또는 M의 형식 산화 상태가 +4이면, X는 1,4-부타디에닐이고,If p is 1, q is 0 and the formal oxidation state of M is +3, then X is 2- (N, N-dimethyl) aminobenzyl, or if M formal oxidation state is +4, then X is 1, 4-butadienyl,

p가 0이고, q가 1이고, M의 형식 산화 상태가 +2이면, X'는 1,4-디페닐-1,3-부타디엔, 2,4-헥사디엔, 또는 1,3-펜타디엔이다. 후자의 디엔은 결과적으로 개별 기하 이성질체의 실질적 혼합물인 금속 착물을 생산하는 비대칭 디엔 기를 나타낸다.When p is 0, q is 1, and the formal oxidation state of M is +2, X 'is 1,4-diphenyl-1,3-butadiene, 2,4-hexadiene, or 1,3-pentadiene to be. The latter dienes result in an asymmetric diene group which produces a metal complex which is a substantial mixture of the individual geometric isomers.

본 발명에 따라 사용되는 더더욱 바람직한 배위 착물은 하기 화학식 II에 따른 착물이다.Even more preferred coordination complexes used according to the invention are complexes according to formula (II).

상기 식에서,Where

R'는 수소, 히드로카르빌, 디(히드로카르빌아미노), 또는 히드로카르빌렌아미노 기이고, 상기 R'는 20 이하의 탄소원자수를 가지고,R 'is hydrogen, hydrocarbyl, di (hydrocarbylamino), or hydrocarbyleneamino group, wherein R' has 20 or less carbon atoms,

R"는 C1-20히드로카르빌 또는 수소이고,R ″ is C 1-20 hydrocarbyl or hydrogen,

M은 티타늄이고,M is titanium,

Y는 -O-, -S-, NR*-, -PR*-, -NR2 *- 또는 -PR2 *- 이고,Y is -O-, -S-, NR * -, -PR * -, -NR 2 * -or -PR 2 * -,

Z*는 상기 정의된 바와 같고,Z * is as defined above,

R*는 각각 상기 정의된 바와 같고,R * are each as defined above,

X는 시클릭, 비편재, π-결합된 리간드 기인 리간드 부류를 제외한 원자수 60 이하의 1가 음이온 리간드이며,X is a monovalent anionic ligand of up to 60 atoms, excluding the class of ligands that are cyclic, unbiased, π-bonded ligands,

X'는 각각 독립적으로 원자수 20 이하의 중성 리게이팅 화합물이고,Each X 'is independently a neutral ligation compound having 20 or less atoms,

X"는 원자수 60 이하인 2가 음이온 리간드 기이고,X "is a divalent anionic ligand group having up to 60 atoms,

p는 0, 1 또는 2이고,p is 0, 1 or 2,

q는 0 또는 1 이고,q is 0 or 1,

r은 0 또는 1이고,r is 0 or 1,

단, p가 2이고, q 및 r이 0이고, M의 형식 산화 상태가 +4 (또는 Y가 -NR* 2또는 -PR* 2이면 M의 형식 산화상태가 +3)이면, X는 할라이드, 히드로카르빌, 히드로카르빌옥시, 디(히드로카르빌)아미도, 디(히드로카르빌)포스피도, 히드로카르빌술피도, 및 실릴기 뿐만아니라 할로-, 디(히드로카르빌)아미도-, 히드로카르빌옥시-, 및 디(히드로카르빌)포스피노 치환된 그들의 유도체로부터 선택되는 음이온 리간드이고, 이러한 X 기는 30 개 이하의 비수소원자를 가지며,Provided that when p is 2, q and r are 0 and the formal oxidation state of M is +4 (or if the formal oxidation state of M is +3 when Y is -NR * 2 or -PR * 2 ), then X is a halide. , Hydrocarbyl, hydrocarbyloxy, di (hydrocarbyl) amido, di (hydrocarbyl) phosphido, hydrocarbyl sulfido, and silyl groups as well as halo-, di (hydrocarbyl) amido An anionic ligand selected from hydrocarbyloxy-, and di (hydrocarbyl) phosphino substituted derivatives thereof, and such X groups have up to 30 non-hydrogen atoms,

r이 1이고, p 및 q가 0이고, M의 형식 산화 상태가 +4이면, X" 는 히드로카르바디일, 옥시히드로카르빌 및 히드로카르빌렌디옥시기로 이루어진 군으로부터 선택되는 2가 음이온 리간드이고, 이러한 X 기는 30 이하의 비수소원자수를 가지고,When r is 1, p and q are 0 and the formal oxidation state of M is +4, X "is a divalent anionic ligand selected from the group consisting of hydrocarbodiyl, oxyhydrocarbyl and hydrocarbylenedioxy groups X group has a non-hydrogen atom number of 30 or less,

p가 1이고, q 및 r이 0이고, M의 형식 산화 상태가 +3이면, X는 알릴, 2-(N,N-디메틸아미노)페닐, 2-(N,N-디메틸아미노메틸)페닐, 및 2-(N,N-디메틸아미노)벤질로 이루어진 군으로부터 선택되는 안정화 음이온 리간드기이고,If p is 1, q and r are 0 and the formal oxidation state of M is +3, then X is allyl, 2- (N, N-dimethylamino) phenyl, 2- (N, N-dimethylaminomethyl) phenyl , And a stabilized anion ligand group selected from the group consisting of 2- (N, N-dimethylamino) benzyl,

p 및 r이 0이고, q가 1이고, M의 형식 산화 상태가 +2이면, X'는 경우에 따라 1개 이상의 히드로카르빌기로 치환된 중성의 공액 또는 비공액 디엔이고, 이러한 X'는 40 이하의 탄소원자수를 갖고 M과 함께 π-착물을 형성한다.If p and r are 0, q is 1 and the formal oxidation state of M is +2, then X 'is a neutral conjugated or nonconjugated diene optionally substituted with one or more hydrocarbyl groups, such X' It has a carbon number of 40 or less and forms a π-complex with M.

가장 바람직한 금속 착물은 상기 화학식 (II) 또는 (III)에 따른 것이며, 여기서 M, X, X', X", R', R", Z*, Y, p, q 및 r은 상기 정의된 바와 같고,Most preferred metal complexes are according to formula (II) or (III), wherein M, X, X ', X ", R', R", Z * , Y, p, q and r are as defined above. Equal,

단, p가 2이고, q 및 r이 0이고, M의 형식 산화 상태가 +4이면, X는 각각 독립적으로 메틸, 벤질, 또는 할라이드이고,Provided that when p is 2, q and r are 0, and the formal oxidation state of M is +4, each X is independently methyl, benzyl, or halide,

p 및 q가 0이고, r이 1이고, M의 형식 산화 상태가 +4이면, X"는 M과 함께 메탈로시클로펜텐 고리를 형성하는 1,4-부타디에닐 기이고,when p and q are 0, r is 1 and the formal oxidation state of M is +4, X "is a 1,4-butadienyl group forming a metallocyclopentene ring with M,

p가 1이고, q 및 r이 0이고, M의 형식 산화 상태가 +3이면, X는 2-(N,N-디메틸아미노)벤질이고,if p is 1, q and r are 0 and the formal oxidation state of M is +3, then X is 2- (N, N-dimethylamino) benzyl,

p 및 r이 0이고, q가 1이고, M의 형식 산화 상태가 +2이면, X'는 1,4-디페닐-1,3-부타디엔 또는 1,3-펜타디엔이다.If p and r are 0, q is 1 and the formal oxidation state of M is +2, X 'is 1,4-diphenyl-1,3-butadiene or 1,3-pentadiene.

상기 화학식 (II)에 따른 특히 바람직한 배위 착물은 특정한 그들의 최종 용도에 따라 고유하게 치환된다. 특히, 에틸렌, 1종 이상의 α-올레핀 및 디올레핀의 공중합을 위한 촉매 조성물에서 사용되기에 매우 유용한 금속 착물은 상기 착물 (II) (여기서 R'는 상기 정의된 바와 같고, R"는 수소 또는 메틸, 특히 수소임)를 함유한다.Particularly preferred coordination complexes according to formula (II) above are inherently substituted according to their particular end use. In particular, metal complexes which are very useful for use in catalyst compositions for the copolymerization of ethylene, at least one α-olefin and diolefin are those complexes (II), wherein R ′ is as defined above and R ″ is hydrogen or methyl , Especially hydrogen).

특히 바람직한 배위 착물 (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔은 구조적으로 하기 화학식 (III)으로 표시된다.Particularly preferred coordination complex (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene is structurally represented by the formula (III) do.

두번째로 특히 바람직한 배위 착물 (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸은 구조적으로 하기 화학식 (IV)로 표시된다.Second particularly preferred coordination complex (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl is structurally represented by the following general formula (IV).

세번째로 특히 바람직한 배위 착물 (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔은 구조적으로 하기 화학식 (V)로 표시된다.Third particularly preferred coordination complex (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene is structurally represented by Is indicated by).

네번째로 특히 바람직한 배위 착물 (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV)디메틸은 구조적으로 하기 화학식 (VI)으로 표시된다.Fourth particularly preferred coordination complex (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl is structurally represented by the formula (VI) .

다섯번째로 특히 바람직한 배위 착물 (t-부틸아미도)디메틸(η5-2-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔은 종종 기하 이성질체로 언급되는 2개의 이성질체를 가지며, 각각 하기 화학식 (VII) 및 (VIII)로 표시된다.Fifth particularly preferred coordination complex (t-butylamido) dimethyl (η 5 -2-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene is often referred to as the geometric isomer It has two isomers and is represented by following general formula (VII) and (VIII), respectively.

바람직한 금속 배위 착물의 제1군은 (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일) 실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질,(디-n-부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질을 포함한다. 이 군의 바람직한 구성원은 (t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일) 실란티타늄 (IV) 디메틸 및 (t-부틸아미도)-디메틸(η5-2-메틸인데닐) 실란티타늄 (II) 2,4-헥사디엔을 포함한다.The first group of preferred metal coordination complexes (t- butylamido) dimethyl (η 5 -2- methyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido Fig.) dimethyl (η 5 -2- methyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethyl (η 5 inde-2-methyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- inde-methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 -2- inde-methyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2-methyl-inde indenyl) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 inde-2-methyl-indenyl) silane titanium ( II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butyl Amido) dimethoxy (η 5 -2-methylindenyl) silanetitanium (II) 2,4-hexadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dibenzyl, (t- butyl amido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 - 2-methyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (II) 2,4- hexadiene , (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2-methyl-inde indenyl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (inde η 5 -2-methyl-indenyl) silane titanium (IV) dibenzyl, (t- butyl the amino degrees) ethoxymethyl (η 5 -2- methyl Carbonyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) to inde ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (II) penta-1,3- diene, (t- butylamido) ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (IV) dimethyl, (t in -Butylamido) ethoxymethyl (η 5 -2-methylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethyl (η 5 -2-ethylindenyl) silanetitanium (II) 1 , 4-diphenyl-1,3-butadiene, (t- butylamido) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethyl (η 5 -2- ethyl inde indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- inde ethyl indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 -2- ethyl inde Indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (IV) dimethyl, (t- butyl Amido) dimethoxy (η 5 -2-ethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2-ethylindenyl) silane titanium (II) 1 , 4-diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido FIG inde) di isopropoxy (η 5 -2- ethyl carbonyl) room Titanium (II) 2,4- hexadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, ( t- butylamido) di isopropoxy (η 5 -2-ethyl-inde indenyl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 inde-2-ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) ethoxymethyl (η 5 -2- ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido ) ethoxymethyl (η 5 -2- ethyl inde indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido inde degrees) ethoxymethyl (η 5 -2- ethyl indenyl) silane titanium (II ) 2,4-hexadiene, (t- butylamido) ethoxymethyl (η 5 inde-2-ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido Ethoxymethyl (η 5 -2-ethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) ethoxymethyl (η 5 -2-ethylindenyl) silanetitanium (IV) dibenzyl, (t- butylamido) dimethyl (η 5 -2- methyl -s- Line indazol-1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) Silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, ( t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) dimethyl ( η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) (η 5 2-methyl-s-indacene-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) dimethoxy (η 5 -2-methyl-s-indacene-1- (I) silanetitanium (III) 2- (N, N-di Methylamino) benzyl, (t-butylamido) dimethoxy (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2-methyl-s-indasen-1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II ) 1,3-pentadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t -butylamido) di isopropoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) Diisopropoxy (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) diisopropoxy (η 5 -2-methyl-s-inda Sen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II ) 1,4-diphenyl-1,3-butadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- To pentadiene, (t-butylamido) ethoxymethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) Toxymethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5- 2-methyl-indazol -s- metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium ( IV) Dibenzyl, (t-butylamido) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t -Butylamido) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butyl amido) dimethyl (η 5 -2-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium ( III) 2- (N, N-dimethylamino) Quality, (t- butylamido) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2- ethyl- s- indazol metallocene-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1, 4-diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, ( t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 - 2-ethyl-indazol -s- metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2- ethyl-indazol -s- Sen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t- Butyl amido) diisopropoxy (η 5 -2-ethyl-s-indasen-1-yl) silane titanium (II) 1,4-diphenyl-1,3-butadiene, (t-butyl amido) Diisopropoxy When (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s - indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dibenzyl, in (t- butylamido) ethoxymethyl (η 5 - 2-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) ethoxymethyl (η 5 -2-ethyl-s - indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium ( II) 2,4- hexadiene, (t- butylamido) ethoxymethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino ) Benzyl, (t-butyl Shown) ethoxymethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) ethoxymethyl (η 5 -2- ethyl-indazol -s- Sen-1-yl) silanetitanium (IV) dibenzyl, (dimethylamine) dimethyl (η 5 -2-methylindenyl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2-methylindenyl ) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 inde-2-methyl-indenyl) silane titanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2-methyl-inde carbonyl) silane titanium (III) dibenzyl, (di -n- butylamine) dimethyl (η 5 -2- methyl-indenyl) silane titanium (III) dimethyl, (di -n- butylamine) dimethyl (η 5 -2- methyl indenyl) silane titanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2- methyl-indenyl) silane titanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 - 2-methyl-indenyl) silane titanium (III) dibenzyl, (dimethylamino) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (di Butyl amine) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2- methyl -s- indazol metallocene -1 -yl) silane titanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (di -n- butylamine) Dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanitanium (III) Dimethyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-s-indasen-1-yl ) silane titanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (di-iso-butylamine) dimethyl ( η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (dimethylamine) dimethyl (η 5 -2-ethylindenyl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2- ethyl inde ) Silane titanium (III) dibenzyl, (di -n- butylamine) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (III) dimethyl, (di -n- butylamine) dimethyl (η 5 -2- Ethylindenyl) silanetitanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2-ethylindenyl) silanetitanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 2-ethylindenyl) silanetitanium (III) dibenzyl, (dimethylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl ( η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanitanium (III) Dimethyl, (diisopropylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5- 2-ethyl-indazol -s- metallocene-1-yl) silane titanium (III) dimethyl, (di -n- butylamine) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III ) Dibenzyl, (di-isobutylamine) Methyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) Silantitanium (III) dibenzyl. Preferred members of this group are (t-butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silantitanium (IV) dimethyl and (t-butylamido) -dimethyl (η 5-methyl-2-inde include indenyl) silane titanium (II) 2,4- hexadiene.

바람직한 촉매의 제2군은 (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질,(디-n-부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일) 실란티타늄 (III) 디벤질을 포함한다. 이 군의 바람직한 구성원은 (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐) 실란티타늄 (II) 1,4-디페닐-1,3-부타디엔 및 (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일) 실란티타늄 (IV) 디메틸을 포함한다.A second group of preferred catalysts are (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido Fig.) Dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium ( II) 2,4-hexadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butyl Amido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl , (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethoxy ( η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2 , 4-hexadiene, (t- butylamido) dimethoxy (η 5 -2,3- dimethyl Denil) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2,3- dimethyl-indenyl) silane titanium (IV) dimethyl, (t- Butyl amido) dimethoxy (η 5 -2,3-dimethylindenyl) silane Titanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silane Titanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-penta Diene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) Silanetitanium (IV) dimethyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silane titanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) ethoxymethyl (η 5 -2, 3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) Dimethyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethyl (η 5 -2,3-dimethyl- s-indacene-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indacene- 1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 2, 4-hexadiene, (t- butylamido) dimethyl (η 5 -2,3- dimethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethyl amino ) Benzyl, (t- butylamido) dimethyl (η 5 -2,3- dimethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2 , 3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) Silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II ) 1,3-pentadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t -Butyl amido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) Dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-inda Sen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1 , 4-diphenyl-1,3- Other diene, (t- butylamido) di isopropoxy (η 5 -2,3- dimethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido Fig. 2) Diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) diisopropoxy (η 5 -2 , 3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl ) Silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl- 1,3-butadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t- Butyl amido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) ethoxymethyl (η 5 -2,3- Dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s- Indansen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl , (Dimethylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dibenzyl, (Diisopropylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) Dibenzyl, (di-n-butylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl, (di-n-butylamine) dimethyl (η 5 -2,3-dimethyl Nil) silanetitanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanitanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2,3-dime Tildeinyl) silanetitanium (III) dibenzyl, (dimethylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl ) Silanetitanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di-n-butylamine) Dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanitanium (III) Dimethyl, (di-n-butylamine) dimethyl (η 5 -2,3-dimethyl-s-indacene -1-yl) silanetitanium (III) dibenzyl, (di-isobutylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (di- Isobutylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (t-butylamido) dimethyl (η 5 -2-methyl-3- Ethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) Methyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t-butylamido) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) dimethyl (η 5 -2-methyl-3-ethylindenyl ) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethoxy (η 5 -2- -methyl-3-ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2--methyl-3-ethyl-carbonyl) Silane titanium (IV) dimethyl, (t- butylamido) dimethoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy ( η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) diisopropoxy (η 5 -2-methyl- 3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 2, 4-hexadiene, (t- butylamido) di isopropoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- Butyl amido) diisopropoxy (η 5 -2-methyl-3-ethylindenyl) silane titanium (IV) dimethyl, (t-butyl amido) diisopropoxy (η 5 -2-methyl-3- ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) ethoxymethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,4- diphenyl -1, 3-butadiene, ethoxymethyl (η 5 -2- methyl-3-on (t- butylamido) Butylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) ethoxymethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 2,4-hexa diene, (t- butylamido) ethoxymethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) in Ethoxymethyl (η 5 -2-methyl-3-ethylindenyl) silane titanium (IV) dimethyl, (t-butyl amido) ethoxymethyl (η 5 -2-methyl-3-ethyl indenyl) silane titanium (IV) Dibenzyl, (t-butylamido) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3 -Butadiene, (t-butylamido) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido ) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- methyl indazol-3-ethyl -s- metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 -2- methyl-3 Ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium ( IV) Dibenzyl, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3 -Butadiene, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido Fig.) dimethoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 - 2-methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2- methyl indazol-3-ethyl -s- metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) dimethoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-yl ) Silanetitanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4- Diphenyl-1,3-butadiene, (t-butyl Amido) di isopropoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy Foxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2 -indazol-3-ethyl -s- metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- indazol-3-ethyl -s- metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene- 1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 1, 4-diphenyl-1,3-butadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3 in -Pentadiene, (t-butylamido) ethoxymethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t- Butyl amido) ethoxymethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) ethoxymethyl (η in 5-ethyl-2-methyl-3--s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) ethoxymethyl (η 5 -2-methyl-3-ethyl -s- in Indasen-1-yl) silanetitanium (IV) dibenzyl, (dimethylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5- 2-methyl-3-ethyl-indenyl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) dimethyl, (diisopropyl Amine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) Dimethyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2 -Methyl-3-ethylindenyl) silanetitanium (III) dimethyl, (Di-iso-butylamine) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) dibenzyl, (dimethylamino) dimethyl (η 5 -2- methyl-3-ethyl -s- Line indazol-1-yl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (di Isopropylamine) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanitanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2-methyl-3- Ethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silane Titanium (III) Dimethyl, (di-n-butylamine) Dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (III) Dibenzyl, (di-iso-butyl Amine) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanitanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2-methyl-3- Ethyl-s-indasen-1-yl) silantitanium (III) dibenzyl. Preferred members of this group are (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silantitanium (II) 1,4-diphenyl-1,3-butadiene and (t-butylamido ) Dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silantitanium (IV) dimethyl.

착물은 잘 알려진 합성 기술을 사용함으로써 제조될 수 있다. 경우에 따라 환원제가 사용되어 더 낮은 산화 상태의 착물이 생산될 수 있다. 이러한 방법은 1994년 5월 13일자로 출원된 미국 특허 출원 번호 제8/241,523호로서 제95-00526호로 국제 공개되어 있으며, 이의 교시 내용은 본원에서 참고 문헌으로 인용되고 있다. 합성은 온도 -100 내지 300℃, 바람직하게는 -78 내지 100℃, 가장 바람직하게는 0 내지 50℃의 적합한 비방해성 용매 중에서 수행된다. 본 명세서에서 사용되는 "환원제"는 환원 조건 하에서 금속 M의 보다 높은 산화 상태로부터 보다 낮은 산화 상태로의 환원을 유발하는 금속 또는 화합물을 의미한다. 적합한 금속 환원제의 예로는 알칼리 금속, 알칼리 토금속, 알루미늄 및 아연, 나트륨/수은 아말감 및 나트륨/칼륨 합금과 같은 알칼리 금속 또는 알칼리 토금속의 합금이 있다. 적합한 환원제 화합물의 예로는 나트륨 나프탈레나이드, 칼륨 그라파이트, 리튬 알킬, 리튬 또는 칼륨 알카디에닐 및 그리냐르 시약이 있다. 바람직한 환원제는 알칼리 금속 또는 알칼리 토금속, 특히 리튬 또는 마그네슘 금속을 포함한다.Complexes can be prepared by using well known synthetic techniques. In some cases, reducing agents may be used to produce complexes in lower oxidation states. This method is published internationally as US Patent Application No. 8 / 241,523, filed May 13, 1994, entitled 95-00526, the teachings of which are incorporated herein by reference. Synthesis is carried out in a suitable non-intrusive solvent of temperature -100 to 300 ° C, preferably -78 to 100 ° C, most preferably 0 to 50 ° C. As used herein, "reducing agent" means a metal or compound that causes a reduction of the metal M from a higher oxidation state to a lower oxidation state under reducing conditions. Examples of suitable metal reducing agents are alkali metal or alkaline earth metals, such as alkali metals, alkaline earth metals, aluminum and zinc, sodium / mercury amalgam and sodium / potassium alloys. Examples of suitable reducing agent compounds are sodium naphthalenide, potassium graphite, lithium alkyl, lithium or potassium alkadienyl and Grignard reagents. Preferred reducing agents include alkali or alkaline earth metals, in particular lithium or magnesium metals.

촉매 착물의 형성을 위한 적합한 반응 매질은 지방족 및 방향족 탄화수소, 에테르, 및 시클릭 에테르, 특히 이소부탄, 부탄, 펜탄, 헥산, 옥탄, 및 그들의 혼합물과 같은 분지쇄 탄화수소, 시클로헥산, 시클로헵탄, 메틸시클로헥산, 메틸시클로헵탄, 및 그들의 혼합물과 같은 시클릭 탄화수소 또는 알리시클릭 탄화수소, 벤젠, 톨루엔, 및 자일렌, C1-4디알킬 에테르, (폴리)알킬렌 글리콜의 C1-4디알킬 에테르 유도체, 및 테트라히드로퓨란 (THF)과 같은 방향족 또는 히드로카르빌 치환된 방향족 화합물이다. 이들의 혼합물도 또한 적합하다.Suitable reaction media for the formation of catalyst complexes are aliphatic and aromatic hydrocarbons, ethers, and cyclic ethers, especially branched chain hydrocarbons such as isobutane, butane, pentane, hexane, octane, and mixtures thereof, cyclohexane, cycloheptane, methyl cyclohexane and methyl cycloheptane, and mixtures thereof, such as cyclic hydrocarbons or alicyclic hydrocarbons, benzene, toluene, and xylene, C 1-4 dialkyl ethers, (poly) alkylene glycol of C 1-4 dialkyl Ether derivatives, and aromatic or hydrocarbyl substituted aromatic compounds such as tetrahydrofuran (THF). Mixtures thereof are also suitable.

착물은 착물을 활성화 조촉매와 결합시키거나 또는 활성화 기술을 사용함으로써 촉매적으로 활성화된다. 본 발명에서 사용되기에 적합한 활성화 조촉매는 특히 메틸알루목산, 트리이소부틸 알루미늄 개질된 메틸알루목산, 또는 이소부틸알루목산인 중합 또는 올리고머 알루목산, C1-30히드로카르빌 치환된 13족 화합물과 같은, 특히 각각의 히드로카르빌 또는 할로겐화 히드로카르빌기에 1 내지 10의 탄소원자수를 가지는 트리(히드로카르빌)알루미늄 또는 트리(히드로카르빌)보론 화합물 및 그들의 할로겐화 유도체 (과할로겐화 유도체를 포함함), 더욱 특정하게는 퍼플루오르화 트리(아릴)보론 화합물, 및 가장 특정하게는 트리스(펜타플루오로페닐)보레인 (이하 "FAB"라 칭함)인 중성 루이스산, 비중합, 상화성, 비배위 이온 형성 화합물 (산화 조건 하에서 이러한 화합물의 사용, 특히 상화성의 비배위 음이온의 암모늄염, 포스포늄염, 옥소늄염, 카르보늄염, 실릴륨염 또는 술포늄염, 또는 상화성의 비배위 음이온의 페로세늄염의 사용을 포함함), 및 상기 활성화 조촉매의 배합물 및 기술을 포함한다. 상기의 활성화 조촉매 및 활성화 기술은 각각의 상이한 금속 착물에 대해 하기의 참고 문헌, 유럽 특허 A-277,003호, 미국 특허 5,153,157호, 미국 특허 5,064,802호, 유럽 특허 A-468,651호 (미국 출원 번호 제07/547,718호와 동등함), 유럽 특허 A-520,732호 (미국 출원 번호 제07/876,268호와 동등함), 및 유럽 특허 A-520,732호 (1992년 5월 1일자로 출원된 미국 출원 번호 제07/884,966호와 동등함)에 이미 교시되어 있고, 이들의 교시 내용은 본 명세서에서 참고 문헌으로 인용되고 있다.The complex is catalytically activated by combining the complex with an activation promoter or by using an activation technique. Suitable activating promoters for use in the present invention are polymerization or oligomeric alumoxanes, C 1-30 hydrocarbyl substituted Group 13 compounds, in particular methylalumoxane, triisobutyl aluminum modified methylalumoxane, or isobutylalumoxane Tri (hydrocarbyl) aluminum or tri (hydrocarbyl) boron compounds and their halogenated derivatives (perhalogenated derivatives) having, in particular, each hydrocarbyl or halogenated hydrocarbyl group having from 1 to 10 carbon atoms ), More particularly perfluorinated tri (aryl) boron compounds, and neutral Lewis acids, most specifically tris (pentafluorophenyl) borane (hereinafter referred to as "FAB"), non-polymerized, compatible, non- Coordination ion-forming compounds (the use of such compounds under oxidative conditions, in particular ammonium salts of phosphate noncoordinating anions, phosphonium salts, oxonium salts, carbonium salts, It includes a reel salts or sulfonium salts, or comprises a ferro used senyum salt of a non-coordinating anion in the chemical conversion), and blends and techniques of the activation cocatalyst. The activation promoters and activation techniques are described in the following references, European Patent A-277,003, US Patent 5,153,157, US Patent 5,064,802, and European Patent A-468,651 for each different metal complex (US Application No. 07). / 547,718), European Patent A-520,732 (equivalent to US Application No. 07 / 876,268), and European Patent A-520,732 (filed May 1, 1992) / 884,966), the teachings of which are incorporated herein by reference.

중성 루이스산의 배합물, 특히 각각의 알킬기에 1 내지 4의 탄소원자수를 갖는 트리알킬 알루미늄 화합물 및 각각의 히드로카르빌기에 1 내지 20의 탄소 원자수를 갖는 할로겐화 트리(히드로카르빌)보론의 배합물, 특히 FAB, 또한 이러한 중성 루이스산과 중합 또는 올리고머 알루목산의 배합물 및 단일 중성 루이스산, 특히 FAB와 중합 또는 올리고머 알루목산과의 배합물이 특히 바람직한 활성화 조촉매이다. 4족 금속 착물:FAB:알루목산의 바람직한 몰 비는 1:1:1 내지 1:5:20, 더욱 바람직하게는 1:1:1.5 내지 1:5:10이다. 본 발명 방법 중에 더 낮은 수준의 알루목산의 사용은 고가의 알루목산 조촉매를 거의 사용하지 않고 높은 촉매 효능으로써 EAODM 중합체의 생산을 가능하게 한다. 또한, 낮은 수준의 알루미늄 잔량이 있는 중합체 및 그로인한 보다 높은 투명성이 얻어진다.Blends of neutral Lewis acids, in particular combinations of trialkyl aluminum compounds having from 1 to 4 carbon atoms in each alkyl group and halogenated tri (hydrocarbyl) borons having from 1 to 20 carbon atoms in each hydrocarbyl group, Particularly preferred activating promoters are in particular FABs, also combinations of such neutral Lewis acids with polymerized or oligomeric alumoxanes and single neutral Lewis acids, especially combinations of FAB with polymerized or oligomeric alumoxanes. The preferred molar ratio of Group 4 metal complex: FAB: alumoxane is 1: 1: 1 to 1: 5: 20, more preferably 1: 1: 1.5 to 1: 5: 10. The use of lower levels of alumoxane in the process of the present invention enables the production of EAODM polymers with high catalytic efficacy with little use of expensive alumoxane promoters. In addition, polymers with a low level of aluminum residue and thereby higher transparency are obtained.

조촉매로서 유용한 적합한 이온 형성 화합물은 양성자 제공이 가능한 브뢴스테드산인 양이온, 및 상화성, 비배위 음이온 A-를 함유한다. 본 명세서에서 사용된 "비배위"란 용어는 4족 금속 함유 전구체 착물 및 그들로부터 유도되는 촉매 유도체에 배위 결합되어 있지 않거나 또는 이러한 착물에 약하게만 배위 결합되어 있어서 중성 루이스 염기로써 치환되기에 충분히 불안정하게 유지되는 음이온 또는 물질을 의미한다. 비배위 음이온은 특정하게 양이온 금속 착물 중에서 전하 균형 음이온으로서 작용할 때, 음이온 치환체 또는 그들의 분획을 양이온으로 전송시켜 그로인해 중성 착물을 형성시키지 않는 음이온을 의미한다. "상화성 (compatible) 음이온"은 초기에 형성된 착물이 붕괴될 때 중성으로 분해되지 않고, 요구되는 다음의 중합 또는 다른 착물의 사용을 방해하지 않는 음이온을 의미한다.Suitable ion forming compounds useful as cocatalysts contain cations, Bronsted acid, capable of providing protons, and compatible, uncoordinated anions A . As used herein, the term "non-coordinating" is unstable or unstable enough to be substituted with a neutral Lewis base because it is not coordinatively bound to the Group 4 metal-containing precursor complexes and the catalytic derivatives derived therefrom or only weakly coordinating to such complexes. Means an anion or substance to be maintained. By non-coordinating anion is specifically meant an anion which, when acting as a charge balanced anion in a cationic metal complex, does not transfer anion substituents or fractions thereof to the cation thereby forming a neutral complex. "Compatible anions" means anions that do not decompose neutrally when the complexes formed initially collapse and do not interfere with the next polymerization or other complex required.

바람직한 음이온은 전하를 띠는 금속 또는 준금속 코어를 함유하는 단일 배위 착물을 포함하고, 2 개 성분이 배합되었을 때 형성될 수 있는 활성 촉매 종 (금속 양이온)의 전하의 균형을 맞출 수 있다. 또한, 상기 음이온은 올레핀계, 디올레핀계 및 아세틸렌계 불포화 화합물 또는 에테르 또는 니트릴과 같은 다른 중성 루이스 염기에 의해 치환되기에 충분히 불안정하여야 한다. 적합한 금속은 알루미늄, 금 및 백금을 포함하지만 이에 제한되지 않는다. 적합한 준금속은 붕소, 인, 및 규소를 포함하지만 이에 제한되지 않는다. 단일 금속 또는 준금속 원자를 포함하는 배위 착물을 함유하는 음이온을 포함하는 화합물은 잘 알려져 있고, 다수, 특히 양이온의 일부에 단일 붕소 원자를 포함하는 이러한 화합물은 시판되고 있다.Preferred anions include a single coordination complex containing a charged metal or metalloid core and can balance the charge of active catalytic species (metal cations) that can be formed when the two components are combined. In addition, the anion must be sufficiently unstable to be replaced by olefinic, diolefinic and acetylenically unsaturated compounds or other neutral Lewis bases such as ethers or nitriles. Suitable metals include, but are not limited to aluminum, gold and platinum. Suitable metalloids include, but are not limited to, boron, phosphorus, and silicon. Compounds comprising anions containing coordinating complexes containing single metal or metalloid atoms are well known and many, especially such compounds containing a single boron atom in part of a cation, are commercially available.

바람직하게는 이러한 조촉매는 하기의 화학식으로 표시된다.Preferably such promoter is represented by the following formula.

(L*-H)d +(A)d- (L * -H) d + (A) d-

상기 식에서, L*는 중성 루이스 염기이고,Wherein L * is a neutral Lewis base,

(L*-H)+는 브뢴스테드산이고,(L * -H) + is Bronsted acid,

Ad-는 d가 1 내지 3의 정수인 d-의 전하를 가지는 비배위 상화성 음이온이다. 더욱 바람직하게는 Ad-는 화학식 [M'Q4]-(여기서, M'은 형식 산화 상태 +3의 붕소 또는 알루미늄이고, Q는 각각 독립적으로 히드리드, 디알킬아미도, 할라이드, 히드로카르빌, 히드로카르빌옥시드, 할로겐 치환된 히드로카르빌, 할로겐 치환된 히드로카르빌옥시, 및 할로겐 치환된 실릴히드로카르빌라디칼 (과할로겐화 히드로카르빌-, 과할로겐화 히드로카르빌옥시- 및 과할로겐화 실릴히드로카르빌 라디칼을 포함함)로부터 선택되고, Q는 20 개 이하의 탄소원자수를 가지며, 단 1 개 이하일 경우 Q는 할라이드임)에 해당하는 것이다. 적합한 히드로카르빌옥시드 Q 기의 예는 미국 특허 제5,296,433호에 개시되어 있고, 그의 교시 내용은 본원에서 참고 문헌으로 인용되고 있다.A non-coordinating anion having the charge of the chemical conversion - A d- d is an integer of 1 to 3 d. More preferably A d- is of the formula [M'Q 4 ] - (wherein M 'is boron or aluminum in the formal oxidation state +3, and Q is each independently hydride, dialkylamido, halide, hydrocarby). Bill, hydrocarbyloxide, halogen substituted hydrocarbyl, halogen substituted hydrocarbyloxy, and halogen substituted silylhydrocarbyradical (perhalogenated hydrocarbyl-, perhalogenated hydrocarbyloxy- and perhalogenated silyl Hydrocarbyl radicals), and Q has up to 20 carbon atoms, with Q being halide if less than one. Examples of suitable hydrocarbyloxide Q groups are disclosed in US Pat. No. 5,296,433, the teachings of which are incorporated herein by reference.

보다 바람직한 실시 태양에서, d는 1이고, 즉 반대 이온은 단일한 음의 전하를 가지며 A-이다. 본 발명의 촉매 제조에 특히 유용한 붕소 함유 활성화 조촉매는 하기 화학식In a more preferred embodiment, d is 1, ie the counter ion has a single negative charge and is A . Boron-containing activating promoters which are particularly useful for preparing the catalyst of the present invention are

(L*-H)+(BQ4)- (L * -H) + (BQ 4 ) -

(상기 식에서, L*는 상기 정의된 바와 같고, B는 형식 산화 상태 3의 붕소이고, Q는 탄소원자수 20 이하인 히드로카르빌, 히드로카르빌옥시, 플루오르화 히드로카르빌, 플루오르화 히드로카르빌옥시 또는 플루오르화 실릴히드로카르빌기이고, 단 1 개 이하일 경우 Q는 히드로카르빌임)으로 나타낼 수 있다.Wherein L * is as defined above, B is boron in formal oxidation state 3, Q is hydrocarbyl, hydrocarbyloxy, fluorinated hydrocarbyl, fluorinated hydrocarbyloxy having up to 20 carbon atoms Or a fluorinated silylhydrocarbyl group, where Q is hydrocarbyl when there is no more than one.

가장 바람직하게는, Q는 각각 플루오르화 아릴기, 특히 펜타플루오로페닐기이다.Most preferably, Q is each a fluorinated aryl group, in particular a pentafluorophenyl group.

본 발명의 개선된 촉매 제조에서 활성화 조촉매로서 사용될 수 있는 붕소 화합물의 상세한 예로는 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 디(수소화-탈로알킬)메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(sec-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 벤질트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(t-부틸디메틸-실릴)-2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(트리이소프로필실릴) 2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 펜타플루오로페녹시트리스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸-2,4,6-트리메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 및 N,N-디메틸-2,4,6-트리메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트와 같은 트리-치환된 암모늄염, 디-(i-프로필)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐 및 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트와 같은 디알킬암모늄염, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(o-톨릴)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 및 트리(2,6-디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트와 같은 트리-치환된 포스포늄염, 디페닐옥소늄 테트라키스(펜타플루오로페닐)보레이트, 디(o-톨릴)옥소늄 테트라키스(펜타플루오로페닐)보레이트, 및 디(2,6-디메틸페닐)옥소늄 테트라키스(펜타플루오로페닐)보레이트과 같은 디-치환된 옥소늄염, 디페닐술포늄 테트라키스(펜타플루오로페닐)보레이트, 디(o-톨릴)술포늄 테트라키스(펜타플루오로페닐)보레이트, 및 비스(2,6-디메틸페닐)술포늄 테트라키스(펜타플루오로페닐)보레이트와 같은 디-치환된 술포늄염이 있으나 이에 제한되지 않는다.Specific examples of the boron compounds that can be used as activating promoters in the improved catalyst preparation of the present invention include trimethylammonium tetrakis (pentafluorophenyl) borate, di (hydrogen-taloalkyl) methylammonium tetrakis (pentafluorophenyl) Borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (sec-butyl ) Ammonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium n-butyltris (pentafluorophenyl) borate, N, N-dimethylanilinium benzyltris (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (4- (t-butyldimethyl-silyl) -2,3,5,6-tetrafluorophenyl) borate , N, N- Methylanilinium tetrakis (4- (triisopropylsilyl) 2,3,5,6-tetrafluorophenyl) borate, N, N-dimethylanilinium pentafluorophenoxycitries (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethyl-2,4,6-trimethylanilinium tetrakis (pentafluorophenyl) borate, trimethylammonium tetrakis (2, 3,4,6-tetrafluorophenyl) borate, triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluoro Rophenyl) borate, N, N-dimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl) borate, N, N-diethylanilinium tetrakis (2,3,4,6-tetra Tri-substituted ammo, such as fluorophenyl) borate, and N, N-dimethyl-2,4,6-trimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl) borate Salts, di- (i-propyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, dimethyl (t-butyl Dialkylammonium salts such as ammonium tetrakis (2,3,4,6-tetrafluorophenyl and dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate Tri-substituted phosphonium salts such as tri (o-tolyl) phosphonium tetrakis (pentafluorophenyl) borate, and tri (2,6-dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, Diphenyloxonium tetrakis (pentafluorophenyl) borate, di (o-tolyl) oxonium tetrakis (pentafluorophenyl) borate, and di (2,6-dimethylphenyl) oxonium tetrakis (pentafluoro Di-substituted oxonium salts such as phenyl) borate, diphenylsulfonium tetraki Such as s (pentafluorophenyl) borate, di (o-tolyl) sulfonium tetrakis (pentafluorophenyl) borate, and bis (2,6-dimethylphenyl) sulfonium tetrakis (pentafluorophenyl) borate Di-substituted sulfonium salts include, but are not limited to.

바람직한 (L*-H)+양이온은 N,N-디메틸아닐리늄 및 트리부틸암모늄이다.Preferred (L * -H) + cations are N, N-dimethylanilinium and tributylammonium.

다른 적합한 이온 형성, 활성화 조촉매는 하기 화학식Other suitable ion forming, activating promoters are

+A- + A -

(상기 식에서, ⓒ+는 C1-20카르베늄 이온이고, A-는 상기 정의된 바와 같음)으로 표시되는 카르베늄 이온 및 비배위, 상화성 음이온의 염인 화합물을 함유한다. 바람직한 카르베늄 이온은 트리틸 양이온, 즉 트리페닐메틸륨이다.(Wherein ⓒ + is C 1-20 carbenium ions and A is as defined above) and a compound which is a salt of a carbenium ion and a non-coordinating, compatible anion. Preferred carbenium ions are trityl cations, ie triphenylmethyllium.

더욱 적합한 이온 형성, 활성화 조촉매는 하기 화학식More suitable ion formation, activation promoters are represented by the formula

R3Si(X')q +A- R 3 Si (X ') q + A -

(상기 식에서, R은 C1-10의 히드로카르빌이고, X', q 및 A-는 상기 정의된 바와 같음)으로 표시되는 실릴륨 이온 및 비배위 상화성 음이온의 염인 화합물을 함유한다. Wherein R is a hydrocarbyl of C 1-10 and X ', q and A - are as defined above.

바람직한 실릴륨염 활성화 조촉매는 트리메틸실릴륨 테트라키스펜타플루오로페닐 보레이트, 트리에틸실릴륨 테트라키스펜타플루오로페닐 보레이트 및 에테르 치환된 그들의 부가물이다. 실릴륨염은 문헌 [J. Chem Soc. Chem. Comm., 1993, 383-384] 뿐만 아니라 램버트 등 (Lambert, J. B., et al.)의 문헌 [Organometallics, 1994, 13, 2430-2443]에 이미 일반적으로 개시되어 있다. 상기 실릴륨염을 부가 중합 촉매를 위한 활성화 조촉매로서 사용하는 것은 동등한 형태로 1996년 3월 21일자로 제96/08519호로 국제 공개되고, 1994년 9월 12일자로 출원된 미국 출원 번호 제304,314호에 청구되어 있고, 그의 교시 내용은 본 원에서 참고 문헌으로 인용되고 있다.Preferred silyllium salt activation cocatalysts are trimethylsilyllium tetrakispentafluorophenyl borate, triethylsilyllium tetrakispentafluorophenyl borate and ether substituted their adducts. Silylium salts are described in J. Chem. Chem Soc. Chem. Comm., 1993, 383-384, as well as already described in Lambert et al. (Organometallics, 1994, 13, 2430-2443) by Lambert et al. The use of such silyllium salts as activating co-catalysts for addition polymerization catalysts is in equivalent form US Application No. 304,314, filed September 12, 1994, filed internationally on September 21, 1996, filed 96/08519. And its teachings are incorporated herein by reference.

알콜, 메르캅탄, 실라놀 및 옥심과 FAB와의 특정 착물 또한 유용한 촉매 활성제이며 본 발명에 따라 사용될 수 있다. 이러한 조촉매는 미국 특허 제5,296,433호에 개시되어 있고 그의 교시 내용은 본 명세서에서 참고 문헌으로 인용되고 있다.Certain complexes of alcohols, mercaptans, silanols and oximes with FAB are also useful catalytic activators and may be used according to the invention. Such promoters are disclosed in US Pat. No. 5,296,433, the teachings of which are incorporated herein by reference.

상기의 활성화 조촉매는 배합물로 사용될 수도 있다. 특히 바람직한 배합물은 각각의 히드로카르빌기에 1 내지 4의 탄소원자수를 가지는 트리(히드로카르빌)알루미늄 또는 트리(히드로카르빌)보레인 화합물과 올리고머 또는 중합 알루목산 화합물과의 혼합물이다.The above activation promoters may be used in combination. Particularly preferred combinations are mixtures of tri (hydrocarbyl) aluminum or tri (hydrocarbyl) borane compounds with oligomeric or polymeric alumoxane compounds having from 1 to 4 carbon atoms in each hydrocarbyl group.

사용되는 촉매/조촉매의 몰 비의 범위는 1:10,000 내지 100:1, 더욱 바람직하게는 1:5000 내지 1:10, 가장 바람직하게는 1:1000 내지 1:1이다. 그 자체가 활성화 조촉매로서 사용될 경우 알루목산은 다량으로 사용되며, 일반적으로 몰 양을 기준으로 하여 (알루미늄 (Al)의 몰 양을 기준으로 하여 계산함) 금속 착물의 100 배 이상의 양으로 사용된다. FAB는 활성화 조촉매로서 사용되는 경우 금속 착물에 대해 0.5:1 내지 10:1, 더욱 바람직하게는 1:1 내지 6:1, 가장 바람직하게는 1:1 내지 5:1의 몰 비로 사용된다. 나머지의 활성화 조촉매는 일반적으로 금속 착물의 양과 거의 동 몰로 사용된다.The molar ratio of catalyst / cocatalyst used is in the range from 1: 10,000 to 100: 1, more preferably from 1: 5000 to 1:10 and most preferably from 1: 1000 to 1: 1. When used as an activation promoter, alumoxane is used in large quantities, generally in molar amounts (calculated based on molar amounts of aluminum (Al)) and at least 100 times the amount of metal complex. . FAB is used in a molar ratio of 0.5: 1 to 10: 1, more preferably 1: 1 to 6: 1 and most preferably 1: 1 to 5: 1 relative to the metal complex when used as an activating promoter. The remaining activating promoter is generally used in an approximately molar amount with respect to the metal complex.

일반적으로, 중합은 당업계에서 잘 공지되어 있는 지글러-나타 또는 카민스키-씬 형태 중합 반응 조건, 즉 0 내지 250℃, 바람직하게는 30 내지 200℃의 온도 및 대기압 내지 10,000 atm의 압력에서 수행될 수 있다. 현탁액, 용액, 슬러리, 기상, 고체 상태 분말 중합 또는 다른 공정 조건이 필요한 경우 사용될 수 있다. 지지체, 특히 실리카, 알루니마 또는 중합체 (특히 폴리(테트라플루오로에틸렌) 또는 폴리올레핀)가 사용될 수 있으며, 바람직하게는 촉매가 기상 중합 공정에서 사용될 때 사용된다. 지지체는 바람직하게는 촉매 (금속 기준):지지체의 중량비가 1:100,000 내지 1:10, 더욱 바람직하게는 1:50,000 내지 1:20, 가장 바람직하게는 1:10,000 내지 1:30이 되도록 하는 양으로 사용된다. 대부분의 중합 반응에서 사용되는 촉매:중합가능한 화합물의 몰 비는 10-12:1 내지 10-1:1, 더욱 바람직하게는 10-9:1 내지 10-5:1이다.In general, the polymerization can be carried out at Ziegler-Natta or Kaminsky-thin form polymerization reaction conditions well known in the art, that is, at a temperature of 0 to 250 ° C., preferably 30 to 200 ° C. and at atmospheric pressure to 10,000 atm. have. Suspensions, solutions, slurries, gas phase, solid state powder polymerization or other process conditions may be used if desired. Supports, in particular silica, alumina or polymers (particularly poly (tetrafluoroethylene) or polyolefins) can be used, preferably when the catalyst is used in a gas phase polymerization process. The support is preferably an amount such that the weight ratio of catalyst (based on metal): support is from 1: 100,000 to 1:10, more preferably from 1: 50,000 to 1:20, most preferably from 1: 10,000 to 1:30. Used as Used in the majority of the polymerization catalyst, the molar ratio of polymerizable compound is 10 -12: 1 to 10 -1: 1: 1, more preferably from 10 -9: 1 to 10 -5.

불활성 액체가 중합에 적합한 용매이다. 예로서 이소부탄, 부탄, 펜탄, 헥산, 헵탄, 옥탄 및 그들의 혼합물과 같은 직쇄 및 분지쇄 탄화수소, 시클로헥산, 시클로헵탄, 메틸시클로헥산, 메틸시클로헵탄 및 그들의 혼합물과 같은 시클릭 또는 알리시클릭 탄화수소, 과불화 C4-10알칸과 같은 과불화 탄화수소, 및 벤젠, 톨루엔, 자일렌, 및 에틸벤젠과 같은 방향족 또는 알킬 치환된 방향족 화합물이 있다. 적합한 용매로는 또한 부타디엔, 시클로펜텐, 1-헥센, 1-헥산, 4-비닐시클로헥센, 비닐시클로헥센, 3-메틸-1-펜텐, 4-메틸-1-펜텐, 1,4-헥사디엔, 1-옥텐, 1-데센, 스티렌, 디비닐벤젠, 알릴벤젠, 및 비닐톨루엔 (모든 단독 이성질체 또는 혼합 이성질체 포함)을 포함하는 단량체 또는 공단량체로서 작용할 수 있는 액체 올레핀이 포함된다. 이들의 혼합물이 또한 적합하다. 필요한 경우, 일반적으로 기상의 올레핀이 가압에 의해 액체로 전환될 수 있으며 본 발명에서 사용될 수 있다.Inert liquids are suitable solvents for polymerization. Cyclic or alicyclic hydrocarbons such as, for example, straight and branched chain hydrocarbons such as isobutane, butane, pentane, hexane, heptane, octane and mixtures thereof, cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane and mixtures thereof , Perfluorinated hydrocarbons such as perfluorinated C 4-10 alkanes, and aromatic or alkyl substituted aromatic compounds such as benzene, toluene, xylene, and ethylbenzene. Suitable solvents also include butadiene, cyclopentene, 1-hexene, 1-hexane, 4-vinylcyclohexene, vinylcyclohexene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1,4-hexadiene Liquid olefins that can act as monomers or comonomers, including 1-octene, 1-decene, styrene, divinylbenzene, allylbenzene, and vinyltoluene (including all single isomers or mixed isomers). Mixtures of these are also suitable. If desired, gaseous olefins can generally be converted to liquid by pressurization and used in the present invention.

촉매는 추가의 1종 이상의 균일 또는 비균일 중합 촉매와의 배합물로서 직렬로 또는 병렬로 연결되어 있는 개별 반응기 내에서 바람직한 성질을 가지는 중합체 블렌드를 제조하는 데에 사용될 수 있다. 이러한 방법의 예는 국제 공개 제94/00500호와 동등한, 미국 출원 번호 제07/904,770호 및 1993년 1월 29일자로 출원된 동 제08/10958호에 개시되어 있고, 이의 교시 내용은 본 명세서에서 참고 문헌으로 인용되고 있다.The catalyst can be used to prepare polymer blends with desirable properties in individual reactors connected in series or in parallel as a combination with additional one or more homogeneous or heterogeneous polymerization catalysts. Examples of such methods are disclosed in US application Ser. No. 07 / 904,770 and US Ser. No. 08/10958, filed Jan. 29, 1993, which is equivalent to International Publication No. 94/00500, the teachings of which are incorporated herein by reference. Cited for reference.

이러한 촉매를 본 발명 방법에서 사용함으로써, 높은 공단량체 혼입 및 그에 상응하는 저밀도를 가지지만, 높은 MV를 가지는 공중합체가 용이하게 제조된다. 즉, 높은 Mw중합체는 반응기의 승온에서 조차 본 발명의 촉매를 사용함으로써 용이하게 수득된다. 이러한 결과는 α-올레핀 공중합체의 Mw는 수소 또는 유사한 쇄 이동제의 사용에 의해 용이하게 감소될 수 있으나, α-올레핀 공중합체의 증가된 분자량은 일반적으로 반응기의 중합 온도를 감소함으로써만 수득될 수 있으므로 매우 바람직하다. 감소된 온도에서의 중합 반응기의 작동은 용매를 증발시키기 위해 반응기 방출물에 열이 가해지는 동시에 감소된 반응 온도를 유지하기 위해 반응기로부터의 열이 반드시 제거되어야 하기 때문에 작동 비용이 상당히 증가하여 불리하다. 또한, 향상된 중합체 용해도, 감소된 용액 점도, 및 더 높은 중합체 농도 때문에 생산성이 향상된다. 본 발명의 촉매를 사용함으로써, 0.85 g/cm3내지 0.96 g/cm3의 밀도 및 1 내지 150의 MV를 가지는 α-올레핀 균일 중합체, 및 공중합체를 고온의 공정에서 용이하게 제조할 수 있다.By using such catalysts in the process of the invention, copolymers having high comonomer incorporation and corresponding low density, but high MV, are readily prepared. That is, high M w polymers are readily obtained by using the catalyst of the invention even at elevated temperatures of the reactor. These results indicate that the M w of the α-olefin copolymer can be readily reduced by the use of hydrogen or similar chain transfer agents, but the increased molecular weight of the α-olefin copolymer is generally obtained only by reducing the polymerization temperature of the reactor. It is very desirable as it can. Operation of the polymerization reactor at reduced temperatures is disadvantageous due to a significant increase in operating costs since heat from the reactor must be removed to maintain the reduced reaction temperature while simultaneously applying heat to the reactor discharge to evaporate the solvent. . In addition, productivity is improved because of improved polymer solubility, reduced solution viscosity, and higher polymer concentration. By using the catalyst of the present invention, α-olefin homogeneous polymers and copolymers having a density of 0.85 g / cm 3 to 0.96 g / cm 3 and MV of 1 to 150 can be easily produced in a high temperature process.

본 발명 방법에서 사용되는 촉매는 특히 높은 장쇄 분지 수준을 가지는 공중합체의 생산에 유리하다. 연속 중합 공정, 특히 연속 용액 중합 공정에서의 촉매의 사용은 성장 중합체에 혼입될 수 있고, 그로인해 장쇄 분지를 제공하는 비닐 말단 중합체 쇄의 형성을 촉진하는 반응기의 승온을 가능하게 한다. 반응기의 승온에서의 고유한 배합물, 반응기의 고온에서의 높은 분자량 (또는 낮은 용융 지수) 및 높은 공단량체 반응성은 우수한 물성 및 가공성을 갖는 중합체의 경제적 생산을 가능하게 하여 유리하다.The catalyst used in the process of the invention is particularly advantageous for the production of copolymers with high long chain branching levels. The use of a catalyst in a continuous polymerization process, in particular in a continuous solution polymerization process, can be incorporated into a growing polymer, thereby allowing the temperature of the reactor to promote the formation of vinyl terminated polymer chains that provide long chain branching. The inherent blend at elevated temperatures of the reactor, high molecular weight (or low melt index) and high comonomer reactivity at high temperatures in the reactor are advantageous to enable economic production of polymers with good physical properties and processability.

본 발명의 EAODM 공중합체를 제조하는 데에 사용된 방법은 당업계에 이미 공지되어 있는 용액 또는 슬러리 공정일 수 있다. 카민스키 (Kaminsky)는 문헌 [J. Poly. Sci., Vol. 23, pp. 2151-64 (1985)]에서 가용성 비스(시클로펜타디에닐) 지르코늄 디메틸-알루목산 촉매 시스템을 EP 및 EAODM 탄성체의 용액 중합을 위해 사용하는 것을 제시하였다. 미국 특허 제5,229,478호는 유사한 비스(시클로펜타디에닐) 지르코늄 기재의 촉매 시스템을 사용하는 슬러리 중합 공정을 개시하고 있다.The method used to prepare the EAODM copolymer of the present invention may be a solution or slurry process already known in the art. Kaminsky is described in J. Poly. Sci., Vol. 23, pp. 2151-64 (1985) suggests the use of soluble bis (cyclopentadienyl) zirconium dimethyl-alumoxane catalyst systems for the solution polymerization of EP and EAODM elastomers. U.S. Patent 5,229,478 discloses a slurry polymerization process using a catalyst system based on a similar bis (cyclopentadienyl) zirconium.

일반적인 관점에서, 디엔 단량체 성분의 향상된 반응성의 조건 하에서 EAODM 탄성체를 생산하는 것이 바람직하다. 그 이유는 상기의 '478 특허에서 하기와 같이 설명되며 이러한 참고 문헌에서 얻어진 진보에도 불구하고 여전히 사실이다. 생산 비용 및 그로인한 EADOM의 사용에 영향을 주는 주요한 인자는 디엔 단량체의 비용이다. 디엔은 C2또는 C3보다 더 고가의 단량체 물질이다. 또한 이미 공지된 메탈로센 촉매와 디엔 단량체의 반응성은 C2또는 C3의 반응성보다 낮다. 결과적으로 허용가능한 빠른 경화 속도로 EAODM을 생산하기 위한 적정 수준의 디엔 혼입을 성취하기 위해, 존재하는 단량체의 전체 농도 백분율로서 표현된, 최종 EAODM 생성물에 혼입되는데 요구되는 디엔의 백분율에 비해 실질적으로 과량인 디엔 단량체의 농도를 사용하는 것이 필요하다. 실질적인 양의 미반응 디엔 단량체는 불필요하게 증가되는 생산비용을 재생수하기 위해 중합 반응기의 방출물로부터 반드시 회수되어야 한다.In general terms, it is desirable to produce EAODM elastomers under conditions of improved reactivity of the diene monomer component. The reason is explained in the above '478 patent as follows and is still true despite advances made in this reference. The main factor influencing the cost of production and hence the use of EADOM is the cost of the diene monomer. Dienes are more expensive monomer materials than C 2 or C 3 . In addition, the reactivity of the diene monomer with the metallocene catalyst already known is lower than that of C 2 or C 3 . The result is a substantial excess of the percentage of diene required to be incorporated into the final EAODM product, expressed as a percentage of the total concentration of monomer present, to achieve the appropriate level of diene incorporation to produce EAODM at an acceptable fast cure rate. It is necessary to use the concentration of the diene monomer. Substantial amounts of unreacted diene monomer must be recovered from the discharge of the polymerization reactor to recover unnecessarily increased production costs.

또한 EAODM 생산 비용을 증가시키는 것은 일반적으로, 올레핀 중합 촉매의 디엔에 대한 노출, 특히 최종 EAODM 생성물에서 디엔 혼입의 적정 수준을 생성하기 위해 요구되는 고농도의 디엔 단량체가 고농도가 빈번하게 촉매가 에틸렌 및 프로필렌 단량체의 중합을 진행시키는 속도 또는 반응성을 감소시키는 사실이다. 따라서, 에틸렌-프로필렌 공중합체 탄성체 또는 다른 α-올레핀 공중합체 탄성체의 생산에 비해 더 낮은 원료 처리량 및 더 긴 반응 시간이 요구된다.In addition, increasing the cost of producing EAODM generally results in the exposure of olefin polymerization catalysts to dienes, particularly the high concentrations of diene monomers required to produce the appropriate level of diene incorporation in the final EAODM product. It is a fact that reduces the rate or reactivity of advancing the polymerization of monomers. Thus, lower raw material throughput and longer reaction times are required as compared to the production of ethylene-propylene copolymer elastomers or other α-olefin copolymer elastomers.

본 발명 방법에서 사용되는 촉매 시스템은 향상된 디엔 반응성 및 그로인한 고수율 및 고생산성으로 EAODM 중합체를 제조하는 것을 유리하게 가능하게 한다. 또한 본 발명 방법은 0 초과 내지 20 중량% 이하의, 또는 보다 높은, 바람직하게는 0.3 내지 20 중량%, 더욱 바람직하게는 0.5 내지 12 중량%의 디엔 함량의 경제적인 EAODM의 생산을 성취한다. 이러한 EAODM 중합체는 매우 바람직한 빠른 경화 속도를 갖는다.The catalyst system used in the process of the present invention advantageously makes it possible to produce EAODM polymers with improved diene reactivity and thereby high yields and high productivity. The process also achieves the production of economical EAODM of diene content of greater than 0 to 20% by weight, or even higher, preferably 0.3 to 20% by weight, more preferably 0.5 to 12% by weight. Such EAODM polymers have very desirable fast cure rates.

EAODM 탄성체는 바람직하게는 20 내지 90 중량% 이하, 더욱 바람직하게는 30 내지 85 중량%, 가장 바람직하게는 35 내지 80 중량%의 C2함량을 가진다.The EAODM elastomer preferably has a C 2 content of 20 to 90% by weight or less, more preferably 30 to 85% by weight, most preferably 35 to 80% by weight.

C2이외의 α-올레핀은 EAODM 중합체에 일반적으로 10 내지 80 중량%, 더욱 바람직하게는 20 내지 65 중량%로 혼입된다. 비공액 디엔은 EAODM 중합체에 일반적으로 0.5 내지 25 중량%, 바람직하게는 1 내지 15 중량%, 더욱 바람직하게는 3 내지 12 중량%로 혼입된다. 필요한 경우, 1종 이상의 디엔이 동시에, 예를 들면 1,4-헥사디엔 및 ENB가 혼입될 수 있는데, 전체 디엔 혼율은 상기 특정화된 한계 내이다.Α-olefins other than C 2 are generally incorporated in EAODM polymers at 10-80% by weight, more preferably 20-65% by weight. Non-conjugated dienes are generally incorporated into the EAODM polymer at 0.5 to 25% by weight, preferably 1 to 15% by weight, more preferably 3 to 12% by weight. If desired, one or more dienes may be incorporated simultaneously, for example 1,4-hexadiene and ENB, with the overall diene mixing rate being within the above specified limits.

본 발명의 방법에서 사용되는 촉매 시스템은 용액 중합 공정에 의해서 중합이 수행되는 용매에 적절한 성분을 첨가함으로써 균일 촉매로서 제조될 수 있다. 촉매 시스템은 또한 실리카 겔, 알루미나 또는 다른 적합한 무기 지지체 재료와 같은 촉매 지지체 재료 상에 적절한 성분을 흡착시킴으로써 비균일 촉매로서 제조 및 사용될 수 있다. 비균일 또는 지지된 형태로 제조되는 경우, 실리카를 지지 재료로 사용하는 것이 바람직하다. 비균일 형태의 촉매 시스템은 슬러리 중합에 사용된다. 실제적인 한계로서, 슬러리 중합은 중합체 생성물이 실질적으로 불용성인 액체 희석제 중에서 수행된다. 바람직하게는, 슬러리 중합을 위한 희석제는 1종 이상의 C1-5탄화수소이다. 필요한 경우, 에탄, 프로판 또는 부탄과 같은 포화 탄화수소가 전체 또는 부분적으로 희석제로서 사용될 수 있다. 유사하게 α-올레핀 단량체 또는 상이한 α-올레핀 단량체의 혼합물이 전체 또는 부분적으로 희석제로서 사용될 수 있다. 가장 바람직하게는 희석제는 적어도 중합되는 α-올레핀 단량체 또는 단량체들을 주요 부분으로 함유한다.The catalyst system used in the process of the present invention can be prepared as a homogeneous catalyst by adding appropriate components to the solvent in which the polymerization is carried out by a solution polymerization process. The catalyst system can also be prepared and used as a heterogeneous catalyst by adsorbing the appropriate components on a catalyst support material such as silica gel, alumina or other suitable inorganic support material. When produced in non-uniform or supported form, preference is given to using silica as a support material. The heterogeneous catalyst system is used for slurry polymerization. As a practical limitation, slurry polymerization is carried out in liquid diluents in which the polymer product is substantially insoluble. Preferably, the diluent for slurry polymerization is at least one C 1-5 hydrocarbon. If desired, saturated hydrocarbons such as ethane, propane or butane may be used in whole or in part as diluents. Similarly, α-olefin monomers or mixtures of different α-olefin monomers may be used in whole or in part as diluents. Most preferably the diluent contains, as a major part, at least the α-olefin monomer or monomers to be polymerized.

상기에 기재된 바와 같이, 본 발명의 EAODM 중합체는 반응기의 냉각이 전형적으로 EAODM 중합체의 제조에 사용되는 재순환 기체, 불활성 액체 또는 단량체 또는 디엔과 같은 휘발성 물질의 증발 냉각에 의해 발생하는, 또다른 잘 공지된 방법인 기상 중합에 의해 제조될 수도 있다. 적합한 불활성 액체는 C3-8, 바람직하게는 C4-6, 포화 탄화수소 단량체이다. 휘발성 물질 또는 액체는 고온의 유동층에서 증발되어 유동화 기체와 혼합되는 기체를 형성한다. 이러한 공정 형태는 예를 들어, 유럽 특허 제89691호, 미국 특허 제4,543,339호, 국제 공개 제94/25495호 및 미국 특허 제5,352,749호에 기재되어 있으며, 그의 교시 내용은 본 명세서에서 참고 문헌으로 인용되고 있다. 미국 특허 제4,588,790호, 동 제4,543,399호, 동 제5,352,749호, 동 제5,436,304호, 동 제5,405,922호, 동 제5,462,999호, 동 제5,461,123호, 동 제5,453,471호, 동 제5,032,562호, 동 제5,028,670호, 동 제5,473,028호, 동 제5,106,804호, 동 제5,541,270호, 유럽 특허 A-659,773호, 동 제A-692,500호, PCT 출원 국제 공개 제94/29032호, 동 제94/25497호, 동 제94/25495호, 동 제94/28032호, 동 제95/13305호, 동 제94/26793호 및 동 제95/07942호에서 발견되는 다른 관련 교시 내용 또한 참고 문헌으로 인용되고 있다.As described above, the EAODM polymers of the present invention are another well known, in which the cooling of the reactor is typically caused by the evaporative cooling of volatiles such as recycle gases, inert liquids or monomers or dienes used in the preparation of the EAODM polymers. It may also be prepared by gas phase polymerization, which is a conventional method. Suitable inert liquids are C 3-8 , preferably C 4-6 , saturated hydrocarbon monomers. The volatiles or liquid evaporate in the hot fluidized bed to form a gas that is mixed with the fluidizing gas. Such process forms are described, for example, in European Patent No. 89691, US Patent No. 4,543,339, International Publication No. 94/25495 and US Patent No. 5,352,749, the teachings of which are incorporated herein by reference. have. U.S. Patents 4,588,790, 4,543,399, 5,352,749, 5,436,304, 5,405,922, 5,462,999, 5,461,123, 5,453,471, 5,032,562, 5,028,670 5,473,028, 5,106,804, 5,541,270, European Patent A-659,773, A-692,500, PCT International Publication Nos. 94/29032, 94/25497, 94 Other related teachings found in / 25495, 94/28032, 95/13305, 94/26793, and 95/07942 are also incorporated by reference.

기체 유동층에서 발생하는 중합 반응은 촉매의 연속 또는 반연속 첨가에 의해서 촉매화 된다. 이러한 촉매는 무기 또는 유기 지지 재료 상에 지지될 수 있다.The polymerization reaction taking place in the gas fluidized bed is catalyzed by continuous or semicontinuous addition of the catalyst. Such catalysts may be supported on inorganic or organic support materials.

본 발명의 수행에 적합한 기상 공정은 바람직하게는 반응기의 반응 영역에 반응물의 연속적으로 공급하고 반응기의 반응 영역으로 부터 생성물을 제거하며, 그로인해 반응기의 반응 영역에서 거대한 규모로 정상 상태의 환경을 제공하는 연속 공정이다.Gas phase processes suitable for the practice of the present invention preferably provide a continuous supply of reactants to the reaction zone of the reactor and remove product from the reaction zone of the reactor, thereby providing a steady state environment on a large scale in the reactor reaction zone. It is a continuous process.

반대로, 용액 중합 조건은 각각의 반응 성분에 대한 용매를 사용한다. 바람직한 용매는 광유 및 반응 온도에서 액체인 다양한 탄화수소를 포함한다. 유용한 용매의 상세한 예로서 펜탄, 이소-펜탄, 헥산, 헵탄, 옥탄 및 노난 뿐만 아니라 엑슨 케미칼 사 (Exxon Chemical Inc.)로부터 구입할 수 있는 등유 및 이소파르-E (Isopar E; 등록 상표)와 같은 알칸, 및 시클로펜탄 및 시클로헥산과 같은 시클로알칸, 및 벤젠, 톨루엔, 자일렌, 에틸벤젠 및 디에틸벤젠과 같은 방향족이 포함된다.In contrast, solution polymerization conditions use a solvent for each reaction component. Preferred solvents include mineral oils and various hydrocarbons that are liquid at reaction temperatures. Specific examples of useful solvents include pentane, iso-pentane, hexane, heptane, octane and nonane, as well as alkanes such as kerosene and isopar-E (registered trademark), available from Exxon Chemical Inc. And cycloalkanes such as cyclopentane and cyclohexane, and aromatics such as benzene, toluene, xylene, ethylbenzene and diethylbenzene.

항상, 개별 구성 성분 뿐만 아니라 회수된 촉매 성분은 산소 및 수분으로부터 보호되어야 한다. 그러므로, 촉매 성분 및 촉매는 바람직하게는 산소 및 수분이 없는 대기에서 제조 및 회수되고, 그렇게 되어야 한다. 그러므로 반응은 바람직하게는 예를 들면 질소와 같은 건조하고 불활성인 가스의 존재 하에서 수행된다.At all times, the recovered components as well as the individual components must be protected from oxygen and moisture. Therefore, the catalyst component and the catalyst are preferably produced and recovered in an atmosphere free of oxygen and moisture, and should be so. The reaction is therefore preferably carried out in the presence of a dry and inert gas such as for example nitrogen.

에틸렌은 α-올레핀 및 디엔 단량체의 배합된 증기압을 초과하는 차압을 유지하기에 충분한 양으로 반응 용기에 첨가된다. 중합체의 C2함량은 전체 반응기 압력에 대한 C2차압의 비에 의해 결정된다. 일반적으로, 중합은 10 내지 1000 psi (70 내지 7000 kPa), 가장 바람직하게는 40 내지 400 psi (30 내지 300 kPa)의 C2차압으로 발생한다. 중합 온도는 적합하게는 25 내지 200℃, 바람직하게는 65 내지 170℃, 가장 바람직하게는 75보다 높고 140℃ 이하이다.Ethylene is added to the reaction vessel in an amount sufficient to maintain a differential pressure above the combined vapor pressure of the α-olefin and diene monomers. The C 2 content of the polymer is determined by the ratio of C 2 differential pressure to the total reactor pressure. Generally, the polymerization takes place with a C 2 differential pressure of 10 to 1000 psi (70 to 7000 kPa), most preferably 40 to 400 psi (30 to 300 kPa). The polymerization temperature is suitably 25 to 200 ° C., preferably 65 to 170 ° C., most preferably higher than 75 and up to 140 ° C.

중합은 배치 또는 연속 중합 공정으로 수행할 수 있다. 연속 공정이 바람직하고, 연속 공정에서 이벤트 촉매, 에틸렌, α-올레핀, 디엔 및 경우에 따라 용매가 연속적으로 반응 영역에 공급되고 중합체 생성물이 그로부터 연속적으로 제거된다.The polymerization can be carried out in a batch or continuous polymerization process. A continuous process is preferred, in which the event catalyst, ethylene, α-olefin, diene and optionally a solvent are continuously fed to the reaction zone and the polymer product is continuously removed therefrom.

본 발명의 범역을 어떤 방법으로도 제한하지 않고, 이러한 중합 공정을 수행하는 방법은 하기와 같다. 교반 탱크 반응기 내에 α-올레핀 단량체를 용매, 디엔 단량체 및 C2단량체와 함께 연속적으로 도입한다. 반응기는 실질적으로 C2, C3및 디엔 단량체 및 임의의 용매 또는 추가의 희석제로 구성된 액상을 포함한다. 필요한 경우, 노르보르나디엔, 1,7-옥타디엔 또는 1,9-데카디엔과 같은 소량의 "H" 측쇄 유도 디엔이 첨가될 수도 있다. 촉매 및 조촉매는 연속적으로 반응기 내의 액상으로 도입된다. 반응 온도 및 압력은 용매/단량체의 비, 촉매 첨가 속도 뿐만아니라 냉각 또는 가열 코일, 쟈켓 또는 두가지 모두를 조절함으로써 제어될 수 있다. 중합 속도는 촉매 첨가의 속도에 의해서 제어된다. 중합체 생성물 중의 에틸렌 함량은 반응기 내의 에틸렌, α-올레핀 및 디엔의 양에 의해서 결정되며, 이는 이러한 성분을 반응기에 공급하는 각각의 속도에 의해 제어된다. 중합체 생성물 분자량은 당업계에 공지되어 있는 바와 같이 경우에 따라, 온도, 단량체 농도와 같은 다른 중합 변수의 제어, 또는 반응기에 도입되는 수소의 스트림에 의해 제어된다. 반응기 방출물은 물과 같은 촉매 비활성화제와 접촉한다. 중합체 용액은 경우에 따라 가열되고, 기체 에틸렌 및 프로필렌 뿐만 아니라 잔량의 디엔 및 잔량의 용매 또는 희석제를 감소된 압력에서 플래싱하고, 필요하다면 탈휘발 압출기와 같은 장치 내에서 추가로 탈휘발화를 수행함으로써 회수된다. 연속 공정에서, 반응기 내의 촉매 및 중합체의 평균 체류 시간은 일반적으로 5분 내지 8시간, 바람직하게는 10분 내지 6시간이다.Without limiting the scope of the present invention in any way, the method for carrying out this polymerization process is as follows. The α-olefin monomer is continuously introduced into the stirred tank reactor together with the solvent, diene monomer and C 2 monomer. The reactor comprises substantially a liquid phase composed of C 2 , C 3 and diene monomers and any solvent or additional diluent. If necessary, small amounts of “H” branched derivative dienes such as norbornadiene, 1,7-octadiene or 1,9-decadiene may be added. The catalyst and cocatalyst are introduced continuously into the liquid phase in the reactor. The reaction temperature and pressure can be controlled by adjusting the solvent / monomer ratio, catalyst addition rate as well as cooling or heating coils, jackets or both. The rate of polymerization is controlled by the rate of catalyst addition. The ethylene content in the polymer product is determined by the amount of ethylene, α-olefin and diene in the reactor, which is controlled by the respective rates of feeding these components to the reactor. The polymer product molecular weight is optionally controlled by control of other polymerization parameters such as temperature, monomer concentration, or stream of hydrogen introduced into the reactor, as is known in the art. The reactor discharge is contacted with a catalyst deactivator such as water. The polymer solution is optionally heated by flashing gas ethylene and propylene as well as residual diene and residual solvents or diluents at reduced pressure and, if necessary, further devolatilization in an apparatus such as a devolatilizing extruder. It is recovered. In a continuous process, the average residence time of the catalyst and polymer in the reactor is generally 5 minutes to 8 hours, preferably 10 minutes to 6 hours.

바람직한 방식의 작동에서, 중합은 직렬 또는 병렬로 연결된 2개의 반응기를 포함하는 연속 용액 중합 시스템 내에서 수행된다. 제1 반응기 내에서, 비교적 높은 분자량(300,000 내지 600,000, 더욱 바람직하게는 325,000 내지 500,000의 Mw)의 생성물이 형성되고, 제2 반응기 내에서는 비교적 낮은 분자량 (50,000 내지 300,000의 Mw)의 생성물이 형성된다. 별법으로, 동일한 분자량의 생성물이 각각 두개의 반응기에서 형성될 수 있다. 최종 생성물은 탈휘발화되기 전에 두개의 중합체 생성물의 균일한 블렌드로 배합되는 두개의 반응기 방출물의 블렌드이다. 이러한 2개 반응기 공정은 개선된 성질을 갖는 생성물의 제조를 가능하게 한다. 바람직한 실시태양에서, 반응기는 직렬로 연결된다. 즉 제1 반응기로부터의 방출물이 제2 반응기에 충전되고, 새로운 단량체, 용매 및 수소가 제2 반응기에 첨가된다. 반응기 조건은 제1 반응기에서 생성되는 중합체 및 제2 반응기에서 생산되는 중합체의 중량 비가 20:80 내지 80:20이 되도록 조절된다. 그러나, 필요하다면, 보다 넓은 범위의 중량비가 사용될 수 있다. 또한, 제2 반응기의 온도는 더 낮은 Mw생성물을 생산하도록 제어된다. 이러한 시스템은 우수한 강도 및 가공성 뿐만아니라 넓은 MV 범위를 가지는 EAODM 생성물의 생산을 가능하게 한다. 얻어진 생성물의 MV는 조절되어 바람직하게는 1 내지 150, 더욱 바람직하게는 10 내지 120, 가장 바람직하게는 15 내지 100으로 낮게 조절된다. 2개의 반응기를 사용하는 이러한 작동 방식이 바람직하지만, 3개 또는 그 이상의 반응기를 사용할 수도 있다.In a preferred manner of operation, the polymerization is carried out in a continuous solution polymerization system comprising two reactors connected in series or in parallel. In a first reactor, a product of relatively high molecular weight (300,000 to 600,000, more preferably 325,000 to 500,000 Mw) is formed, and in a second reactor, a product of relatively low molecular weight (50,000 to 300,000 Mw) is formed. . Alternatively, products of the same molecular weight can each be formed in two reactors. The final product is a blend of two reactor effluents that are combined into a uniform blend of two polymer products before devolatilization. This two reactor process allows for the production of products with improved properties. In a preferred embodiment, the reactors are connected in series. That is, the discharge from the first reactor is charged to the second reactor and fresh monomer, solvent and hydrogen are added to the second reactor. The reactor conditions are adjusted so that the weight ratio of the polymer produced in the first reactor and the polymer produced in the second reactor is 20:80 to 80:20. However, if necessary, a wider range of weight ratios can be used. In addition, the temperature of the second reactor is controlled to produce a lower M w product. This system allows for the production of EAODM products with a wide MV range as well as good strength and processability. The MV of the resulting product is adjusted to be low, preferably from 1 to 150, more preferably from 10 to 120, most preferably from 15 to 100. Although this mode of operation using two reactors is preferred, three or more reactors may be used.

하기의 실시예들은 직접적으로 또는 암시에 의해 본 발명을 제한하지 않고 설명한다. 별도로 기재되지 않는 한, 모든 부 및 백분율은 중량 기준으로 표기된 것이다. 본 발명의 실시예들은 아라비아 숫자로 표기되며, 비교 실시예들은 알파벳으로 표기된다.The following examples illustrate the invention without limiting it, either directly or by suggestion. Unless stated otherwise, all parts and percentages are by weight. Examples of the present invention are indicated by Arabic numerals, and comparative examples are indicated by the alphabet.

촉매 실시예들에 대해,1H 및13C NMR 스펙트럼은 바리안 (Varian) XL (300 MHz) 분광기에 기록되었다. 화학적 시프트 (shift)는 TMS (테트라메틸실란)에 관해서 혹은 TMS에 관한 CDCl3중의 잔량의 CHCl3또는 C6D6중의 잔량의 C6HD5를 통해 결정된다. 테트라히드로퓨란 (THF), 디에틸에테르, 톨루엔, 및 헥산은 활성화된 알루미나 또는 알루미나 지지된 혼합된 산화 금속 촉매 (엥겔하드 코포레이션 (Engelhard Corp.)에서 시판하는 Q-5 (등록 상표) 촉매)가 충전된 이중 컬럼을 통한 하기 경로에 사용된다. 화합물 n-BuLi, KH, 모든 그리냐르 시약, 및 1,4-디페닐-1,3-부타디엔은 알드리치 케미칼 캄파니 (Aldrich Chemical Company)에서 구입하여 사용하였다. 모든 촉매 합성은 글로브 박스 및 고진공 기술의 조합을 사용하여 건조 질소 대기 하에서 수행되었다.For catalyst examples, 1 H and 13 C NMR spectra were recorded on a Varian XL (300 MHz) spectrometer. Chemical shifts are determined with respect to TMS (tetramethylsilane) or via residual C 6 HD 5 in CHCl 3 or residual C 6 D 6 in CDCl 3 relative to TMS. Tetrahydrofuran (THF), diethylether, toluene, and hexane are activated alumina or alumina supported mixed metal oxide catalysts (Q-5 (registered trademark) catalysts available from Engelhard Corp.). It is used in the following path through a packed double column. Compound n-BuLi, KH, all Grignard reagents, and 1,4-diphenyl-1,3-butadiene were purchased from Aldrich Chemical Company and used. All catalyst synthesis was performed under a dry nitrogen atmosphere using a combination of glove box and high vacuum technology.

중합체 실시예 제조는 연속식 공정 또는 배치식 공정을 사용하였다. 배치식 공정에서, 단량체 및 다른 특정 성분들은 공정의 개시에 앞서 반응기 장비에 첨가된다. 연속식 공정에서, 단량체들은 필요할 때 반응기 장치에 첨가되고, 유속의 변화가 단량체 농도를 변화시키는 데 사용된다. 각각의 실시예는 공정 형태 및 조건을 특정화한다. 1-2 시간의 공정 가동 시간은 일반적으로 평형에 도달하고 분석을 위한 대표적인 중합체 시료를 제공하기에 충분한 시간이다.Polymer Example Preparation used a continuous process or a batch process. In a batch process, monomers and other specific components are added to the reactor equipment prior to initiation of the process. In a continuous process, monomers are added to the reactor apparatus when needed, and a change in flow rate is used to change the monomer concentration. Each example specifies process form and conditions. The process run time of 1-2 hours is generally enough time to reach equilibrium and provide a representative polymer sample for analysis.

다수의 표준 시험을 사용하여 MV, 푸리에 변환 적외선 분석 (FTIR; Fourier Transform infrared analysis)을 통한 조성 분석, 및 밀도 (ASTM D-792)와 같은 EAODM 중합체의 물성을 측정하였다. B 값을 포함한 다른 결정적인 성질은 상기와 같이 결정되며, 레올로지 비는 하기와 같이 결정되고, 반응성 비 곱 또한 하기와 같이 결정된다.A number of standard tests were used to determine the physical properties of EAODM polymers such as MV, compositional analysis via Fourier Transform infrared analysis (FTIR), and density (ASTM D-792). Other critical properties including the B value are determined as above, the rheological ratio is determined as follows, and the reactive ratio product is also determined as follows.

레올로지 비 (V1.0/V100)는 레오메트릭 사이언티픽 인코포레이션 (Rheometric Scientific, Inc.)의 ARES (Advanced Rheometric Expansion System) 자동 기계 분광기 (DMS; dynamic mechanical spectrometer)에 대해 용융 레올로지 기술을 사용하여 시료를 시험함으로써 결정한다. 이 시료를 자동 주파 방식 및 직경 25 mm의 2 mm 간격의 평행한 판 고정 장치를 사용하여 190℃에서 시험하였다. 변형 속도는 8%이고 진동 속도는 분석된 주파수의 매 10번째에서 취해지는 5개 측정 시점에서 초당 0.1로부터 100 라디안까지 급격하게 증가한다. 각각의 시료 (펠릿 또는 배일)들은 1.18 cm (3 인치) 플라크 0.049 cm (1/8 인치) 두께로 138.9 MPa (20,000 psi), 180℃에서 1 분 동안 압축 성형된다. 플라크는 실온으로 급냉 및 냉각 (1 분에 걸쳐) 된다. 큰 플라크의 중앙 부분으로부터 25 mm 플라크를 도려낸다. 이러한 25 mm 직경의 부분 표본을 190℃에서 ARES에 삽입하고 시험을 시작하기 전에 5 분 동안 평형화 한다. 시료들은 산화성의 분해를 최소화 하기 위해 분석되는 동안 질소 환경에서 유지된다. 자료 정리 및 조작은 ARES2/A5:RSI 오르케스트레이터 윈도우즈 95 (Orchestrator Windows 95) 기준의 소프트웨어 패키지에 의해서 수행되었다. V0.1/V100비 (레올로지 비, 또는 "RR")는 전단 속도 곡선에 대한 점도의 기울기를 측정하여 결정한다.The rheology ratio (V 1.0 / V 100 ) uses melt rheology technology for Advanced Rheometric Expansion System (ARES) dynamic mechanical spectrometers (RRES) from Rheometric Scientific, Inc. Is determined by testing the sample. This sample was tested at 190 ° C. using an automatic frequency system and parallel plate holders of 25 mm diameter with 2 mm spacing. The rate of strain is 8% and the rate of oscillation rapidly increases from 0.1 to 100 radians per second at five measurement points taken every tenth of the analyzed frequency. Each sample (pellet or bail) is compression molded for 1 minute at 138.9 MPa (20,000 psi), 180 ° C., to a thickness of 0.049 cm (1/8 inch) of 1.18 cm (3 inch) plaque. The plaques are quenched and cooled (over 1 minute) to room temperature. Cut 25 mm plaques from the central portion of the large plaques. This 25 mm diameter aliquot is inserted into the ARES at 190 ° C. and allowed to equilibrate for 5 minutes before starting the test. Samples are maintained in a nitrogen environment during analysis to minimize oxidative degradation. Data organization and manipulation was performed by a software package based on the ARES2 / A5: RSI Orchestrator Windows 95 standard. The V 0.1 / V 100 ratio (the rheological ratio, or “RR”) is determined by measuring the slope of the viscosity against the shear rate curve.

반응성 비, r1 및 r2는 최종 공중합 모델을 기준으로 한13C NMR 스펙트럼에서 2가 원자 및 3가 원자 분포로부터 계산되며, 반응성 비 곱 (RRP)은 이 두 값 (r1 및 r2)을 곱하여 얻어진다.13C NMR 시료 제조는 상기 설명된 바와 같다.Reactivity ratios, r1 and r2, are calculated from divalent and trivalent atom distributions in 13 C NMR spectra based on the final copolymerization model, and the reactivity ratio product (RRP) is obtained by multiplying these two values (r1 and r2). . 13 C NMR sample preparation was as described above.

중합체 결정도는 액체 질소 냉각 부속품이 장착된 TA DSC-2920를 사용하는 시차주사열계량기 (DSC)에 의해서 결정된다. 시료들을 얇은 필름으로 제조하여 알루미늄 조내에 놓는다. 이들은 초기에 180℃로 가열되고 4 분 동안 이 온도로 유지되어 실질적으로 완전한 용융이 확실시 된다. 그다음, 이들을 분당 10℃씩 -100℃까지 냉각한 후, 분당 10℃씩 150℃까지 재가열한다. Tg는 온도의 1차 미분을 사용하는 융점 곡선으로부터 얻어진다. 융합의 전체 열은 융점 곡선의 하부 넓이로부터 얻어진다. 백분율 결정도는 융합의 전체 열을 폴리에틸렌 융합 열 값(292 J/g)으로 나누어 결정한다.Polymer crystallinity is determined by differential scanning calorimetry (DSC) using a TA DSC-2920 equipped with a liquid nitrogen cooling accessory. Samples are made into thin films and placed in aluminum baths. They are initially heated to 180 ° C. and held at this temperature for 4 minutes to ensure substantially complete melting. They are then cooled to −100 ° C. at 10 ° C. per minute and then reheated to 150 ° C. at 10 ° C. per minute. Tg is obtained from the melting point curve using the first derivative of the temperature. The total heat of fusion is obtained from the lower area of the melting point curve. Percentage crystallinity is determined by dividing the entire row of fusion by the polyethylene fusion row value (292 J / g).

촉매 효능 (Cat. Eff)는 촉매 중의 IV족 금속의 파운드 당 중합체의 백만 파운드 (MM#/#)로써 특정화 된다. 배치 공정에 대해서, 이것은 중합체 생성물의 중량을 측정하고 반응기에 첨가된 IV족 금속의 양으로 나누어 결정한다. 연속식 공정에 대해서, 중합체 생성물의 중량은 에틸렌 또는 벤트 전환율을 측정함으로써 결정된다.Catalytic efficacy (Cat. Eff) is characterized as one million pounds of polymer (MM # / #) per pound of Group IV metal in the catalyst. For the batch process, this is determined by weighing the polymer product and dividing by the amount of Group IV metal added to the reactor. For continuous processes, the weight of the polymer product is determined by measuring ethylene or vent conversion.

본 발명을 대표하는 EAODM 중합체의 실시예들은 하기와 같이 제조되는 촉매를 사용하는 반면, 비교 실시예 EAODM 중합체는 미국 특허 제5,491,246호, 동 제5,486,632호 및 동 제5,470,993호에 기재되어 있는 촉매와 같은 구속 촉매를 사용하여 제조된다.Examples of EAODM polymers representing the present invention use catalysts prepared as follows, while comparative example EAODM polymers are the same as those described in US Pat. Nos. 5,491,246, 5,486,632 and 5,470,993. It is made using a confinement catalyst.

촉매 제조Catalyst manufacturing

실시예 1-(t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV)디메틸의 합성Example 1 Synthesis of (t-butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl

1a) 5,6,7-테트라히드로-2-메틸-s-인다센-1-온의 제조1a) Preparation of 5,6,7-tetrahydro-2-methyl-s-indasen-1-one

인단 (59.0876 그램 (g), 0.5000 몰) 및 2-브로모이소부티릴 브로마이드 (114.9493 g, 0.5000 몰)을 0℃에서 AlCl3(201.36 g, 1.5101 몰)을 질소 (N2) 유동 하의 고체로서 천천히 첨가하면서 CH2Cl2(500 밀리리터 (mL))에서 교반하였다. 혼합물을 20 내지 25℃에서 6시간 동안 교반하였다. 반응 기간 후에 혼합물을 얼음에 쏟아 붓고 16시간 동안 방치하였다. 그 다음, 혼합물을 분별 깔때기에 가만히 따르고 잔류하는 염을 CH2Cl2로 잘 세정하였다. 그 다음 유기 층을 분리하고, 휘발물을 제거하여 농색 오일을 단리하였다. 진공 증류하여 황색 오일 (82.43 g, 88.5% 수율)로서 목적하는 생성물을 단리하였다.Indan (59.0876 grams (g), 0.5000 moles) and 2-bromoisobutyryl bromide (114.9493 g, 0.5000 moles) at 0 ° C. with AlCl 3 (201.36 g, 1.5101 moles) as a solid under a nitrogen (N 2 ) flow. Stir in CH 2 Cl 2 (500 milliliters (mL)) with slow addition. The mixture was stirred at 20-25 ° C. for 6 hours. After the reaction period the mixture was poured into ice and left for 16 hours. The mixture was then poured into a separatory funnel and the remaining salts washed well with CH 2 Cl 2 . The organic layer was then separated and the dark oil was isolated by removing volatiles. Vacuum distillation isolated the desired product as a yellow oil (82.43 g, 88.5% yield).

1b) s-인다센-1,2,3,5-테트라히드로-6-메틸의 제조1b) Preparation of s-indacene-1,2,3,5-tetrahydro-6-methyl

실시예 1a) 의 생성물 (40.00 g, 0.2148 몰)을 디에틸에테르 (150 mL)에 0℃에서 NaBH4(8.12 g, 0.2148 몰) 및 EtOH (100 mL)를 천천히 첨가하면서 질소 하에서 교반하여 혼합물을 제공하고 그 다음 혼합물을 교반하고 20 내지 25℃에서 16 시간 동안 반응시켰다. 이 기간 후, 혼합물을 얼음에 쏟아 붓고 수성 1 몰 (M) HCl 용액을 사용하여 산성화하였다. 유기 부분을 1 M HCl (2×100 mL)로 세정하였다. 용액으로부터 휘발물을 제거하고 잔류물을 벤젠에 재용해시키고 딘 스타크 (Dean Stark) 장치를 사용하여 5 시간동안 p-톨루엔술폰산 (0.11g)과 함께 역류시켰다. 혼합물을 1M NaOH3(2×100 mL)를 사용하여 추출하였다. 그 다음 유기 층을 분리하고, 휘발물을 제거하여 백색 결정 고체로서 목적하는 생성물을 단리하였다.The product of Example 1a) (40.00 g, 0.2148 mol) was added to diethyl ether (150 mL) at 0 ° C. at 0 ° C. with stirring slowly under nitrogen with slow addition of NaBH 4 (8.12 g, 0.2148 mol) and EtOH (100 mL). The mixture was then stirred and reacted at 20-25 ° C. for 16 hours. After this period, the mixture was poured onto ice and acidified with aqueous 1 mol (M) HCl solution. The organic portion was washed with 1 M HCl (2 × 100 mL). The volatiles were removed from the solution and the residue was redissolved in benzene and refluxed with p-toluenesulfonic acid (0.11 g) for 5 hours using Dean Stark apparatus. The mixture was extracted using 1M NaOH 3 (2 × 100 mL). The organic layer was then separated and the volatiles removed to isolate the desired product as a white crystalline solid.

1c) (1,5,6,7-테트라히드로-2-메틸-s-인다센-1-일)의 제조1c) Preparation of (1,5,6,7-tetrahydro-2-methyl-s-indasen-1-yl)

실시예 1b)의 생성물 (25.000 g, 0.14684 몰)을 헥산 (400 mL)에 nBuLi (0.17621 몰, 헥산 중의 2.5 M 용액 70.48 mL)를 천천히 첨가하면서 교반하여 반응 혼합물을 제공하고 그 다음 혼합물을 교반하고 16 시간 동안 반응시켰는데, 그동안 고체가 침전하였다. 혼합물을 여과하여 담황색의 고체 (24.3690 g, 94.2 % 수율)로서 목적하는 생성물을 단리하였고, 이는 추가의 정화 또는 분석없이 사용된다.The product of Example 1b) (25.000 g, 0.14684 mol) was added to hexane (400 mL) with slow addition of nBuLi (0.17621 mol, 70.48 mL of a 2.5 M solution in hexane) to give a reaction mixture which was then stirred and The reaction was carried out for 16 hours, during which solid precipitated. The mixture was filtered to isolate the desired product as a pale yellow solid (24.3690 g, 94.2% yield), which was used without further purification or analysis.

1d) N-(1,1-디메틸에틸)-1,1-디메틸-1-(1,5,6,7-테트라히드로-2-메틸-s-인다센-1-일)실란아민의 제조1d) Preparation of N- (1,1-dimethylethyl) -1,1-dimethyl-1- (1,5,6,7-tetrahydro-2-methyl-s-indasen-1-yl) silaneamine

테트라히드로퓨란 (THF) (200 mL) 중의 실시예 1a)의 생성물 (25.0 g, 0.1419 몰)을 테트라히드로퓨란 (THF) (250 mL) 중의 디메틸실릴(t-부틸아미노)클로라이드 (23.518 g, 0.1419 몰)에 1 시간 동안에 걸쳐 적가하여 반응 혼합물을 제공하고 그 다음 혼합물을 교반하고 20 시간 동안 반응시켰다. 이 기간 후에, 휘발물을 제거하고 잔류물은 헥산을 사용하여 추출하고 여과하였다. 헥산을 제거하여 적황색 오일 (37.55 g, 88.0% 수율)로서 목적하는 생성물을 단리하였다.The product of Example 1a) in tetrahydrofuran (THF) (200 mL) (25.0 g, 0.1419 mol) was converted to dimethylsilyl (t-butylamino) chloride (23.518 g, 0.1419) in tetrahydrofuran (THF) (250 mL). Molar) over 1 hour to give the reaction mixture which was then stirred and reacted for 20 hours. After this period, the volatiles were removed and the residue was extracted using hexanes and filtered. Hexane was removed to isolate the desired product as red yellow oil (37.55 g, 88.0% yield).

1e) N-(1,1-디메틸에틸)-1,1-디메틸-1-(1,5,6,7-테트라히드로-2-메틸-s-인다센-1-일)실란아미드의 제조1e) Preparation of N- (1,1-dimethylethyl) -1,1-dimethyl-1- (1,5,6,7-tetrahydro-2-methyl-s-indasen-1-yl) silaneamide

실시예 1d)의 생성물 (8.00 g, 0.2671 몰)을 헥산 (110 mL) 중에서 nBuLi (0.05876 몰, 헥산 중의 2.5 M 용액 23.5 mL)을 적가하면서 교반하여 반응 혼합물을 제공하고 반응 혼합물을 교반한 다음 16 시간 동안 반응시켰다. 이 기간 후에, 추가의 정제 또는 분석없이 사용되는 연황색 고체 (6.22 g, 75% 수율)를 목적하는 생성물로서 여과하여 생성하였다.The product of Example 1d) (8.00 g, 0.2671 mol) was stirred dropwise with hexane (110 mL) nBuLi (0.05876 mol, 23.5 mL of a 2.5 M solution in hexane) to give a reaction mixture and the reaction mixture was stirred and then 16 The reaction was carried out for a time. After this period, a pale yellow solid (6.22 g, 75% yield) used without further purification or analysis was produced by filtration as the desired product.

1f) 디클로로[N-(1,1-디메틸에틸)-1,1-디메틸-[1,2,3,4,5-η]-1,5,6,7-테트라히드로-2-메틸-s-인다센-1-일]실란아민토(2-)-N]티타늄의 제조1f) dichloro [N- (1,1-dimethylethyl) -1,1-dimethyl- [1,2,3,4,5-η] -1,5,6,7-tetrahydro-2-methyl- Preparation of s-indasen-1-yl] silaneamineto (2-)-N] titanium

THF (40 mL) 중의 실시예 1e)의 생성물 (4.504 g, 0.01446 몰)을 THF (100 mL) 중의 TiCl3(THF)3(5.359 g, 0.001446 몰)의 슬러리에 적가하고 1시간 동안 교반 한 후, PbCl2(2.614 g, 0.000940 몰)을 첨가하고, 추가로 1시간 동안 계속 교반하였다. 이 기간 후에 휘발물을 제거하고 잔류물을 톨루엔을 사용하여 추출 및 여과하였다. 톨루엔을 제거하여 농색 잔류물을 단리하였다. 잔류물을 헥산 중에 슬러리를 만들고, 여과를 통해 적색 고체 (3.94 g, 65.0% 수율)로서 목적하는 생성물을 단리하였다.The product of Example 1e) in THF (40 mL) (4.504 g, 0.01446 mol) was added dropwise to a slurry of TiCl 3 (THF) 3 (5.359 g, 0.001446 mol) in THF (100 mL) and stirred for 1 hour. , PbCl 2 (2.614 g, 0.000940 mol) was added and stirring continued for an additional hour. After this period the volatiles were removed and the residue was extracted and filtered using toluene. Toluene was removed to isolate the dark colored residue. The residue was slurried in hexane and the desired product was isolated via filtration as a red solid (3.94 g, 65.0% yield).

1g) 화학식 IV의 착물의 합성1g) Synthesis of Complexes of Formula IV

실시예 1f)의 생성물 (0.450 g, 0.00108 몰)을 디에틸에테르 (30mL)에 MeMgBr (0.00324 몰, 디에틸에테르 중의 3.0t몰 용액 1.08 mL)을 천천히 첨가하면서 교반하여 반응 혼합물을 제공하고, 그 다음 반응 혼합물을 교반하고 30 분 동안 반응시켰다. 이 기간 후, 휘발물을 제거하고 잔류물을 헥산을 사용하여 추출 및 여과하였다. 헥산을 제거하여 고체 (0.37 g, 90.6% 수율)로서 목적하는 생성물을 단리하였다.The product of Example 1f) (0.450 g, 0.00108 mol) was stirred with slowly adding MeMgBr (0.00324 mol, 1.08 mL of 3.0 tmol solution in diethyl ether) to diethyl ether (30 mL) to give a reaction mixture, The reaction mixture was then stirred and reacted for 30 minutes. After this period, the volatiles were removed and the residue was extracted and filtered using hexanes. Hexane was removed to isolate the desired product as a solid (0.37 g, 90.6% yield).

실시예 2 - 화학식 III의 착물의 합성Example 2-Synthesis of Complexes of Formula III

드라이박스 (글로브박스) 내에서, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 디클로라이드 (실시예 1f)) (0.300 g, 0.72 mmol)을 100 mL의 둥근 바닥 플라스크 내의 시클로헥산 50 mL에 현탁하였다. 혼합물의 동량의 2,4-헥사디엔 (0.822 mL, 7.21 mmol) 이성질체를 플라스크의 함유물에 첨가하여 혼합물을 형성하였다. 2와 1/4 동량의 n-BuMgCl (0.81 mL, 1.62 mmol)의 2.0 M Et2O 용액을 혼합물에 첨가하여 반응 혼합물을 형성하였다. 플라스크를 응축기에 장착하고 반응 혼합물을 가열하여 1 시간 동안 역류시켰다. 냉각하면서, 휘발물을 감압 하에서 제거하여 잔류물을 남기고 잔류물을 헥산으로 추출하고 규조토 충전 보조제를 통하여 헥산을 감압 하에서 제거하여 목적하는 생성물 (94% 수율과 동량)로서 0.29 g의 갈색 유성 고체를 얻었다.1H 및13C NMR로 특정지어진 생성물은 (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II)2,4-헥사디엔이었다.Dry box (glove box) in, (t- butylamido) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium dichloride (Example 1f)) (0.300 g, 0.72 mmol ) Was suspended in 50 mL of cyclohexane in a 100 mL round bottom flask. An equal amount of 2,4-hexadiene (0.822 mL, 7.21 mmol) isomer of the mixture was added to the contents of the flask to form a mixture. A 2.0 M Et 2 O solution of 2 and 1/4 equivalents of n-BuMgCl (0.81 mL, 1.62 mmol) was added to the mixture to form a reaction mixture. The flask was placed in a condenser and the reaction mixture was heated to reflux for 1 hour. While cooling, the volatiles were removed under reduced pressure to leave a residue and the residue was extracted with hexane and hexane was removed under reduced pressure through a diatomaceous earth filling aid to give 0.29 g of brown oily solid as the desired product (94% yield and equivalent). Got it. The product specified by 1 H and 13 C NMR was (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanitanium (II) 2,4-hexadiene.

실시예 3 - 화학식 VII 및 VIII의 착물의 합성Example 3-Synthesis of Complexes of Formulas VII and VIII

실시예 2의 장치와 방법을 사용하여, 헥사디엔 이성질체의 10 동량에 대해 1,3-펜타디엔 (1.08 mL, 10.81 mmol) 이성질체 혼합물의 15 동량, n-BuMgCl 용액 2.0 M Et2O 2.25 동량에 대해 2 동량의 2.5 M 헥산 용액 n-BuLi (0.58 mL, 1.44 mmol) 대체하고 역류 시간을 3 시간까지 연장하기 위해 0.257 g의 갈색 유성 고체 (86% 수율)을 저장한다.1H 및13C NMR에 의해 특정지워진 고체는 (t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔이었다. 생성물을 화학식 VII 및 VIII에 나타난 바와 같이 인다세닐 고리 상의 메틸기에 대하여 1,3-펜타디엔의 배향으로 얻어진 2 개의 기하 이성질체의 혼합물로서 단리하였다.Using the apparatus and method of Example 2, 15 equivalents of 1,3-pentadiene (1.08 mL, 10.81 mmol) isomeric mixture for 10 equivalents of hexadiene isomer, 2 for 2.25 equivalents of n-BuMgCl solution 2.0 M Et2O Replace the same amount of 2.5 M hexane solution n-BuLi (0.58 mL, 1.44 mmol) and store 0.257 g of brown oily solid (86% yield) to extend the reflux time to 3 hours. The solid specified by 1 H and 13 C NMR was (t-butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene . The product was isolated as a mixture of two geometric isomers obtained in the orientation of 1,3-pentadiene relative to the methyl group on the indasenyl ring as shown in formulas (VII) and (VIII).

실시예 4-7 및 비교 실시예 A 및 BExamples 4-7 and Comparative Examples A and B

5 개의 시료 에틸렌/프로필렌/ENB 3원 공중합체 조성물, 즉 본 발명을 나타내는 4 개 (실시예 4 - 7) 및 비교 실시예 1개 (비교 실시예 A)를, 반응물의 연속식 첨가 및 중합체 용액의 연속식 제거, 탈휘발화 및 중합체 회수를 위해 고안된 3.8 리터 (L) 의 교반형 반응기 내에서 표 IA-1C에 표기되어 있는 특정 차이점으로 동일한 기본 공정을 사용하여 제조하였다. 실시예 4 내지 7은 실시예 1의 촉매를 사용하여 제조되었다. 비교 실시예 A는 (테트라메틸시클로-펜타디에닐)디메틸(t-부틸아미도)실란티타늄 1,3-펜타디엔을 촉매로서 사용하여 제조하였다. 모든 5개 시료들을 위한 조촉매는 FAB 이었다. 실시예 4 - 5 및 비교 실시예 A를 위한 스카벤져는 MMAO (트리이소부틸 알루미늄 개질된 메틸알루목산)이었다. 실시예 6 및 7을 위한 스카벤져는 각각 DIEL-N ((디이소프로필아미도)디에틸알루미늄) 및 DIBAL-NS ((비스트리메틸실아미도)디이소부틸알루미늄)이었다. 티타늄 (Ti)의 몰에 대한 FAB의 몰 비는 실시예 4-7에 대해서는 3.0이고, 비교 실시예 A에 대해서는 3.6이었다. 비교 실시예 A에 대한 용융 지수 (MI)는 25.0 g/10분이었다. 비교 실시예 A는 MV를 측정하기에는 너무 낮은 Mw를 가지므로, 비교 실시예 A에 대해서는 MI를 사용하였다. 실시예 4-7은 MV를 측정하기에 충분히 높은 Mw를 가졌다.Five sample ethylene / propylene / ENB ternary copolymer compositions, namely four (Examples 4-7) and one comparative example (Comparative Example A) representing the present invention, were continuously added with the reactants and the polymer solution It was prepared using the same basic process with the specific differences indicated in Table IA-1C in a 3.8 liter (L) stirred reactor designed for the continuous removal, devolatilization and polymer recovery. Examples 4-7 were prepared using the catalyst of Example 1. Comparative Example A was prepared using (tetramethylcyclo-pentadienyl) dimethyl (t-butylamido) silanetitanium 1,3-pentadiene as a catalyst. The promoter for all five samples was FAB. The scavenger for Examples 4-5 and Comparative Example A was MMAO (triisobutyl aluminum modified methylalumoxane). The scavengers for Examples 6 and 7 were DIEL-N ((diisopropylamido) diethylaluminum) and DIBAL-NS ((bistrimethylsilamido) diisobutylaluminum), respectively. The molar ratio of FAB to mole of titanium (Ti) was 3.0 for Examples 4-7 and 3.6 for Comparative Example A. Melt index (MI) for Comparative Example A was 25.0 g / 10 min. Comparative Example A had M w too low to measure MV, so MI was used for Comparative Example A. Examples 4-7 had M w high enough to measure MV.

추가의 비교 실시예 (B)는 유사한 방식으로 제조되었지만 수소가 사용되지 않았다. 이 중합체의 조성은 실시예 4 - 7의 조성과 유사하고, 수소의 제거는 분자량에 보다 근접한 조화를 이룬 중합체 생산을 가능하게 한다.Further comparative example (B) was prepared in a similar manner but without hydrogen. The composition of this polymer is similar to that of Examples 4-7, and the removal of hydrogen allows for a polymer production that is more closely matched to the molecular weight.

도 1을 참고하여, 에틸렌 (4), 프로필렌 (5), 및 수소 (6)을 단일 스트림 (16)으로 합한 후 혼합된 알칸 용매 [엑슨 케미칼 인코포레이션 (Exxon Chemical inc.)에서 시판하는 이소파르 (Isopar)-E; 등록 상표] (1) 및 디엔 (2)를 함유하는 희석제 혼합물에 도입하여 반응기 (10)에 연속적으로 주입되는 합해진 공급 혼합물 (7)을 형성한다. 촉매 (8) 및 조촉매와 스카벤져의 블렌드 (9)를 단일 스트림 (17)로 합하여 역시 반응기에 연속적으로 주입한다.Referring to FIG. 1, isopar commercially available from alkane solvents (Exxon Chemical Inc.) mixed after combining ethylene (4), propylene (5), and hydrogen (6) into a single stream (16). (Isopar) -E; Trademark] (1) and diene (2) are introduced into the diluent mixture to form a combined feed mixture (7) which is continuously injected into the reactor (10). The catalyst (8) and the blend (9) of the cocatalyst and the scavenger are combined in a single stream (17) and also continuously injected into the reactor.

표 IA는 용매, 에틸렌 (C2) 및 프로필렌 (C3)의 유속을 시간 당 파운드 (pph)의 단위로 표기한다. 표 IA는 또한 C2의 전환 백분율과 중합체 생산 속도 (pph 단위)를 표기한다. 표 IB는 촉매 (Cat), 조촉매 (Cocat) 및 스카벤져 (Scav)의 농도를 Al의 백만 부에 해당하는 부 (ppm)로 표기한다. 표 IB는 또한 금속 (M)에 대한 조촉매의 비 (여기서 M은 티타늄 (Ti) 임) 및 촉매, 조촉매 및 스카벤져에 대한 pph 단위의 유속을 또한 나타낸다. 표 IC는 ℃ 단위의 반응기 온도 (Temp), 분당 표준 입방 센티미터 (sccm) 단위의 수소 유동, ENB 유속 (pph), 스카벤져:티타늄 (Scav/Ti)의 비 및 중합체 성질 [MV, MI, 및 EAODM 조성 (FTIR에 의해 결정됨)], B 값, V0.1/V100및 RRP를 나타낸다.Table IA lists the flow rates of solvent, ethylene (C 2 ) and propylene (C 3 ) in pounds per hour (pph). Table IA also indicates the percent conversion of C 2 and the rate of polymer production in pph. Table IB indicates the concentrations of catalyst (Cat), cocatalyst (Cocat) and scavenger (Scav) in parts per million (ppm) corresponding to Al parts. Table IB also shows the ratio of promoter to metal (M) where M is titanium (Ti) and the flow rate in pph for catalyst, promoter and scavenger. Table IC shows reactor temperature (Temp) in ° C, hydrogen flow in standard cubic centimeters per minute (sccm), ENB flow rate (pph), ratio of scavenger: titanium (Scav / Ti) and polymer properties [MV, MI, and EAODM composition (determined by FTIR)], B value, V 0.1 / V 100 and RRP.

반응기 출구 스트림 (15)는 연속적으로 분리기 (11)에 도입되고, 여기서 용융된 중합체가 미반응 공단량체, 미반응 에틸렌, 미반응 수소, 미반응 ENB 및 용매 (14)로부터 연속적으로 분리된다. 용융된 중합체는 후속적으로 세분화 또는 펠릿화된 스트랜드이며, 이어서 수조 또는 펠릿타이저 (pelletizer) 내에서 냉각된 후, 고체 펠릿이 수집된다 (13).Reactor outlet stream 15 is continuously introduced into separator 11 where the molten polymer is continuously separated from unreacted comonomer, unreacted ethylene, unreacted hydrogen, unreacted ENB and solvent 14. The molten polymer is subsequently broken down or pelletized strand, which is then cooled in a water bath or pelletizer, after which the solid pellets are collected (13).

표 IC에 제시된 자료는 몇가지 사항을 설명한다. 첫째, 본질적으로 동일한 반응 조건 하에서, 실시예 4 내지 7의 중합체의 Mw는 MV 측정에서 예증되는 바와 같이 비교 실시예 A의 Mw보다 매우 크다. 이러한 Mw의 증가는 반응에서 사용된 스카벤져의 유형에 의해서 그렇게 크게 영향 받지 않는다. 둘째, 동일한 ENB 유속에서 (실시예 4 및 비교 실시예 A), ENB의 중합체로의 혼입율이 66.7% 증가하였다. 비교 실시예 A의 ENB 농도와 같은 ENB 농도를 얻기 위해, 실시예 5 내지 7에서 ENB의 유속이 0.7 pph 로부터 0.4 pph로 감소되어야 한다. 비교 실시예 A와 실시예 5와의 비교는 ENB 혼입의 관점에서 본질적으로 동일한 중합체 생산에 있어서 상당히 증가한 촉매의 효능을 보여준다.The data presented in Table IC illustrate several points. First, under essentially the same reaction conditions, the M w of the polymers of Examples 4-7 is much greater than the M w of Comparative Example A, as exemplified in the MV measurements. This increase in M w is not so much influenced by the type of scavenger used in the reaction. Second, at the same ENB flow rate (Example 4 and Comparative Example A), the incorporation rate of ENB into the polymer increased by 66.7%. In order to obtain an ENB concentration equal to the ENB concentration of Comparative Example A, the flow rate of ENB should be reduced from 0.7 pph to 0.4 pph in Examples 5-7. Comparison of Comparative Example A with Example 5 shows a significantly increased efficacy of the catalyst in producing essentially the same polymer in terms of ENB incorporation.

표 IC에서의 자료는 또한 실시예 4 내지 7에 의해 대표되는 본 발명의 중합체가 바람직한 전단 점성 거동 및 만족스러운 수준의 장쇄 분지를 가짐을 시사한다. V1.0/V100의 비는 전단 속도 곡선에 대한 점도의 기울기를 측정하는 수단이다. 실시예 4 내지 7에서와 같이 높은 V1.0/V100의 비는 비교 실시예 B에서와 같은 낮은 V1.0/V100의 비에 대해 더 높은 전단 민감도 또는 전단 점성을 시사한다. 전단 점성은 전형적으로 MWD 및 장쇄 분지 모두에 영향을 받고, 실시예 4 내지 7의 중합체 및 비교 실시예 A 및 B는 모두 유사한 분자량 분포 (MWD)를 가지므로, 더 높은 V1.0/V100의 비는 또한 보다 장쇄 분지를 나타낸다. 본 발명의 중합체는 실시예 4 내지 7을 비교 실시예 B와 비교함으로써 증명되는 바와 같이, 비교되는 중합체와 동일한 MV에서 더 높은 레올로지 비를 가진다. 수소의 부재 하에서 제조된 비교 실시예 B는 실시예 4 내지 7 중 임의의 한 실시예 보다 더 낮은 V1.0/V100비를 가진다. 수소가 결핍되면 통상 비닐 불포화의 수준이 높아지고 그로인해서 장쇄 분지가 발생하고 더 높은 전단 점성 거동 및 더 높은 V1.0/V100의 비를 가지므로, 이 자료는 수소가 본 발명으로부터 배제될 필요가 없음을 시사한다.The data in Table IC also suggest that the polymers of the invention represented by Examples 4-7 have desirable shear viscosity behavior and satisfactory levels of long chain branching. The ratio of V 1.0 / V 100 is a measure of the slope of the viscosity with respect to the shear rate curve. High V 1.0 / V 100 ratios as in Examples 4-7 suggest higher shear sensitivity or shear viscosity for low V 1.0 / V 100 ratios as in Comparative Example B. Shear viscosity is typically affected by both MWD and long chain branching, and the polymers of Examples 4-7 and Comparative Examples A and B all have similar molecular weight distributions (MWD), so higher ratios of V 1.0 / V 100 Also represents longer chain branches. The polymers of the present invention have a higher rheological ratio at the same MV as the polymers being compared, as evidenced by comparing Examples 4-7 with Comparative Example B. Comparative Example B, prepared in the absence of hydrogen, has a lower V 1.0 / V 100 ratio than any of Examples 4-7. Hydrogen deficiency usually results in higher levels of vinyl unsaturation resulting in long chain branching, higher shear viscosity behaviors, and higher V 1.0 / V 100 ratios, so that the data do not need to be excluded from the invention. Suggests.

실시예 8Example 8

에틸렌, 프로필렌, 및 ENB의 3원 공중합을 1448 g의 이소파르-E [혼합 알칸, 엑슨 케미칼 인코포레이션 (Exxon Chemical inc.)에서 시판], 프로필렌 230.3 g, ENB 32.9 g, 및 수소 13.8 mmol이 충전된 3.8 L의 스테인레스스틸 반응기를 사용하여 수행하였다. 반응기를 100℃로 가열하고, 에틸렌으로 460 psig (3.24 MPa)까지 포화시켰다. 실시예 1의 촉매 1.0 미크로몰 (0.005 M 용액), 조촉매로서 FAB 1.5 미크로몰 (0.0075 M 용액), 스카벤져로서 (디이소프로필아미도)디에틸알루미늄 10.0 미크로몰 (0.050 M 용액) 및 전체 부피를 18 mL로 만드는 충분한 이소파르-E를 함께 건조 박스 내에 주입함으로써 촉매를 제조하였다. 그 다음, 촉매 용액을 주사기를 통하여 촉매 첨가 루프로 이송하고 약 4 분에 걸쳐서 고압 용매 유동을 사용하여 반응기에 주사하였다. 460 psig (3.24 MPa)의 압력으로 유지되는 것이 요구되는 상태에서 에틸렌을 공급하면서 중합을 10 분 동안 진행시켰다. 반응 동안 소비되는 에틸렌의 양을 질량 유량 계량기를 사용하여 모니터하였다. 그 다음 중합체 용액을 반응기로부터 질소 세정된 유리 케틀에 쏟아 붓고 중합체의 백만부당 안정제 (이르가포스 186 (Irgafos 186; 등록 상표) 및 이르가녹스 1076 (Irganox; 등록 상표)) 2000 부를 첨가하고 중합체 용액과 잘 혼합하였다. 안정화한 중합체 용액을 트레이에 쏟아 붓고, 밤새 공기 건조하고, 그 다음 120℃의 진공 오븐에서 하룻동안 완전히 건조하였다.Ternary copolymerization of ethylene, propylene, and ENB was charged with 1448 g of Isopar-E [commercially available from Alkanes, Exxon Chemical Inc.], 230.3 g of propylene, 32.9 g of ENB, and 13.8 mmol of hydrogen. Was carried out using a 3.8 L stainless steel reactor. The reactor was heated to 100 ° C. and saturated with ethylene to 460 psig (3.24 MPa). 1.0 micromole of catalyst of Example 1 (0.005 M solution), 1.5 micromoles of FAB as cocatalyst (0.0075 M solution), 10.0 micromoles (0.050 M solution) of diethylaluminum (diisopropylamido) as scavenger and total The catalyst was prepared by injecting enough isopar-E together to bring the volume to 18 mL into a dry box. The catalyst solution was then transferred through a syringe into the catalyst addition loop and injected into the reactor using high pressure solvent flow over about 4 minutes. The polymerization was allowed to proceed for 10 minutes while feeding ethylene in a state where it was desired to be maintained at a pressure of 460 psig (3.24 MPa). The amount of ethylene consumed during the reaction was monitored using a mass flow meter. The polymer solution is then poured from the reactor into a nitrogen washed glass kettle and 2000 parts of stabilizer (Irgafos 186® and Irganox 1076) are added per million parts of polymer and the polymer solution Mixed well with The stabilized polymer solution was poured into a tray, air dried overnight and then completely dried in a vacuum oven at 120 ° C. for one day.

3원 공중합체의 수득량은 89.7 g이었고, 촉매의 효능은 1900000이었다. 3 원 공중합체는 C2/C3의 비가 2.1 (C264.5 중량%, C330.1 중량%)이고, ENB의 함량은 5.5 중량% 이었다. MV는 84.4이었고, 분자량 (Mw)은 2.04의 MWD (Mw/Mn)로 185,500이었다. B값은 0.96이고, 에틸렌/프로필렌에 대한 RRP는 1.16이었다. 3원 공중합체는 -44.9℃의 Tg 및 4.2%의 결정화도를 가졌다.The yield of the terpolymer was 89.7 g and the efficacy of the catalyst was 1900000. The ternary copolymer had a ratio of C 2 / C 3 of 2.1 (C 2 64.5 wt%, C 3 30.1 wt%) and an ENB content of 5.5 wt%. The MV was 84.4 and the molecular weight (M w ) was 185,500 with a MWD (M w / M n ) of 2.04. The B value was 0.96 and the RRP for ethylene / propylene was 1.16. Terpolymers had a Tg of -44.9 ° C and a crystallinity of 4.2%.

실시예 9Example 9

실시예 8의 장치, 촉매 및 방법을 사용하여, 에틸렌/프로필렌/ENB 3원 공중합체를 1457 g의 이소파르-E, 프로필렌 232.4 g, ENB 33.8 g, 및 수소 13.8 mmol이 충전된 반응기를 사용하여 제조하였다. 3원 공중합체의 수득량은 104.7 g이었고, 촉매의 효능은 2200000이었다. 3원 공중합체는 프로필렌에 대한 에틸렌의 비가 2.0 (C265.4 중량%, C332.1 중량%)이고, ENB의 함량은 2.5 중량% 이었다. MV는 33.0이었고, 분자량 (Mw)은 1.78의 MWD로 134,300이었다. B 값은 0.94이고, 에틸렌/프로필렌에 대한 RRP는 1.21이었다. 3원 공중합체는 -46.9℃의 Tg및 6.2%의 결정화도를 가졌다.Using the apparatus, catalyst and method of Example 8, an ethylene / propylene / ENB terpolymer was charged using a reactor packed with 1457 g of isopar-E, 232.4 g of propylene, 33.8 g of ENB, and 13.8 mmol of hydrogen. Prepared. The yield of ternary copolymer was 104.7 g and the efficacy of the catalyst was 2200000. The terpolymers had a ratio of ethylene to propylene of 2.0 (C 2 65.4 wt%, C 3 32.1 wt%) and the content of ENB was 2.5 wt%. The MV was 33.0 and the molecular weight (M w ) was 134,300 with a MWD of 1.78. The B value was 0.94 and the RRP for ethylene / propylene was 1.21. The terpolymer had a T g of -46.9 ° C. and a crystallinity of 6.2%.

비교 실시예 C (C05R03)Comparative Example C (C05R03)

실시예 4-7의 장치 및 방법, 및 비교 실시예 A 및 B, 및 촉매로서 (테트라메틸시클로-펜타디에닐)디메틸(t-부틸아미도)실란티타늄 디메틸, 조촉매로서 FAB 및 스카벤져로서 MMAO를 사용하여 하기 표에 나타난 양 만큼 반응기에 흘려 에틸렌/프로필렌/ENB 3원 공중합체를 제조하였다. Al/Ti 비는 6:1이고, _______를 기준으로 한 MMAO 유속은 0.3 pph이고, MMAO 농도는 24.91 ppm이었다. 비교 실시예 B에서와 같이, 수소의 유동은 없다. 표 IIA 및 IIB는 중합 매개 변수 및 생성된 중합체의 성질을 나타낸다.The apparatus and method of Examples 4-7, and Comparative Examples A and B, and (tetramethylcyclo-pentadienyl) dimethyl (t-butylamido) silanetitanium dimethyl as catalyst, FAB as cocatalyst and as scavenger MMAO was used to flow the reactor in the amounts shown in the table below to make ethylene / propylene / ENB terpolymers. The Al / Ti ratio was 6: 1, the MMAO flow rate was 0.3 pph based on _______ and the MMAO concentration was 24.91 ppm. As in Comparative Example B, there is no flow of hydrogen. Tables IIA and IIB show the polymerization parameters and the properties of the resulting polymer.

표 IIB의 자료는, 비교 실시예 B에 대해 표 IC에 제시된 바와 같이, 본 발명에 따라 생산된 중합체가 동일한 출발 물질로부터 동일한 조건 하에서 제조되는 경우에도 상이한 촉매로 제조되면 후자의 촉매와 분명히 다르다는 것을 설명한다.The data in Table IIB shows that, as shown in Table IC for Comparative Example B, the polymers produced according to the invention are clearly different from the latter catalysts if made with different catalysts, even if made from the same starting material under the same conditions. Explain.

실시예 10Example 10

실시예 8 및 실시예 2의 장치와 방법을 사용하여, 에틸렌/부텐-1/ENB의 3원 공중합체를 1455 g의 이소파르-E, 부텐-1 303.3 g, ENB 42.6 g, 및 수소 9.46 mMol을 반응기에 충전함으로써 제조하였다.Using the apparatus and method of Examples 8 and 2, terpolymers of ethylene / butene-1 / ENB were prepared with 1455 g of isopar-E, 303.3 g of butene-1, 42.6 g of ENB, and 9.46 mMol of hydrogen. Was prepared by charging into the reactor.

3원 공중합체의 수득량은 83.0 g이었고, 촉매의 효능은 1200000이었다. 생성된 탄성체의 MW는 168,700, MWD는 2.02, MI는 1.7 g/10분이고 결정화도는 13%이었다.The yield of ternary copolymer was 83.0 g and the efficacy of the catalyst was 1200000. The resulting elastomer had a MW of 168,700, a MWD of 2.02 and a MI of 1.7 g / 10 min and a crystallinity of 13%.

비교 실시예 DComparative Example D

실시예 8의 장치와 방법 및 상이한 촉매를 사용하여 에틸렌/부텐-1/ENB의 3원 공중합체를 1443 g의 이소파르-E, 부텐-1 304.7 g, ENB 90.9 g, 및 수소 9.5 mMol을 반응기에 충전함으로써 제조하였다. 2.0 미크로몰 (0.005 M 용액)의 금속 착물 (테트라메틸시클로펜타디에닐)디메틸 (t-부틸아미도)-실란티타늄 (II) 1,3-펜타디엔, 실시예 8의 조촉매 6.0 미크로몰 (0.015 M 용액), 실시예 8 스카벤져 50.0 미크로몰 (0.125 M 용액) 및 전체 부피를 18 mL로 만드는 충분한 이소파르-E를 함께 건조 박스 내에 주사함으로써 제조하였다. 그 다음, 촉매 용액을 실시예 8과 같이 반응기로 이송하였다. 3원 공중합체의 수득량은 157.7 g이었고, 촉매의 효능은 1600000이었다. 3원 공중합체의 MW는 46,700, MWD는 1.97, MI는 201.7이고 결정화도는 10.5%이었다.Using the apparatus and method of Example 8 and a different catalyst, 1443 g of isopar-E, 304.7 g of butene-1, 90.9 g of ENB, and 9.5 mMol of hydrogen were reacted using a different catalyst of ethylene / butene-1 / ENB. It was prepared by filling in. 2.0 micromoles (0.005 M solution) of metal complex (tetramethylcyclopentadienyl) dimethyl (t-butylamido) -silanetitanium (II) 1,3-pentadiene, promoter 6.0 micromoles of Example 8 ( 0.015 M solution), Example 8 Scavenger 50.0 micromole (0.125 M solution) and enough Isopar-E to make the total volume 18 mL were prepared by injection into a dry box together. The catalyst solution was then transferred to the reactor as in Example 8. The yield of ternary copolymer was 157.7 g and the efficacy of the catalyst was 1600000. The ternary copolymer had a MW of 46,700, a MWD of 1.97 and a MI of 201.7 and a crystallinity of 10.5%.

실시예 10의 3원 공중합체와 비교실시예 D의 3원 공중합체의 MW의 차이는 파단시의 강도 (Tensile at Break) (ASTM D1708) 및 파단시의 백분율 신장율 (Percent Elongation at Break) (ASTM D1708)와 같은 중합체의 성질에 상당한 영향을 미친다. 실시예 10은 비교 실시예 C의 375 psi (2.64 MPa)에 대응하는 파단시의 인장강도 1150 psi (8.90 MPa) 및 비교 실시예 C의 567에 대응하는 파단시의 백분율 신장율 840을 가진다. 이 자료는 생성된 중합체에 대한 촉매 변화의 효과를 증명한다.The difference in MW between the terpolymer of Example 10 and the terpolymer of Comparative Example D was found in Tensile at Break (ASTM D1708) and Percent Elongation at Break (ASTM). D1708) has a significant effect on the properties of polymers. Example 10 has a tensile strength of 1150 psi (8.90 MPa) at break corresponding to 375 psi (2.64 MPa) of Comparative Example C and a percentage elongation at break 840 corresponding to 567 of Comparative Example C. This data demonstrates the effect of catalytic changes on the resulting polymer.

실시예 11 - 13 및 비교 실시예 EExamples 11-13 and Comparative Example E

실시예 11, 13 및 14에 대해 실시예 8의 장치와 방법, 및 실시예 1의 촉매, 실시예 12에 대해 실시예 2의 촉매 및 비교 실시예 E에 대해 비교 실시예 A의 촉매를 사용하고, 촉매를 다양하게 사용하고, 표 IIIA에 나타난 양의 성분을 사용하여 4 개의 에틸렌/프로필렌/ENB 3원 공중합체를 제조하였다. 실시예 12 및 비교 실시예 E에 대한 조촉매는 FAB이었다. 실시예 11, 13 및 14에 대한 조촉매는 디(수소화-탈로알킬)메틸암모늄 테트라키스(펜타플루오로페닐)보레이트이었다. 중합 결과를 표 IIB에 나타내었다. 실시예 11,13 및 14에 대한 스카벤져는 (디이소프로필아미도)디에틸알루미늄이었다. 실시예 12에 대한 스카벤져는 DIBAL-NS 이고 비교실시예 E에 대해서는 MMAO이었다.The apparatus and method of Example 8 for Examples 11, 13 and 14, and the catalyst of Example 1, the catalyst of Example 2 for Example 12 and the catalyst of Comparative Example A for Comparative Example E Four ethylene / propylene / ENB terpolymers were prepared using various catalysts and the amounts of the components shown in Table IIIA. The promoter for Example 12 and Comparative Example E was FAB. The cocatalyst for Examples 11, 13 and 14 was di (hydrogen-taloalkyl) methylammonium tetrakis (pentafluorophenyl) borate. The polymerization results are shown in Table IIB. The scavengers for Examples 11, 13 and 14 were (diisopropylamido) diethylaluminum. The scavenger for Example 12 was DIBAL-NS and MMAO for Comparative Example E.

표 IIIB의 자료는 본 발명의 방법에서 바람직한 촉매의 사용이 더 높은 ENB 함량, 더 높은 Mw, 또는 동일한 조건 및 상이한 촉매 하에서 제조되는 중합체와 관련한 2 가지 모두를 가지는 중합체를 수득하게 함을 설명한다.The data in Table IIIB demonstrate that the use of preferred catalysts in the process of the present invention results in polymers having higher ENB content, higher M w , or both with respect to polymers prepared under the same conditions and different catalysts. .

실시예 15Example 15

실시예 3, 조촉매로서 FAB, 스카벤져로서 MMAO 및 실시예 8의 장치 및 방법을 사용하고 표 IVA에 나타난 양의 성분을 사용하여 에틸렌/프로필렌/ENB의 공중합체를 제조하였다. 공중합체의 성질을 표 IVB에 나타내었다.A copolymer of ethylene / propylene / ENB was prepared using Example 3, FAB as cocatalyst, MMAO as scavenger and the apparatus and method of Example 8, and using the components shown in Table IVA. The properties of the copolymers are shown in Table IVB.

표 IVB의 자료는 본 발명의 방법과 결합하여 상이한 바람직한 촉매로 얻어진 유사한 결과를 나타낸다.The data in Table IVB show similar results obtained with different preferred catalysts in combination with the process of the present invention.

실시예 1 - 15에서 제시된 것과 유사한 결과가 상기에 개시된 모든, 다른 촉매, 조촉매, 스카벤져 및 공정 매개 변수에 대해 기대된다.Similar results to those presented in Examples 1-15 are expected for all of the other catalysts, promoters, scavengers and process parameters disclosed above.

Claims (12)

(a) C3-20α-올레핀인 α-올레핀에 대한 에틸렌의 중량비가 90:10 내지 10:90의 범위 이내이고, (b) 디엔 단량체의 함량이 공중합체의 중량을 기준으로 하여 0 내지 25 중량% 범위 이내이고, (c)13C NMR 분광법 및 식 B = POE/(2PE·PO) (여기서 PE는 에틸렌으로부터 유도된 에틸렌 유닛의 몰 분율이고, PO는 α-올레핀으로부터 유도된 α-올레핀 유닛의 몰 분율이고, POE는 공중합체 내의 모든 2가 쇄의 수에 대한 α-올레핀/에틸렌쇄 수의 비임)에 의해 결정된 B 값이 0.94 내지 1.0인, 에틸렌/α-올레핀/디엔 단량체 랜덤 공중합체.(a) the weight ratio of ethylene to α-olefin, which is a C 3-20 α-olefin, is within the range of 90:10 to 10:90, and (b) the content of diene monomer is 0 to based on the weight of the copolymer. Within 25% by weight, (c) 13 C NMR spectroscopy and formula B = P OE / (2P E .P O ), where P E is the mole fraction of ethylene units derived from ethylene and P O is an α-olefin Mole fraction of α-olefin units derived from P OE is an ethylene / α having a B value of 0.94 to 1.0, determined by the ratio of α-olefin / ethylene chain number to the number of all divalent chains in the copolymer). -Olefin / diene monomer random copolymer. 제1항에 있어서, α-올레핀이 프로필렌, 부텐-1, 헥센-1 및 옥텐-1로부터 선택되고, 디엔 단량체가 5-에틸디엔-2-노르보르넨, 5-비닐디엔-2-노르보르넨, 5-메틸렌-2-노르보르넨, 1,4-헥사디엔, 1,3-펜타디엔, 디시클로펜타디엔, 7-메틸-1,6-옥타디엔, 1,3-부타디엔, 4-메틸-1,3-펜타디엔, 5-메틸-1,4-헥사디엔, 6-메틸-1,5-헵타디엔, 노르보르나디엔, 1,7-옥타디엔 및 1,9-데카디엔으로부터 선택되는 공중합체.The method of claim 1 wherein the α-olefin is selected from propylene, butene-1, hexene-1 and octene-1 and the diene monomers are 5-ethyldiene-2-norbornene, 5-vinyldiene-2-norborne , 5-methylene-2-norbornene, 1,4-hexadiene, 1,3-pentadiene, dicyclopentadiene, 7-methyl-1,6-octadiene, 1,3-butadiene, 4- From methyl-1,3-pentadiene, 5-methyl-1,4-hexadiene, 6-methyl-1,5-heptadiene, norbornadiene, 1,7-octadiene and 1,9-decadiene Copolymer selected. 제1항에 있어서, 3 내지 90의 레올로지 비 (V0.1/V100), 1 내지 150의 무니 점도 (125℃에서 ML1+4), 1 내지 1.25 미만의 반응성 비 곱으로부터 선택되는 1개 이상의 특징을 가지는 공중합체.The method of claim 1, wherein the one selected from a rheology ratio of 3 to 90 (V 0.1 / V 100 ), a Mooney viscosity of 1 to 150 (ML 1 + 4 at 125 ° C.), and a reactive ratio product of less than 1 to 1.25. Copolymer having the above characteristics. 제1항에 있어서, (테트라메틸시클로펜타디에닐)-디메틸(t-부틸아미도)실란티타늄 디메틸 또는 (테트라메틸시클로펜타디에닐)디메틸(t-부틸아미도)실란티타늄 1,3-펜타디엔을 촉매로서 사용하여 동일한 온도에서 동일한 전환율로 동일한 단량체로부터 제조된 비교 에틸렌/α-올레핀/디엔 단량체 공중합체와 비교하여, (a) 비교 공중합체의 레올로지 비보다 적어도 10% 더 큰 레올로지 비, (b) 비교 공중합체의 디엔 함량보다 적어도 50% 더 높은 디엔 함량, (c) 비교 공중합체의 분자량보다 적어도 1.5 배 더 큰 분자량, (d) 비교 공중합체의 무니 점도보다 적어도 2.5 배 더 큰 무니 점도 및 (e) 0%를 초과하고 5% 미만인 결정화도를 갖는 비교 공중합체의 유리 전이 온도 (Tg)보다 적어도 1 ℃ 더 낮은 유리 전이 온도로부터 선택되는 1개 이상의 우수한 특징을 가지는 공중합체.The (tetramethylcyclopentadienyl) -dimethyl (t-butylamido) silanetitanium dimethyl or (tetramethylcyclopentadienyl) dimethyl (t-butylamido) silanetitanium 1,3-penta (A) a rheology that is at least 10% greater than the rheological ratio of the comparative copolymer, compared to a comparative ethylene / a-olefin / diene monomer copolymer prepared from the same monomer at the same temperature using the diene as catalyst Ratio, (b) a diene content at least 50% higher than the diene content of the comparative copolymer, (c) a molecular weight at least 1.5 times greater than the molecular weight of the comparative copolymer, (d) at least 2.5 times more than the Mooney viscosity of the comparative copolymer One or more good features selected from glass transition temperatures at least 1 ° C. below the glass transition temperature (T g ) of the comparative copolymer having a large Mooney viscosity and (e) a crystallinity of greater than 0% and less than 5%. polymer. 에틸렌, 1종 이상의 C3-20α-올레핀 단량체 및 디엔 단량체를 하기 화학식의금속 착물인 촉매 및 활성화 조촉매와 접촉시키는 것을 포함하는, 제1항 내지 제4항 중 어느 한 항의 공중합체를 제조하는 방법.The copolymer of any one of claims 1 to 4, comprising contacting ethylene, at least one C 3-20 α-olefin monomer and diene monomer with a catalyst and an activating promoter which are metal complexes of the formula How to. 상기 식에서, M은 +2, +3 또는 +4의 형식 산화 상태의 티타늄, 지르코늄, 또는 하프늄이고,Wherein M is titanium, zirconium, or hafnium in a formal oxidation state of +2, +3 or +4, A'는 40개 이하의 비수소 원자를 포함하는, 2개 이상의 위치에서 히드로카르빌, 플루오로-치환된 히드로카르빌, 히드로카르빌옥시 치환된 히드로카르빌, 디알킬아미노 치환된 히드로카르빌, 실릴, 게르밀 및 그들의 혼합물로부터 선택되는 기로 치환된 치환 인데닐 기이며, A'는 또한 2가의 Z 기에 의해 M에 공유 결합되어 있고,A ′ is hydrocarbyl, fluoro-substituted hydrocarbyl, hydrocarbyloxy substituted hydrocarbyl, dialkylamino substituted hydrocarbyl at two or more positions containing up to 40 non-hydrogen atoms Is a substituted indenyl group substituted with a group selected from silyl, germanyl and mixtures thereof, A 'is also covalently bonded to M by a divalent Z group, Z는 σ-결합을 통해 A' 및 M 모두에 결합된 2가의 잔기이며, Z는 붕소, 또는 원소 주기율표의 14족 구성 원소 및 또한 질소, 인, 황 또는 산소를 포함하고,Z is a divalent moiety bonded to both A 'and M via σ-bond, Z comprises boron or a Group 14 constituent element of the periodic table of the elements and also nitrogen, phosphorus, sulfur or oxygen, X는 시클릭, 비편재, π-결합된 리간드 기인 리간드 부류를 제외한 원자수 60 이하의 음이온 또는 2가 음이온 리간드 기이며,X is an anionic or divalent anionic ligand group of up to 60 atoms excluding the class of ligands that are cyclic, unlocalized, π-bonded ligands, X'는 각각 독립적으로 중성 루이스 염기 리게이팅 화합물이고 원자수 20 이하이고,Each X 'is independently a neutral Lewis base ligation compound and has 20 or less atoms, p는 0, 1, 또는 2 이고, M의 형식 산화 상태보다 2가 작으며, 단, X가 2가 음이온 리간드일 경우 p는 1이며,p is 0, 1, or 2, 2 is less than the formal oxidation state of M, except that when X is a divalent anionic ligand, p is 1, q는 0, 1 또는 2이다.q is 0, 1 or 2. 제5항에 있어서, 촉매가 (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질,(디-n-부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-에틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질을 포함하는 A 군, 또는 (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2,3-디메틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질,(디-n-부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-n-부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디메틸,(디-이소부틸아민)디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디메톡시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)디이소프로폭시(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 2-(N,N-디메틸아미노)벤질, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)에톡시메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (IV) 디벤질, (디메틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸인데닐)실란티타늄 (III) 디벤질, (디메틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디메틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디이소프로필아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디-n-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디메틸, (디-이소-부틸아민)디메틸(η5-2-메틸-3-에틸-s-인다센-1-일)실란티타늄 (III) 디벤질을 포함하는 B 군으로부터 선택되는 방법.The catalyst of claim 5 wherein the catalyst is (t-butylamido) dimethyl (η 5 -2-methylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido ) Dimethyl (η 5 -2-methylindenyl) silane titanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2-methylindenyl) silane titanium (II) 2,4 -hexadiene, (t- butylamido) dimethyl (η 5 inde-2-methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (Fig t- butylamido) dimethyl (η 5 2-methylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) dimethyl (η 5 -2-methylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy ( η 5 -2- methyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (II ) 1,3-pentadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 inde-2-methyl-indenyl) silane titanium (III) 2- (N, N- dimethyl amino No) benzyl, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butyl amido) di isopropoxy (η 5 inde-2-methyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2-methyl-inde carbonyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) ethoxymethyl (η 5 -2- inde-methyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido Fig.) ethoxymethyl (η 5 -2--methyl carbonyl to) Silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido ) Ethoxymethyl (η 5 -2-methylindenyl) silane titanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5 -2-methylindenyl ) silane titanium (IV) dimethyl, (t- butylamido) ethoxymethyl (η 5 -2- methyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) dimethyl (η 5 -2- ethyl inde indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) inde-dimethyl (η 5 -2- ethyl-indenyl) silane titanium (II) penta-1,3- diene, (t- butylamido) dimethyl (η 5 -2- ethyl inde indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- inde ethyl carbonyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 inde-2-ethyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 inde-2-ethyl-indenyl) silane titanium (IV) diben , (T- butylamido) dimethoxy dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) (η 5 inde-2-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethoxy (η 5 inde-2-ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2 -ethyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) dimethoxy (η 5 -2- ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 -2-ethyl-inde indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 inde-2-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido ) di isopropoxy (η 5 -2- ethyl-indenyl) silane titanium (II I) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (inde η 5 -2- ethyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl-indenyl) silane titanium (IV) dibenzyl, (t- butylamido) ethoxymethyl (η 5 -2- ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) ethoxy ethoxymethyl (η 5 -2- ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) methyl (η 5 -2- ethyl inde indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) ethoxymethyl (η 5 -2- inde ethyl indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) ethoxymethyl (η 5 ethoxymethyl (η 5 -2- ethyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) -2-ethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 1,4-di Phenyl-1,3-butadiene, (t-butylamido) dimethyl (η 5 -2-methyl-s-phosphorus Dacene-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanitanium (II) 2, 4-hexadiene, (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t- Butyl amido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanitanium (IV) dimethyl, (t-butyl amido) dimethyl (η 5 -2-methyl-s-indacene- 1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl- 1, 3-butadiene, (t- butylamido) dimethoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3-pentadiene, (t- butylamido ) dimethoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 -2- methyl -s - indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy (η 5 -2- methyl -s- indazol metallocene-yl Silane Titanium (IV) Dimeth , (T- butylamido) dimethoxy (η 5 -2- methyl -s- indazol-1-yl Sen) a silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 - 2-methyl-indazol -s- metallocene-1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl- s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane Titanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N -dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) di-isopropyl Propoxy (η 5 -2-methyl-s-indacene-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2-methyl-s-indacene- 1- yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, ( t-butylamido) ethoxymethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) ethoxymethyl (η 5 -2- methyl -s- indazol metallocene- 1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanitanium (II) 1,4-diphenyl-1 , 3-butadiene, (t-butylamido) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2- ethyl -s- indazol metallocene- 1- yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV ) Dimethyl, (t-butylamime ) Dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene -1 -yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium ( II) 1,3- pentadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethoxy ( η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy (η 5 -2-ethyl-s-indasen-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,4- diphenyl-l, 3 -butadiene, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) Diisopropoxy ( 5-ethyl-2--s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexadiene, (t- butylamido) di isopropoxy (η 5 -2-ethyl-indazol metallocene -s- 1-yl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) di isopropoxy (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) Ethoxymethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) ethoxymethyl (η 5-ethyl-2--s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2-ethyl-indazol -s- metallocene- 1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) ethoxymethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) ethoxymethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido Ethoxy Methyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (dimethylamine) dimethyl (η 5 -2-methylindenyl) silane titanium (III) dimethyl, (dimethyl Amine) dimethyl (η 5 -2-methylindenyl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2-methylindenyl) silane titanium (III) dimethyl, (diisopropylamine ) dimethyl (η 5 -2-methyl-inde indenyl) silane titanium (III) dibenzyl, (di -n- butylamine) dimethyl (η 5 inde-2-methyl-indenyl) silane titanium (III) dimethyl, (di -n -Butylamine) dimethyl (η 5 -2-methylindenyl) silanetitanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2-methylindenyl) silane titanium (III) dimethyl, ( di-iso-butylamine) dimethyl (η 5 -2- methyl-indenyl) silane titanium (III) dibenzyl, (dimethylamino) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (diisopropylamine) di Butyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2- methyl -s- indazol metallocene-1-yl) silane Titanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanitanium (III) dimethyl, (di-n-butylamine) dimethyl ( η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di-isobutylamine) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silane Titanium (III) dimethyl, (di-isobutylamine) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (dimethylamine) dimethyl (η 5 -2- ethyl inde indenyl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5 inde-2-ethyl-indenyl) silane titanium (III) dibenzyl, (diisopropylamine) inde-dimethyl (η 5 -2-ethyl-carbonyl ) silane titanium (III) dimethyl, (diisopropylamine) inde-dimethyl (η 5 -2- ethyl-indenyl) silane titanium (III) dibenzyl, (di -n- butylamine) inde-dimethyl (η 5 -2- ethyl Nil) silanetitanium (III) Dimeth , (Di -n- butylamine) dimethyl (η 5 -2-ethyl-inde indenyl) silane titanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 inde-2-ethyl-indenyl) silane titanium ( III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2- ethyl-indenyl) silane titanium (III) dibenzyl, (dimethylamino) dimethyl (η 5 -2- ethyl -s- indazol metallocene -1 -Yl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2-ethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di -n- butylamine) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (di -n- butylamine) dimethyl (η 5 -2 -ethyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2- ethyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2- Group A comprising butyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, or (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido Fig.) Dimethyl (η 5 -2,3-dimethylindenyl) silane titanium (II) 2,4-hexadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silane titanium ( III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) dimethyl ( η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-di Phenyl-1,3-butadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2,4-hexadiene, (t- Butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) dimethoxy (η 5 -2, 3-dimethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) di Isopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) diisopropoxy (η 5 -2, 3-dimethylindenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2,4- Hexadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) Diisopropoxy (η 5 -2,3-dimethylindenyl) silane titanium (IV) Dimethyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethylindenyl) silane titanium (IV ) Dibenzyl, (t-butylamido) ethoxy Butyl (η 5 -2,3- dimethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) ethoxymethyl (η 5 -2,3- dimethyl Indenyl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 2,4-hexadiene, ( t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dimethyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethylindenyl) silanetitanium (IV) dibenzyl, (t- Butyl amido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s -Indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indacene-1 -Yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium ( IV) Dimethyl, (t-butylamido) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethoxy (η 5 -2, 3-dimethyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indacene-1 -Yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamido) dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido Fig. 2) Dimethoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) diisopropoxy (η 5 -2,3- Dimethyl-s-inda 1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 -2,3- dimethyl -s- indazol metallocene -1 -Yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethyl Amino) benzyl, (t-butylamido) diisopropoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) diiso Propoxy (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s -Indasen-1-yl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indacene -1-yl) silanetitanium (II) 1,3-pentadiene, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (II ) 2,4-hexadi N, (t-butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t -Butylamido) ethoxymethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) ethoxymethyl (η 5 -2, 3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (dimethylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl, (diisopropyl Amine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dimethyl , (Di-n-butylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2,3-dimethylindenyl Silanetitanium (III) dimethyl, ( Di-iso-butylamine) dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (III) dibenzyl, (dimethylamine) dimethyl (η 5 -2,3-dimethyl-s-indacene-1- (I) silanetitanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) Silanetitanium (III) dibenzyl, (di-n-butylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanitanium (III) dimethyl, (di-n-butylamine ) Dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (di-isobutylamine) dimethyl (η 5 -2,3-dimethyl-s-inda Sen-1-yl) silanetitanium (III) dimethyl, (di-isobutylamine) dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (III) dibenzyl, (t -Butylamido) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 1, 4-diphenyl-1,3-butadiene, (t- butylamido) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido Fig.) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido) dimethyl (η 5 -2--methyl-3-ethyl-carbonyl ) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (IV) dimethyl, (t- Butyl amido) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethylindenyl) Silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 1,3- Pentadiene, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) dimethoxy (η 5 2-methyl-3-ethylindenyl) silanetitanium (III) 2- (N, N-dimethylamino) benzyl, (t-butylamimi Fig. 2) Dimethoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) Dimethyl, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, ( t- butylamido) di isopropoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) di isopropoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (II) 2,4-hexadiene, (t-butylamido) diisopropoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) di isopropoxy (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (IV) dimethyl, (t- Butyl amido) diisopropoxy (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) dibenzyl, (t-butyl amido) ethoxymethyl (η 5 -2-methyl-3- Ethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene, (t- Butyl amido) ethoxymethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl inde-3-ethyl-indenyl) silane titanium (II) 2,4- hexadiene, (t- butylamido inde degrees) ethoxymethyl (η 5 -2- methyl-3-ethyl indenyl) silane titanium (III) 2- (N, N- dimethylamino) benzyl, (t- butylamido) ethoxy ethoxymethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (IV) dimethyl, (t- butylamido) Methyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (IV) dibenzyl, (t-butylamido) dimethyl (η 5 -2-methyl-3-ethyl-s-indacene-1- yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2,4- hexamethylene diene, (t- butylamido) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethylamino) Ben , (T- butylamido) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) dimethyl (η 5 -2 -indazol-3-ethyl -s- metallocene-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) dimethoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene- 1- yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-3-ethyl-1-sen indazol -s- yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) dimethoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (II) 2 , 4-hexadiene, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino ) Benzyl, (t-butylamido) dimethoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) dimethoxy ( η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dibenzyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-3-ethyl -s-indasen-1-yl) silanita Titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane Titanium (II) 1,3-pentadiene, (t-butylamido) diisopropoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (II) 2, 4-hexadiene, (t- butylamido) di isopropoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) 2- (N, N- dimethyl amino) benzyl, (t- butylamido) di isopropoxy (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (IV) dimethyl, (t- butylamido) Diisopropoxy (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (t-butylamido) ethoxymethyl (η 5 -2-methyl indazol-3-ethyl -s- metallocene-1-yl) silane titanium (II) 1,4- diphenyl-1,3-butadiene, (t- butyl amido) ethoxymethyl (η 5 -2- methyl- 3-ethyl-indazol -s- metallocene-1-yl) silane titanium (II) 1,3- pentadiene, (t- butylamido) ethoxymethyl (η 5 -2- methyl-3-ethyl-indazol -s- Sen-1-yl) silanetitanium (II) 2, 4-hexadiene, (t-butylamido) ethoxymethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (III) 2- (N, N-dimethylamino ) Benzyl, (t-butylamido) ethoxymethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) ethoxy Methyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (IV) dibenzyl, (dimethylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silane Titanium (III) Dimethyl, (dimethylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) Dibenzyl, (diisopropylamine) dimethyl (η 5 -2-methyl-3- ethyl-indenyl) silane titanium (III) dimethyl, (diisopropylamine) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) dibenzyl, (di -n- butylamine) dimethyl ( η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) dimethyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-3-ethylindenyl) silanetitanium (III) dibenzyl , (Di-iso-butylamine) dimethyl (η 5 -2-methyl-3 -Ethyl-indenyl) silane titanium (III) dimethyl, (di-iso-butylamine) dimethyl (η 5 -2--methyl-3-ethyl-indenyl) silane titanium (III) dibenzyl, (dimethylamino) dimethyl (η 5-ethyl-2-methyl-3--s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (dimethylamine) dimethyl (η 5 -2-methyl-3-ethyl-1-sen indazol -s- yl) silane titanium (III) dibenzyl, (diisopropylamine) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) dimethyl, (diisopropylamine ) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) dibenzyl, (di -n- butylamine) dimethyl (η 5 -2- methyl-3 Ethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (di-n-butylamine) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanitanium (III) Dibenzyl, (di-iso-butylamine) dimethyl (η 5 -2-methyl-3-ethyl-s-indasen-1-yl) silanetitanium (III) dimethyl, (di-iso-butylamine ) dimethyl (η 5 -2- methyl-3-ethyl -s- indazol metallocene-1-yl) silane titanium (III) di B is selected from the group comprising quality. 제5항에 있어서, 촉매가 (t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸, (t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 1,3-펜타디엔 및 (t-부틸아미도)-디메틸(η5-2-메틸-s-인다센-1-일)실란티타늄 (II) 2,4-헥사디엔으로부터 선택되는 A 군 촉매이거나 또는 (t-부틸아미도)-디메틸(η5-2,3-디메틸인데닐)실란티타늄 (II) 1,4-디페닐-1,3-부타디엔 및 (t-부틸아미도)-디메틸(η5-2,3-디메틸-s-인다센-1-일)실란티타늄 (IV) 디메틸로부터 선택되는 B 군 촉매인 방법.The catalyst of claim 5 wherein the catalyst is (t-butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (IV) dimethyl, (t-butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silanetitanium (II) 1,3-pentadiene and (t-butylamido) -dimethyl (η 5 -2-methyl-s-indacene -1-yl) silanetitanium (II) is a group A catalyst selected from 2,4-hexadiene or (t-butylamido) -dimethyl (η 5 -2,3-dimethylindenyl) silanetitanium (II) 1,4-diphenyl-1,3-butadiene and (t-butylamido) -dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silanetitanium (IV) dimethyl A group B catalyst. 제5항 내지 제7항 중 어느 한 항에 있어서, 활성화 조촉매가 트리스펜타플루오로페닐 보레인, 하기 화학식The method according to any one of claims 5 to 7, wherein the activating promoter is trispentafluorophenyl borane, L*-H)d +(A)d- L * -H) d + (A) d- [상기 식에서, L*는 중성 루이스 염기이고, (L*-H)+는 브뢴스테드산이고, Ad-는 (a) d가 1 내지 3의 정수인 d-의 전하를 가지는 비배위 상화성 음이온이거나, 또는 (b) 화학식 [M'Q4]-(여기서, M'은 형식 산화 상태 +3의 붕소 또는 알루미늄이고, Q는 각각 독립적으로 히드리드, 디알킬아미도, 할라이드, 히드로카르빌, 히드로카르빌옥시드, 할로겐 치환된 히드로카르빌, 할로겐 치환된 히드로카르빌옥시, 및 할로겐 치환된 실릴히드로카르빌 라디칼 (과할로겐화 히드로카르빌- 과할로겐화 히드로카르빌옥시- 및 과할로겐화 실릴히드로카르빌 라디칼을 포함함)로부터 선택되고, Q는 20개 이하의 탄소를 가지며, 단 Q는 1개 이하일 경우 할라이드임)에 해당하는 것임]으로 표시되는 조촉매,[Wherein L * is a neutral Lewis base, (L * -H) + is Bronsted acid, and A d- is (a) a non-coordinated compatible with a charge of d - where d is an integer from 1 to 3 An anion, or (b) the formula [M'Q 4 ] - (wherein M 'is boron or aluminum in the formal oxidation state +3, and Q is each independently hydride, dialkylamido, halide, hydrocarbyl , Hydrocarbyloxides, halogen substituted hydrocarbyl, halogen substituted hydrocarbyloxy, and halogen substituted silylhydrocarbyl radicals (perhalogenated hydrocarbyl-perhalogenated hydrocarbyloxy- and perhalogenated silylhydrocarbs) Including a radical of Q), and Q has 20 or less carbons, provided that Q is a halide if 1 or less). 하기 화학식Formula (L*-H)+(BQ4)- (L * -H) + (BQ 4 ) - (상기 식에서, L*는 중성 루이스 염기이고, B는 형식 산화 상태 3의 붕소이고, Q는 비수소원자수 20 이하인 히드로카르빌-, 히드로카르빌옥시-, 플루오르화 히드로카르빌-, 플루오르화 히드로카르빌옥시-, 또는 플루오르화 실릴히드로카르빌 기이고, 단 Q는 1개 이하일 경우 히드로카르빌임)으로 표시되는 조촉매,Wherein L * is a neutral Lewis base, B is boron in formal oxidation state 3, and Q is hydrocarbyl-, hydrocarbyloxy-, fluorinated hydrocarbyl-, fluorinated hydro Carbyloxy-, or a fluorinated silylhydrocarbyl group, provided that Q is hydrocarbyl if one or less, 또는 하기 화학식Or the following formula +(BQ4)- + (BQ 4 ) - (상기 식에서, ⓒ+는 C1-20카르베늄 이온이고, Q는 비수소원자수 20 이하인 히드로카르빌-, 히드로카르빌옥시-, 플루오르화 히드로카르빌-, 플루오르화 히드로카르빌옥시-, 또는 플루오르화 실릴히드로카르빌 기이고, 단 Q는 1개 이하일 경우 히드로카르빌임)으로 표시되는 카르베늄 이온 또는 비배위 상화성 음이온의 염인 조촉매로부터 선택되는 방법.(Wherein, ⓒ + is C 1-20 carbenium ion, Q is hydrocarbyl-, hydrocarbyloxy-, fluorinated hydrocarbyl-, fluorinated hydrocarbyloxy-, or less than 20 non-hydrogen atoms), or Fluorinated silylhydrocarbyl groups, provided that Q is hydrocarbyl if one or less) or a cocatalyst that is a salt of a non-coordinating compatible anion. 제8항에 있어서, 중합은 알루미녹산 및 화학식 R1 2Me(NR2 2) (여기서 R1 및 R2는 각각 독립적으로 C1-30히드로카르빌이고, Me는 13족 금속임)에 따른 13족 히드로카르빌아미드 화합물로부터 선택되는 스카벤져의 존재 하에 수행되는 방법.The process of claim 8, wherein the polymerization is Group 13 according to aluminoxane and the formula R 1 2 Me (NR 2 2 ), wherein R 1 and R 2 are each independently C 1-30 hydrocarbyl, Me is a Group 13 metal. The process is carried out in the presence of a scavenger selected from hydrocarbylamide compounds. 제9항에 있어서, 스카벤져가 (비스트리메틸실릴아미도)디이소부틸알루미늄인 방법.The method of claim 9, wherein the scavenger is (bistrimethylsilylamido) diisobutylaluminum. 제5항에 있어서, 디엔이 5-에틸디엔-2-노르보르넨, 5-비닐디엔-2-노르보르넨, 5-메틸렌-2-노르보르넨, 1,4-헥사디엔, 1,3-펜타디엔, 디시클로펜타디엔, 7-메틸-1,6-옥타디엔, 1,3-부타디엔, 4-메틸-1,3-펜타디엔, 5-메틸-1,4-헥사디엔, 6-메틸-1,5-헵타디엔, 노르보르나디엔, 1,5-옥타디엔 및 1,9-데카디엔으로 이루어진 군으로부터 선택되고, 접촉은 약 40℃ 내지 약 185℃의 온도에서 수행되는 방법.The diene of claim 5, wherein the diene is 5-ethyldiene-2-norbornene, 5-vinyldiene-2-norbornene, 5-methylene-2-norbornene, 1,4-hexadiene, 1,3 -Pentadiene, dicyclopentadiene, 7-methyl-1,6-octadiene, 1,3-butadiene, 4-methyl-1,3-pentadiene, 5-methyl-1,4-hexadiene, 6- The method is selected from the group consisting of methyl-1,5-heptadiene, norbornadiene, 1,5-octadiene and 1,9-decadiene, and the contacting is carried out at a temperature of about 40 ℃ to about 185 ℃. 제12항에 있어서, 활성화 조촉매가 트리스(펜타플루오로페닐)보레인, 디(수소화 탈로알킬)메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐) 보레이트, 및 N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트로부터 선택되는 방법.13. The method of claim 12, wherein the activating promoter is tris (pentafluorophenyl) borane, di (hydrogenated tallowalkyl) methylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluoro Rophenyl) borate, and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate.
KR10-1999-7010017A 1997-04-30 1997-04-30 Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation KR100488833B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/007252 WO1998049212A1 (en) 1997-04-30 1997-04-30 Ethylene/alpha-olefin/diene interpolymers and their preparation

Publications (2)

Publication Number Publication Date
KR20010020395A true KR20010020395A (en) 2001-03-15
KR100488833B1 KR100488833B1 (en) 2005-05-11

Family

ID=22260813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-7010017A KR100488833B1 (en) 1997-04-30 1997-04-30 Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation

Country Status (6)

Country Link
EP (1) EP0981556A1 (en)
JP (1) JP2001522398A (en)
KR (1) KR100488833B1 (en)
AU (1) AU2819697A (en)
CA (1) CA2287963A1 (en)
WO (1) WO1998049212A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248423B1 (en) * 2011-06-09 2013-04-02 에스케이종합화학 주식회사 Method for preparing ethylene - α-olefin - diene copolymer
KR101462208B1 (en) * 2014-04-21 2014-11-20 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101476374B1 (en) * 2014-04-21 2014-12-24 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
WO2014209084A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Trinary elastic copolymer comprising diene and method for preparing same
WO2014209082A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Trinary elastic copolymer comprising diene and method for preparing same
US9382360B2 (en) 2012-11-14 2016-07-05 Lg Chem, Ltd. Elastic terpolymer and preparation method thereof
US9493593B2 (en) 2013-06-28 2016-11-15 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
US9637579B2 (en) 2013-06-28 2017-05-02 Lg Chem, Ltd. Elastic terpolymer including diene group and preparation method thereof

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420507B1 (en) 1997-05-01 2002-07-16 The Dow Chemical Company Olefin polymers prepared with substituted indenyl containing metal complexes
ATE495205T1 (en) * 1998-11-02 2011-01-15 Dow Global Technologies Inc SHEER-FLUFFILIZABLE ETHYLENE/ALPHA-OLEFIN/DIENE POLYMERS AND THEIR PRODUCTION
EP1070072A4 (en) * 1999-02-05 2002-09-25 Boulder Scient Co Silylated and n-silylated compound synthesis
US6369176B1 (en) 1999-08-19 2002-04-09 Dupont Dow Elastomers Llc Process for preparing in a single reactor polymer blends having a broad molecular weight distribution
DE10003581A1 (en) 2000-01-28 2001-08-02 Bayer Ag Organometallic compounds with fused indenyl ligands
US6455638B2 (en) 2000-05-11 2002-09-24 Dupont Dow Elastomers L.L.C. Ethylene/α-olefin polymer blends comprising components with differing ethylene contents
WO2003078483A1 (en) * 2002-03-14 2003-09-25 Dow Global Technologies Inc. Substituted indenyl metal complexes and polymerization process
DE60321920D1 (en) * 2002-08-02 2008-08-14 Dow Global Technologies Inc GROUP 4 METAL COMPLEXES OF THE PSE CONTAINING 4-ARYL SUBSTITUTED TRICYCLIC INDENYL DERIVATIVES
US7144934B2 (en) 2002-10-24 2006-12-05 Dow Global Technologies Inc. Charge dissipation modifiers for olefinic interpolymer compositions
CN100415783C (en) 2002-12-26 2008-09-03 住友化学株式会社 Method for producing olefinic copolymer
KR20060054293A (en) 2003-07-09 2006-05-22 디에스엠 아이피 어셋츠 비.브이. Process for the production of a polymer comprising monomeric units of ethylene, an a-olefin and a vinyl norbornene
US7285606B2 (en) 2003-08-04 2007-10-23 Dsm Ip Assets B.V. Process for the preparation of a polyolefin
CN101675483A (en) 2007-03-15 2010-03-17 联合碳化化学及塑料技术有限责任公司 Cable insulation with reduded electrical treeing
JP5437250B2 (en) 2007-09-25 2014-03-12 ダウ グローバル テクノロジーズ エルエルシー Styrenic polymer as a blending component to control adhesion between olefinic substrates
JP5334981B2 (en) 2007-11-01 2013-11-06 ダウ グローバル テクノロジーズ エルエルシー In-situ moisture generation and use of multifunctional alcohols for crosslinking of silane functional resins
CN101883819B (en) 2007-12-05 2013-03-20 三井化学株式会社 Rubber composition, crosslinked product and foam thereof, molded product therefrom, and use thereof
CN104262520A (en) * 2007-12-05 2015-01-07 三井化学株式会社 Copolymer Rubber, Rubber Composition And Rubber Molding
US8247587B2 (en) * 2007-12-19 2012-08-21 Basell Polyolefine Gmbh Mono-hydroindacenyl complexes
KR101649962B1 (en) 2008-06-05 2016-08-22 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크날러지 엘엘씨 Method for producing water tree-resistant, trxlpe-type cable sheath
EP2354170B1 (en) 2008-12-01 2015-10-21 Mitsui Chemicals, Inc. Copolymer, rubber compositions, crosslikned rubber, crosslinked foam, and uses of same
JP5204713B2 (en) * 2009-04-02 2013-06-05 三井化学株式会社 Olefinic thermoplastic elastomer composition and use thereof
EP2454318B1 (en) * 2009-07-15 2014-06-25 Dow Global Technologies LLC Polymer compositions, methods of making the same, and articles prepared from the same
WO2011034836A1 (en) 2009-09-16 2011-03-24 Union Carbide Chemical & Plastics Technology Llc Process for producing crosslinked, melt-shaped articles
KR20120083419A (en) 2009-09-18 2012-07-25 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크날러지 엘엘씨 Process for making crosslinked injection molded articles
US8679639B2 (en) 2009-11-24 2014-03-25 Dow Global Technologies Llc Extrusion coating composition
US8784996B2 (en) 2009-11-24 2014-07-22 Dow Global Technologies Llc Extrusion coating composition
WO2011102957A1 (en) 2010-02-16 2011-08-25 Dow Global Technologies Llc Adhesion reduction between a metal conductor and an insulation sheath
JP2011213822A (en) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc Ethylene/butene/nonconjugated polyene copolymer, rubber composition including the copolymer and use of the composition
CA2811661C (en) 2010-09-30 2017-05-30 Dow Global Technologies Llc Method for manufacturing flexible multilayer electrical articles with improved layer adhesion
JP5680678B2 (en) 2011-01-28 2015-03-04 三井化学株式会社 Foaming agent and production method / former thereof, rubber composition, crosslinked foam and production method thereof, and rubber molded product
JP5697747B2 (en) 2011-05-18 2015-04-08 三井化学株式会社 Propylene-based copolymer, propylene-based copolymer composition, molded product and foamed product thereof, and production method thereof
CN103827152B (en) 2011-10-13 2016-08-17 三井化学株式会社 Vinyl copolymer, the compositions comprising this copolymer and the products formed formed by vinyl copolymer or compositions and film or sheet material
WO2013116196A1 (en) 2012-01-31 2013-08-08 Dow Global Technologies Llc Thermoplastic, semiconductive compositions
JP5946331B2 (en) * 2012-06-01 2016-07-06 三井化学株式会社 Ethylene / α-olefin non-conjugated polyene copolymer rubber pellets
KR101391692B1 (en) 2012-11-14 2014-05-07 주식회사 엘지화학 Elastic terpolymer and preparation method thereof
US9914820B2 (en) 2013-04-12 2018-03-13 Mitsui Chemicals, Inc. Lumps and composition
KR101585206B1 (en) 2013-07-22 2016-01-13 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101684648B1 (en) 2014-04-21 2016-12-08 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
CA2923072C (en) 2013-09-20 2021-10-26 Dow Global Technologies Llc Process for degassing crosslinked power cables
EP4043500A1 (en) 2014-02-13 2022-08-17 Mitsui Chemicals, Inc. Ethylene·alpha-olefin·non-conjugated polyene copolymer, use thereof, and manufacturing method thereof
WO2015142547A1 (en) 2014-03-21 2015-09-24 Exxonmobil Chemical Patents Inc. Process to produce ethylene propylene copolymers
KR101655392B1 (en) 2014-04-21 2016-09-07 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101660480B1 (en) 2014-04-25 2016-09-27 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101652920B1 (en) 2014-04-25 2016-08-31 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101691629B1 (en) 2015-11-30 2016-12-30 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101680831B1 (en) 2015-12-18 2016-11-29 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
WO2018044414A1 (en) 2016-08-30 2018-03-08 Dow Global Technologies Llc Method for thermally insulating subsea structures
KR101846412B1 (en) * 2016-12-06 2018-05-18 한화케미칼 주식회사 Transition metal compound used to prepare catalyst for polymerizing olefin, catalyst for polymerizing olefin comprising the same and polyolefin polymerized by using the same
CA3075800A1 (en) 2017-09-26 2019-04-04 Dow Global Technologies Llc Compositions comprising a tin-based catalyst and titanium dioxide for moisture cure of silane-functionalized ethylenic polymers
US10894841B2 (en) 2018-03-19 2021-01-19 Exxonmobil Chemical Patents Inc. Processes for producing high propylene content PEDM having low glass transition temperatures using tetrahydroindacenyl catalyst systems
EP3768741A4 (en) * 2018-03-19 2021-12-29 ExxonMobil Chemical Patents Inc. Processes for producing high propylene content pedm having low glass transition temperatures using tetrahydroindacenyl catalyst systems
KR20200138271A (en) 2018-03-30 2020-12-09 다우 글로벌 테크놀로지스 엘엘씨 Olefin polymerization activator
BR112020019547B1 (en) 2018-03-30 2023-11-28 Dow Global Technologies Llc PROCESS TO POLYMERIZE OLEFINS
EP3774941B1 (en) 2018-03-30 2022-11-02 Dow Global Technologies LLC Binuclear olefin polymerization activators
KR20200142513A (en) 2018-03-30 2020-12-22 다우 글로벌 테크놀로지스 엘엘씨 Highly soluble alkyl substituted carbenium borate as co-catalyst for olefin polymerization
EP4081581A1 (en) 2019-12-26 2022-11-02 Dow Global Technologies LLC Crosslinked polyolefin foam and process for producing same
EP4085099A1 (en) 2019-12-30 2022-11-09 Dow Global Technologies LLC Oil-extended epdm in moisture cure blend

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121711A (en) * 1985-11-21 1987-06-03 Mitsui Petrochem Ind Ltd Lowly crystalline ethylene random copolymer and its production
EP0552946B1 (en) * 1992-01-23 1997-04-16 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin/7-methyl-1,6-octadiene copolymer rubber and composition of the same
WO1995000526A1 (en) * 1993-06-24 1995-01-05 The Dow Chemical Company Titanium(ii) or zirconium(ii) complexes and addition polymerization catalysts therefrom
US5739225A (en) * 1993-12-28 1998-04-14 Idemitsu Kosan Co., Ltd. Process for preparing olefin polymer, and ethylenic polymer
EP0708117B1 (en) * 1994-10-03 1999-08-11 Sumitomo Chemical Company Limited Process for producing copolymer rubber
TW383313B (en) * 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Preparation of ethylene-alpha-olefin-nonconjugate polyene random copolymers, the copolymers obtaining which, and the use of the copolymers
WO1997001586A1 (en) * 1995-06-29 1997-01-16 Dsm N.V. Elastomeric copolymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248423B1 (en) * 2011-06-09 2013-04-02 에스케이종합화학 주식회사 Method for preparing ethylene - α-olefin - diene copolymer
US9382360B2 (en) 2012-11-14 2016-07-05 Lg Chem, Ltd. Elastic terpolymer and preparation method thereof
WO2014209084A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Trinary elastic copolymer comprising diene and method for preparing same
WO2014209082A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Trinary elastic copolymer comprising diene and method for preparing same
US9428600B2 (en) 2013-06-28 2016-08-30 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
US9493593B2 (en) 2013-06-28 2016-11-15 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
US9637579B2 (en) 2013-06-28 2017-05-02 Lg Chem, Ltd. Elastic terpolymer including diene group and preparation method thereof
US9650460B2 (en) 2013-06-28 2017-05-16 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
KR101462208B1 (en) * 2014-04-21 2014-11-20 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof
KR101476374B1 (en) * 2014-04-21 2014-12-24 주식회사 엘지화학 Elastic diene terpolymer and preparation method thereof

Also Published As

Publication number Publication date
AU2819697A (en) 1998-11-24
CA2287963A1 (en) 1998-11-05
EP0981556A1 (en) 2000-03-01
KR100488833B1 (en) 2005-05-11
WO1998049212A1 (en) 1998-11-05
JP2001522398A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
KR100488833B1 (en) Ethylene/Alpha-Olefin/Diene Interpolymers and Their Preparation
JP5276757B2 (en) Shear thinning ethylene / α-olefin interpolymers and methods for their production
KR100738694B1 (en) Substituted group 4 metal complexes, catalysts and olefin polymerization process
KR100528754B1 (en) 3-heteroatom substituted cyclopentadienyl-containing metal complexes and olefin polymerization process
JP3363904B2 (en) Branched ethylene macromonomer and polymer using the same
JP4454698B2 (en) Substituted indenyl-containing metal complexes and olefin polymerization methods
JP2001506260A (en) 3-Aryl-substituted indenyl-containing metal complex and polymerization method
JP2001516761A (en) Cyclopentaphenanthrenyl metal complex and polymerization method
JP2004527612A (en) Method for producing interpolymers and products produced therefrom
CN110330582A (en) Manufacture polyolefin product
EP2021378A2 (en) Polypropylene solution polymerization process
JP2000514858A (en) Olefin polymerization catalyst composition containing group 13 compound
AU742617B2 (en) Olefin polymers prepared with substituted indenyl containing metal complexes
EP3441407A1 (en) Propylene-diene copolymer resin having excellent melt tension
JPWO2004081064A1 (en) Ultra high molecular weight ethylene polymer
EP1401897B1 (en) Alpha-olefin based branched polymer
CA2483326C (en) Alkaryl-substituted group 4 metal complexes, catalysts and olefin polymerization process
JP2002542348A (en) Delayed activity supported olefin polymerization catalyst composition, and methods of making and using the same
JP3506147B2 (en) Ethylene / α-olefin copolymer and thermoplastic resin composition containing the same
KR101101064B1 (en) Olefin polymerization catalyst composition comprising group 13 amide derivatives
CZ375899A3 (en) Olefin polymers being prepared with metal complexes containing substituted indenyl
MXPA99009023A (en) Ethylene/alpha-olefin/diene interpolymers and their preparation
CN110330580A (en) Manufacture polyolefin product
JP2000504049A (en) Improved olefin addition polymerization catalyst composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee