KR20010018265A - Method for setting reference full-charge capacity of secondary battery - Google Patents

Method for setting reference full-charge capacity of secondary battery Download PDF

Info

Publication number
KR20010018265A
KR20010018265A KR1019990034147A KR19990034147A KR20010018265A KR 20010018265 A KR20010018265 A KR 20010018265A KR 1019990034147 A KR1019990034147 A KR 1019990034147A KR 19990034147 A KR19990034147 A KR 19990034147A KR 20010018265 A KR20010018265 A KR 20010018265A
Authority
KR
South Korea
Prior art keywords
capacity
secondary battery
full
setting
full charge
Prior art date
Application number
KR1019990034147A
Other languages
Korean (ko)
Other versions
KR100592234B1 (en
Inventor
남광우
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990034147A priority Critical patent/KR100592234B1/en
Publication of KR20010018265A publication Critical patent/KR20010018265A/en
Application granted granted Critical
Publication of KR100592234B1 publication Critical patent/KR100592234B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: A method for setting a referential full charging capacity is provided to have advantages of a full charging and full discharging and perform the setting in a more correct and precise manner with a simple algorithm by converting an obtained full charging capacity into a full discharging capacity. CONSTITUTION: The mean ratio of the full discharging capacity is obtained about the full discharging capacity while repeating a full charging and a full discharging about a model secondary cell. An algorithm is applied in which the mean ratio is multiplied to the full charging capacity about the secondary cell to be used and a referential full charging capacity is obtained from a resultant value of the multiplication.

Description

이차전지의 기준 만충전용량을 설정하는 방법{Method for setting reference full-charge capacity of secondary battery}Method for setting reference full-charge capacity of secondary battery}

본 발명은, 이차전지의 기준 만충전용량을 설정하는 방법에 관한 것으로서, 보다 상세하게는, 이차전지가 만충전되었을 때의 유효 용량인 기준 만충전용량을 설정하는 방법에 관한 것이다.The present invention relates to a method for setting a reference full charge capacity of a secondary battery, and more particularly, to a method for setting a reference full charge capacity, which is an effective capacity when the secondary battery is fully charged.

일반적인 이차전지는 휴대용 전자기기 예를 들어, 노트북 컴퓨터, 휴대폰 및 캠코더 등에 많이 사용된다. 이러한 이차전지의 팩에는, 최근 들어 마이크로컴퓨터 및 주변 회로가 내장되어, 이차전지의 충전 및 방전 상태를 모니터링 및 제어하기 위한 데이터를 발생시키도록 되어 있다.Common secondary batteries are widely used in portable electronic devices such as notebook computers, mobile phones and camcorders. Recently, microcomputers and peripheral circuits have been incorporated into such secondary battery packs to generate data for monitoring and controlling the state of charge and discharge of secondary batteries.

이차전지의 충전 및 방전 상태를 정밀하게 모니터링하고 제어하려면, 그 근본이 되는 기준 만충전 용량을 모니터링하여 갱신하는 것이 필요하다. 왜냐하면, 이차전지의 기준 만충전 용량이란, 이차전지가 만충전되었을 때의 유효 용량으로서 실질적으로 사용 시간에 대하여 변하는 용량이기 때문이다.In order to precisely monitor and control the state of charge and discharge of the secondary battery, it is necessary to monitor and update the baseline full charge capacity. This is because the reference full charge capacity of the secondary battery is an effective capacity when the secondary battery is fully charged, which is a capacity that substantially changes with use time.

이차전지의 기준 만충전 용량을 설정하는 종래의 방법에는 두 가지가 있다. 그 하나는, 충전을 이용한 방법으로서, 이차전지가 만방전되는 시점으로부터 만충전되는 시점까지에서 실제 충전되었던 용량을 계산하는 방법이다. 나머지 하나는, 방전을 이용한 방법으로서, 이차전지가 만충전되는 시점으로부터 만방전되는 시점까지에서 실제 방전되었던 용량을 계산하는 방법이다.There are two conventional methods of setting the reference full charge capacity of a secondary battery. One method using charging is a method of calculating the capacity that was actually charged from when the secondary battery was fully discharged to when it was fully charged. The other is a method using discharge, and calculates the capacity that was actually discharged from the time when the secondary battery is fully charged to the time when it is fully discharged.

여기서, 충전을 이용한 방법에 의하면, 사용자에 의하여 이차전지가 자주 만충전됨에 따라, 기준 만충전 용량이 자주 설정되어 갱신되는 잇점이 있다. 하지만, 이차전지의 특성상 방전을 이용한 방법에 비하여 그 정밀도가 떨어지는 단점이 있다. 이에 반하여, 방전을 이용한 방법에 의하면, 이차전지의 특성상 충전을 이용한 방법에 비하여 그 정밀도가 높은 장점이 있다. 하지만, 사용자에 의하여 이차전지가 만방전되는 경우가 드물어, 기준 만충전 용량이 드물게 설정되고 그 설정 알고리듬이 복잡해지는 단점이 있다.Here, according to the method using the charging, as the secondary battery is often fully charged by the user, the standard full charge capacity is frequently set and updated. However, due to the characteristics of the secondary battery, its accuracy is lower than that of the method using the discharge. On the other hand, the method using the discharge has an advantage that the precision is higher than the method using the charging due to the characteristics of the secondary battery. However, the secondary battery is rarely discharged by the user, and thus, the reference full charge capacity is rarely set and the setting algorithm is complicated.

본 발명의 목적은, 단순한 알고리듬으로써 이차전지의 기준 만충전용량을 보다 정밀하게 설정할 수 있는 방법을 제공하는 것이다.An object of the present invention is to provide a method capable of more accurately setting the reference full charge capacity of a secondary battery by a simple algorithm.

도 1은 일반적인 이차전지들의 사용 시간에 대한 용량 특성을 보여주는 그래프이다.1 is a graph showing capacity characteristics with respect to a typical use time of secondary batteries.

도 2는 본 발명에 따라 기준 만충전용량을 설정하는 알고리듬을 보여주는 흐름도이다.2 is a flowchart showing an algorithm for setting a reference full capacity in accordance with the present invention.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

C...이차전지의 용량, t...이차전지의 사용 시간,C ... secondary battery capacity, t ... secondary battery usage time,

CECVF...만충전 시점에서의 총용량,C ECVF ... total capacity at full charge,

CEDVI...용량학습 전압값에 이르는 시점에서의 잔여용량,C EDVI ... residual capacity at the point of capacity learning voltage value,

CEDVF...만방전 시점에서의 잔여용량,C EDVF ... remaining capacity at full discharge ,

K...만충전된 용량에 대한 만방전된 용량의 평균 비율.K ... The average ratio of full capacity to full capacity.

상기 목적을 이루기 위한 본 발명의 방법은, 이차전지가 만충전되었을 때의 유효 용량인 기준 만충전용량을 설정하는 방법이다. 이 방법은 설정하는 단계 및 적용시키는 단계를 포함한다. 상기 설정하는 단계에서는, 모델 이차전지에 대하여, 만충전 및 만방전이 반복 수행되면서, 만충전된 용량에 대한 만방전된 용량의 평균 비율이 구해져서 설정된다. 상기 적용시키는 단계에서는, 사용될 이차전지에 대하여, 만충전된 용량에 상기 평균 비율이 곱해져서 그 결과값이 상기 기준 만충전용량이 되는 알고리듬이 적용된다.The method of the present invention for achieving the above object is a method of setting a reference full charge capacity which is an effective capacity when the secondary battery is fully charged. The method includes setting up and applying. In the setting step, while the full charge and the full discharge is repeatedly performed on the model secondary battery, the average ratio of the fully discharged capacity to the fully charged capacity is obtained and set. In the applying step, for the secondary battery to be used, an algorithm is applied in which the full capacity is multiplied by the average ratio so that the resultant value is the reference full capacity.

상기 본 발명의 설정 방법에 의하면, 만충전된 용량을 구하여 만방전된 용량으로 환산하므로, 만충전 및 만방전의 장점을 모두 취할 수 있다. 이에 따라, 단순한 알고리듬으로써 이차전지의 기준 만충전용량을 보다 정밀하게 설정할 수 있다.According to the setting method of the present invention, since the full charge capacity is obtained and converted into the full discharge capacity, both advantages of full charge and full discharge can be taken. Accordingly, the reference full charge capacity of the secondary battery can be set more precisely by a simple algorithm.

이하, 본 발명에 따른 바람직한 실시예가 상세히 설명된다.Hereinafter, preferred embodiments according to the present invention will be described in detail.

도 1은 일반적인 이차전지들의 사용 시간에 대한 용량 특성을 보여준다. 도 1의 그래프에서 참조부호 C는 이차전지의 용량, t는 이차전지의 사용 시간, CECVF는 만충전 시점에서의 총용량, CEDVI는 이차전지의 출력 전압값이 설정된 용량학습 전압값에 이르는 시점에서의 잔여용량, 그리고 CEDVF는 만방전 시점에서의 잔여용량을 가리킨다. 도 2의 그래프에서 나타난 바와 같이, 설정된 용량학습 전압값에 이르는 시점에서의 잔여용량(CEDVI)의 특성이 실선과 같이 점차 강하되는 이차전지가 있는가 하면, 점차 상승되는 이차전지도 존재한다.Figure 1 shows the capacity characteristics with respect to the use time of typical secondary batteries. Figure reference numeral C is a capacity of the secondary battery in the graph of 1, t is used in the secondary battery time, C ECVF the total capacity of the fully charged point, C EDVI is the time up to the capacity learning voltage is the output voltage value is set in the secondary battery Remaining capacity at, and C EDVF refers to the remaining capacity at the time of full discharge . As shown in the graph of FIG. 2, there is a secondary battery in which the characteristic of the remaining capacity C EDVI gradually decreases like a solid line at the time when the set capacity learning voltage value is reached, and there is a secondary battery that gradually rises.

도 1을 참조하면, 이차전지의 기준 만충전용량은 만방전 시점에서의 잔여용량(CEDVF)에서 만충전 시점에서의 총용량(CECVF)과의 차이 용량으로서 규정된다. 즉, 이차전지의 기준 만충전용량은, 이차전지가 만방전되는 시점으로부터 만충전되는 시점까지에서 실제 충전되었던 용량으로서 설정된다. 그러나, 일반적인 사용자는 이차전지를 만충전시키지만 만방전시키지는 않는다. 따라서, 이차전지의 기준 만충전용량을 설정하려면, 용량학습 전압값(EDVI)이 감지되는 시점으로부터 만충전되는 시점까지의 제1 충전용량(CECVF- CEDVI)을 구한 후, 여기에 상응하는 보정 용량(CEDVI- CEDVF)을 구하여 더해줘야 한다. 이에 따라, 만방전된 시점으로부터 만충전된 시점까지의 제2 충전 용량(CECVF- CEDVF)이 구해진다. 그러나, 이 제2 충전 용량(CECVF- CEDVF)은, 만충전된 시점으로부터 만방전된 시점까지의 방전 용량에 비하여 그 절대적 정밀도가 떨어진다. 따라서 모델 이차전지에 대하여, 만충전 및 만방전을 반복 수행하면서, 만충전된 용량에 대한 만방전된 용량의 평균 비율(K)을 구하여 설정하는 과정이 필요하다. 그리고, 사용될 이차전지에 대하여, 제2 충전 용량(CECVF- CEDVF)에 평균 비율(K)을 곱하여 그 결과값을 기준 만충전용량으로 설정한다. 따라서, 본 발명에 따라 알고리듬을 실행하려면, 평균 비율(K) 이외에 아래와 같은 파라메터값 설정 단계들이 필요하다.1, the reference full-charge capacity of the secondary battery is defined as the difference of capacity and total capacity (C ECVF) in the full-charge point in the remaining capacity (C EDVF) in nations around the point. That is, the reference full charge capacity of the secondary battery is set as the capacity that was actually charged from the time when the secondary battery is fully discharged to the time when it is fully charged. However, a general user fully charges the secondary battery but does not discharge it. Therefore, to set the reference full charge capacity of the secondary battery, the first charge capacity (C ECVF -C EDVI ) from the time when the capacity learning voltage value EDVI is detected to the time when the battery is fully charged is calculated, The calibration capacity (C EDVI -C EDVF ) must be obtained and added. Thereby, the 2nd charge capacity C ECVF -C EDVF from the time of full discharge to the time of full charge is calculated | required. However, this second charge capacity (C ECVF -C EDVF ) is inferior in absolute accuracy compared with the discharge capacity from the time of full charge to the time of full discharge. Therefore, it is necessary to obtain and set the average ratio K of the fully discharged capacity to the fully charged capacity while repeatedly performing full charge and full discharge with respect to the model secondary battery. For the secondary battery to be used, the second charging capacity C ECVF -C EDVF is multiplied by the average ratio K, and the resultant value is set to the reference full charge capacity. Therefore, in order to execute the algorithm according to the present invention, the following parameter value setting steps are required in addition to the average ratio K.

1. 모델 이차전지가 만방전되었을 때의 만방전 전압값(EDVF)보다 더 큰 용량학습 전압값(EDVI)을 설정한다.1. Set the capacity learning voltage value EDVI that is larger than the full discharge voltage value EDVF when the model secondary battery is fully discharged.

2. 모델 이차전지가 만충전되었을 때의 만충전 전류값을 설정한다.2. Set the value of the full charge current when the model secondary battery is fully charged.

3. 모델 이차전지가 만방전 전압값(EDVF)에 이른 시점으로부터 만충전 전류값에 이른 시점까지 충전된 만충전 용량(CECVF- CEDVF)을 구한다.3. Find the full charge capacity (C ECVF -C EDVF ) charged from the time when the model secondary battery reaches the full discharge voltage value (EDVF) to the full charge current value.

4. 모델 이차전지가 용량학습 전압값(EDVI)에 이른 시점으로부터 만충전 전류값에 이른 시점까지 충전된 제1 충전 용량(CECVF- CEDVI)을 구한다.4. The first charge capacity (C ECVF -C EDVI ) charged from the time when the model secondary battery reaches the capacity learning voltage value (EDVI) to the full charge current value is obtained.

5. 만충전 용량(CECVF- CEDVF)과 제1 충전 용량(CECVF- CEDVI) 사이의 편차(CEDVI- CEDVF)를 계산하여 설정한다.5. Calculate and set the deviation (C EDVI -C EDVF ) between the full charge capacity (C ECVF -C EDVF ) and the first charge capacity (C ECVF -C EDVI ).

이와 같은 실험 및 시뮬레이션에 의하여 관련된 파라메터들이 설정되면, 사용될 이차전지에 대하여, 도 2의 알고리듬을 적용함으로써 기준 만충전용량을 지속적으로 모니터링하여 설정할 수 있다.When the relevant parameters are set by such experiments and simulations, the reference full charge capacity may be continuously monitored and set by applying the algorithm of FIG. 2 to the secondary battery to be used.

도 2를 참조하면, 먼저 사용될 이차전지에 대하여 용량학습 전압값(EDVI)에 이르는 제1 시점을 감지한다(단계 21). 제1 시점이 감지되면, 사용될 이차전지에 대하여 만충전 전류값 예를 들어, 200 밀리암페어(mA)에 이르는 제2 시점을 감지한다(단계 22). 다음에 아래의 수학식 1에 따라 기준 만충전용량을 설정한다(단계 23).Referring to FIG. 2, a first time point for reaching the capacity learning voltage value EDVI is detected for a secondary battery to be used first (step 21). When the first time point is detected, a second time point of reaching a full charge current value, for example, 200 milliamps (mA), is detected for the secondary battery to be used (step 22). Next, the reference full charge capacity is set according to Equation 1 below (step 23).

상기 수학식 1에서, K는 모델 이차전지에 대한 실험에 의하여 설정된 평균 비율을 가리킨다. 한편, 제2 방전 용량은 아래의 두 단계들의 수행에 의하여 구해진다.In Equation 1, K indicates the average ratio set by the experiment on the model secondary battery. On the other hand, the second discharge capacity is obtained by performing the following two steps.

1. 제1 시점부터 제2 시점까지의 제1 충전 용량(CECVF- CEDVI)을 계산한다.1. Calculate the first charging capacity (C ECVF -C EDVI ) from the first time point to the second time point.

2. 제1 충전 용량(CECVF- CEDVI)에 편차(CEDVI- CEDVF)를 더하여 제2 충전 용량(CECVF- CEDVF)을 구한다.2. The first charge capacity by adding a - - (C EDVF EDVI C) charging the second capacitor (C ECVF EDVI C) variation in - get (C ECVF C EDVF).

위와 같이 하여 구해진 기준 만충전용량의 값은 새롭게 설정되어 저장된다(단계 24). 단계 21부터 24까지는 지속적으로 반복 수행된다.The value of the reference full charge capacity calculated as above is newly set and stored (step 24). Steps 21 through 24 are repeated continuously.

이상 설명된 바와 같이, 본 발명에 따른 설정 방법에 의하면, 만충전된 용량을 구하여 만방전된 용량으로 환산하므로, 만충전 및 만방전의 장점을 모두 취할 수 있다. 이에 따라, 단순한 알고리듬으로써 이차전지의 기준 만충전용량을 보다 정밀하게 설정할 수 있다.As described above, according to the setting method according to the present invention, since the full charge capacity is obtained and converted into the full discharge capacity, both of the full charge and full discharge advantages can be taken. Accordingly, the reference full charge capacity of the secondary battery can be set more precisely by a simple algorithm.

본 발명은, 상기 실시예에 한정되지 않고, 청구범위에서 정의된 발명의 사상 및 범위 내에서 당업자에 의하여 변형 및 개량될 수 있다.The present invention is not limited to the above embodiments, but may be modified and improved by those skilled in the art within the spirit and scope of the invention as defined in the claims.

Claims (3)

이차전지가 만충전되었을 때의 유효 용량인 기준 만충전용량을 설정하는 방법에 있어서,In the method of setting the reference full capacity which is the effective capacity when the secondary battery is fully charged, 모델 이차전지에 대하여, 만충전 및 만방전을 반복 수행하면서, 만충전된 용량에 대한 만방전된 용량의 평균 비율을 구하여 설정하는 단계; 및Calculating and setting an average ratio of the fully discharged capacity to the fully charged capacity while repeatedly performing full charge and full discharge for the model secondary battery; And 사용될 이차전지에 대하여, 만충전된 용량에 상기 평균 비율을 곱하여 그 결과값이 상기 기준 만충전용량이 되는 알고리듬을 적용시키는 단계를 포함한 설정 방법.For a secondary battery to be used, multiplying the averaged capacity by the full capacity and applying an algorithm whose resultant value is the reference full capacity. 제1항에 있어서, 상기 설정하는 단계에서,According to claim 1, In the setting step, 상기 모델 이차전지가 만방전되었을 때의 만방전 전압값보다 더 큰 용량학습 전압값을 설정하는 단계;Setting a capacity learning voltage value greater than the full discharge voltage value when the model secondary battery is fully discharged; 상기 모델 이차전지가 만충전되었을 때의 만충전 전류값을 설정하는 단계;Setting a full charge current value when the model secondary battery is fully charged; 상기 모델 이차전지가 상기 만방전 전압값에 이른 시점으로부터 상기 만충전 전류값에 이른 시점까지 충전된 만충전 용량을 구하는 단계;Obtaining a full charge capacity charged from the time point when the model secondary battery reaches the full discharge voltage value to the time point when the model secondary battery reaches the full charge current value; 상기 모델 이차전지가 상기 용량학습 전압값에 이른 시점으로부터 상기 만충전 전류값에 이른 시점까지 충전된 제1 충전 용량을 구하는 단계; 및Obtaining a first charging capacity charged by the model secondary battery from a time point of reaching the capacity learning voltage value to a time point of reaching the full charge current value; And 상기 만충전 용량과 제1 충전 용량 사이의 편차를 계산하여 설정하는 단계가 더 수행되는 설정 방법.And calculating and setting a deviation between the full charge capacity and the first charge capacity. 제2항에 있어서, 상기 적용시키는 단계에서 상기 알고리듬이,The method of claim 2, wherein the algorithm in the applying step, (31) 상기 사용될 이차전지에 대하여 상기 용량학습 전압값에 이르는 제1 시점을 감지하는 단계;Detecting a first time point at which the capacity learning voltage value is reached for the secondary battery to be used; (32) 상기 사용될 이차전지에 대하여 상기 만충전 전류값에 이르는 제2 시점을 감지하는 단계;(32) detecting a second time point for reaching the full charge current value with respect to the secondary battery to be used; (33) 상기 제1 시점부터 상기 제2 시점까지의 제1 충전 용량을 계산하는 단계;(33) calculating a first charging capacity from said first time point to said second time point; (34) 상기 제1 충전 용량에 상기 편차를 더하여 제2 충전 용량을 구하는 단계;(34) adding the deviation to the first charge capacity to obtain a second charge capacity; (35) 상기 제2 충전 용량에 상기 평균 비율을 곱하여 그 결과값을 상기 기준 만충전용량으로서 설정하는 단계; 및(35) multiplying the second charge capacity by the average ratio and setting the result as the reference full charge capacity; And (36) 상기 단계 31부터 35까지를 반복 수행하는 단계를 포함한 설정 방법.(36) A setting method comprising repeating steps 31 to 35.
KR1019990034147A 1999-08-18 1999-08-18 Method for setting reference full-charge capacity of secondary battery KR100592234B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990034147A KR100592234B1 (en) 1999-08-18 1999-08-18 Method for setting reference full-charge capacity of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990034147A KR100592234B1 (en) 1999-08-18 1999-08-18 Method for setting reference full-charge capacity of secondary battery

Publications (2)

Publication Number Publication Date
KR20010018265A true KR20010018265A (en) 2001-03-05
KR100592234B1 KR100592234B1 (en) 2006-06-23

Family

ID=19607693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990034147A KR100592234B1 (en) 1999-08-18 1999-08-18 Method for setting reference full-charge capacity of secondary battery

Country Status (1)

Country Link
KR (1) KR100592234B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027644B2 (en) * 1991-12-12 2000-04-04 富士通株式会社 Battery level display method and device

Also Published As

Publication number Publication date
KR100592234B1 (en) 2006-06-23

Similar Documents

Publication Publication Date Title
KR101502230B1 (en) Charging method of battery and battery charging system
KR101056826B1 (en) Computer-readable recording medium recording battery capacity calculating method, battery capacity calculating device and battery capacity calculating program
KR101402802B1 (en) Apparatus and Method for cell balancing based on battery&#39;s voltage variation pattern
CN111142030B (en) Method, device and equipment for detecting internal short-circuit current and readable storage medium
CA2670706C (en) Method and system for accurately reporting battery capacity
KR20160048666A (en) Apparatus for estimating state of charge for secondary battery and Method thereof
RU2006119641A (en) DEVICE AND METHOD FOR EVALUATING THE BATTERY CHARGING LEVEL USING A NEURAL NETWORK
KR100354243B1 (en) Method for generating data for monitoring and controlling states of charge and discharge of secondary battery
JP2002218668A (en) Portable information processor, and charging device and method
CN1489699A (en) Battery capacity calibration
JP2005315597A (en) Remaining capacity calculation method and battery pack of secondary battery
WO2018211824A1 (en) Battery control device and vehicle system
JP2020092593A (en) Method of predicting charging state of battery
JP7111969B2 (en) Electronic device and its control method
CN109581236A (en) Detection method, device and the computer readable storage medium of capacity of lithium ion battery
CN110178284B (en) Apparatus and method for controlling discharge
JP2007327971A (en) Measuring device of remaining battery life
CN105548887A (en) Battery power value calibration method and device thereof
KR100592234B1 (en) Method for setting reference full-charge capacity of secondary battery
KR100844040B1 (en) Charging battery capacity verification method
CN111157907B (en) Detection method and device, charging method and device, electronic device and storage medium
JP4660367B2 (en) Rechargeable battery remaining capacity detection method
KR100592233B1 (en) How to set standard full charge capacity of secondary battery
KR100445595B1 (en) Method and system for controlling the charging of a battery in capable of diminishing the effect of noise
JP2019158836A (en) Estimation device and method for estimation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee