KR20010011732A - Refining method and porcelain anamelling steel manufacturing by it - Google Patents

Refining method and porcelain anamelling steel manufacturing by it Download PDF

Info

Publication number
KR20010011732A
KR20010011732A KR1019990031252A KR19990031252A KR20010011732A KR 20010011732 A KR20010011732 A KR 20010011732A KR 1019990031252 A KR1019990031252 A KR 1019990031252A KR 19990031252 A KR19990031252 A KR 19990031252A KR 20010011732 A KR20010011732 A KR 20010011732A
Authority
KR
South Korea
Prior art keywords
steel
molten steel
oxygen
less
dissolved oxygen
Prior art date
Application number
KR1019990031252A
Other languages
Korean (ko)
Inventor
윤원규
서일열
백찬준
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990031252A priority Critical patent/KR20010011732A/en
Publication of KR20010011732A publication Critical patent/KR20010011732A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Abstract

PURPOSE: A method for refining steel for porcelain enamel containing a high oxygen content and steel for porcelain enamel manufactured by the same are provided to prevent refractories erosion and provide steel for porcelain enamel containing a high oxygen content of which total oxygen is high by adding Mn and oxidizing the molten steel. CONSTITUTION: In a method for manufacturing steel for porcelain enamel, a molten steel is injected into a Tundish and continuously cast after the refining process in which a molten steel in a ladle is carburized and oxidized in RH. The molten steel in a ladle is comprised of a constituent of which oxidizing power is lower than that of Mn. The oxidization is carried out within the range of dissolved oxygen of 250 to 280 ppm by putting Mn into the molten steel. The steel for porcelain enamel has 300 to 400 ppm of total oxygen, and deoxidized by Mn.

Description

고산소 법랑용 강의 정련방법 및 이로부터 제조된 법랑용 강{REFINING METHOD AND PORCELAIN ANAMELLING STEEL MANUFACTURING BY IT}REFINING METHOD AND PORCELAIN ANAMELLING STEEL MANUFACTURING BY IT}

본 발명은 법랑처리제품의 소지강판으로 사용되는 강에 관한 것으로, 보다 상세하게는 Mn탈산하여 최종강에서 토탈산소가 높은 고산소 법랑용 강의 정련방법 그리고, 이 정련방법에 의해 제조되는 법랑용 강에 관한 것이다.The present invention relates to a steel used as a base steel sheet of the enamel processing product, and more particularly, a method for refining high-oxygen enamel steel with high total oxygen in the final steel by Mn deoxidation, and the enamel steel produced by the refining method. It is about.

일반적으로 소지강판에 무기질 유약을 도포한 뒤 고온에서 소성하여 제조된 제품을 법랑강이라 하며, 이 제품은 금속이 가진 견고성과 함께 유리와 같이 표면의 미려하고 내식성이 우수한 특성을 갖는다. 법랑강은 철제가구류, 건물의 외장재로 주로 사용된다.Generally, a product manufactured by applying inorganic glaze to a steel sheet and firing it at a high temperature is called enamel steel, and this product has the characteristics of being beautiful and excellent in corrosion resistance, such as glass, with the strength of metal. Enamel steel is mainly used for steel furniture and building exterior materials.

법랑강에는 내피쉬스케일성이 가장 중요한 특성으로 받아들여지고 있다. 피쉬스케일(fish scale)은 소지강판에 법랑처리후 법랑층이 강판표면에서 물고기 비늘모양으로 벗겨지는 결함을 말한다. 피쉬스케일은 수소에 의해 발생되는 결함으로서, 법랑소성처리과정에서 강판의 온도가 높기 때문에 수소의 고용도가 증가되지만 소성처리후에는 온도가 낮기 때문에 강판에 고용된 수소가 표면으로 확산되어 법랑층을 파괴하고 대기중으로 빠져나가면서 발생한다.Fish scale is considered to be the most important property in the Enamel River. The fish scale refers to a defect in which the enamel layer is peeled off in the shape of fish scales on the surface of the steel sheet after enameling the steel sheet. Fish scale is a defect caused by hydrogen, and the solid solution of hydrogen is increased because the temperature of steel sheet is high during enameling process, but since the temperature is low after firing process, hydrogen dissolved in steel sheet diffuses to the surface to form enamel layer. Destroys and exits into the atmosphere.

피쉬스케일 결함을 방지하기 위해서는 강 내부에 수소를 흡수할 수 있는 공간을 만들어 주는 것이 필요하며, 즉 소재내에 (1)석출물 또는 (2)산화물을 많이 만들어 주면 되는 것으로 알려져 있다.In order to prevent fish scale defects, it is known that a space for absorbing hydrogen in the steel is required, that is, a large amount of (1) precipitates or (2) oxides are formed in the material.

(1) 석출물로 내피쉬성을 확보하는 기술은 대부분 티타늄황화물(일본 공개특허공보 소56-51553), 티타늄탄화물, 보론질화물 등을 석출시키는 것으로, 강설계 및 제조조건의 제어를 통한 석출물 관리 방법에 그 기술이 집중되어 있다.(1) A technique for securing fish resistance with precipitates is to precipitate titanium sulfide (JP-A-56-51553), titanium carbide, boron nitride, etc., and the method of managing precipitates by controlling steel design and manufacturing conditions The technology is concentrated.

(2) 산화물로 내피쉬성을 확보한 강종을 보통 고산소 법랑강이라 한다. 고산소 법랑강은 토탈산소가 250ppm이상으로 높으면 산화물의 양이 많아져 내피쉬성에 좋다고 알려져 있다. 따라서, 용존산소가 높은 상태에서 주조해야 하므로 용강정련기술이 가장 중요하다.(2) Steel grades having fish resistance with oxide are usually called high oxygen enamel steel. High oxygen enamel steel is known to be good for fish resistance when the total oxygen is higher than 250ppm, the amount of oxide increases. Therefore, molten steel refining technology is the most important because it must be cast in a state of high dissolved oxygen.

법랑용 강은 극저탄소(C:0.005%이하)인데, 이는 성형성을 고려한 것이다. 따라서, 법랑용 강은 전로에서 정련한 용강을 RH정련공정에서 극저탄소로 탈탄하고 탈산하게 된다(도 1참조). 탈산제로는 Al, Si를 이용하고 있다.The enameled steel is very low carbon (C: 0.005% or less), which is in consideration of formability. Therefore, the enamel steel decarburizes the molten steel refined in the converter to ultra low carbon in the RH refining process (see FIG. 1). Al and Si are used as a deoxidizer.

그러나, 이들 탈산제는 고산소 법랑강의 탈산제로 적용하기에는 단점이 많다. Al탈산제는 산소와의 친화력이 매우 높아 용강중 산소를 목표로 하는 범위로 조정하기는 용이하나, 탈산생성물인 알루미나(Al2O3)가 용강에 다량 존재하게 되어 연속주조공정에서 노즐을 막기 때문에 주조가 어려우며, 또한, 알루미나는 침상의 경한 조직으로 압연시 소재와 함께 연신되지 않기 때문에 표면품질 열화의 직접적인 원인이 된다. Si으로 용강중의 산소농도를 조정할 경우는 Si은 산소와의 결합속도(친화력)가 Al 대비 많이 늦기 때문에 주조완료시까지 미산화 Si성분이 소량 용강중 에 잔존하게 되며, Si은 도금성을 저하시키는 원소로 소재에 잔존시 법랑성을 저하시키는 단점이 있다. 또한, SiO2는 부상분리속도가 빠르기 때문에 RH정련과정에서 대부분 제거되기 때문에 소재내에 보다 높은 토탈산소를 확보하기 위해서는 턴디쉬에서 높은 용존산소가 요구되었다.However, these deoxidizers have many disadvantages in that they are applied as deoxidizers of high oxygen enamel steel. Al deoxidizer has very high affinity with oxygen, so it is easy to adjust to the target range of oxygen in molten steel, but since a large amount of deoxidation product, alumina (Al 2 O 3 ) is present in molten steel, it blocks the nozzle in the continuous casting process. In addition, alumina is a needle-like hard structure, which is not directly drawn together with the material during rolling, which is a direct cause of surface quality deterioration. When adjusting the oxygen concentration in molten steel with Si, since Si bond rate (affinity) with oxygen is much slower than that of Al, unoxidized Si components remain in the molten steel until casting is completed, and Si is an element that degrades the plating property. There is a disadvantage in reducing enamel when remaining in the material. In addition, since SiO 2 is rapidly removed in the RH refining process because of the high flotation separation rate, high dissolved oxygen was required in the tundish to secure higher total oxygen in the material.

본 발명자들은 고산소 법랑강을 제조할 수 있는 정련기술을 개발하기 위하여 다양한 시도를 행하던중, Mn이 Al, Si 대비 산소친화력이 낮기는 하지만 산소와의 친화력이 타 원소대비 높아 용강중에 MnO를 잘생성하고 특히 생성된 MnO는 비중이 높아 용강중에서 부리부상이 잘 안되기 때문에 턴디쉬에서 용존산소를 낮게 하더라도 목표로 하는 토탈산소를 얻을 수 있다는데, 주목하여 본 발명을 완성하여 제안하게 되었다.The present inventors have made various attempts to develop a refining technology for producing high oxygen enamel steel, but Mn has a lower oxygen affinity than Al and Si, but its affinity with oxygen is higher than that of other elements, so that MnO is well formed in molten steel. The produced and especially produced MnO has a high specific gravity, so that the beak injury is not well in the molten steel, it is possible to obtain the target total oxygen even if the dissolved oxygen in the tundish, paying attention to the present invention was completed and proposed.

본 발명의 목적은 연속주조공정의 턴디쉬에서 용강의 용존산소를 낮게 하면서도 주편의 토탈산소를 높일 수 있는 용강의 정련방법을 제공함에 있다. 나아가, 본 발명은 300∼400ppm의 토탈산소를 갖으며 Mn으로 탈산되어 내피쉬스케일 특성이 우수한 고산소 법랑용 강을 제공하는데도 그 목적이 있다.An object of the present invention is to provide a molten steel refining method that can increase the total oxygen of the cast while lowering the dissolved oxygen of the molten steel in the tundish of the continuous casting process. Furthermore, the present invention has a purpose of providing a high oxygen enamel steel having a total oxygen of 300 ~ 400ppm and deoxidized with Mn and excellent in fish scale properties.

도 1은 법랑용 강의 제조공정도1 is a manufacturing process diagram of enamel steel

도 2는 주편토탈산소와 내피쉬스케일의 관계를 나타내는 그래프2 is a graph showing the relationship between cast iron total oxygen and the endogenous fish scale

도 3은 용존산소와 쉬라우드 노즐 용손속도와의 관계를 나타내는 그래프3 is a graph showing the relationship between dissolved oxygen and melt speed of shroud nozzle

도 4는 턴디쉬 용강의 용존산소량과 주편에서의 토탈산소와의 관계를 나타내는 그래프4 is a graph showing the relationship between the dissolved oxygen content of the tundish molten steel and the total oxygen in the cast steel;

도 5는 탈가스설비(RH)에서 턴디쉬까지의 용강정련과정에서 용존산소의 거동을 나타내는 그래프5 is a graph showing the behavior of dissolved oxygen in the molten steel refinement process from degassing equipment (RH) to tundish

상기 목적을 달성하기 위한 본 발명의 정련방법은, 레이들의 용강을 RH정련로로 흡상하여 탈탄하고 탈산한 다음, 탈산된 용강을 턴디쉬로 장입하여 연속주조하는 법랑용 강의 제조방법에 있어서, 상기 레이들의 용강은 Mn 보다 산화력이 작은 성분으로 조성되고; 상기 탈산은 용강에 Mn을 투입하여 용존산소를 250∼280ppm의 범위로 탈산하는 것을 포함하여 구성된다.In the refining method of the present invention for achieving the above object, in the manufacturing method of the enameled steel in which the molten steel of the ladle is sucked up by the RH refining furnace, decarburized and deoxidized, the deoxidized molten steel is charged into a tundish and continuously cast. The molten steel of the ladle is composed of a component having a lower oxidizing power than Mn; The deoxidation includes deoxidation of dissolved oxygen in a range of 250 to 280 ppm by introducing Mn into molten steel.

또한, 본 발명의 법랑용 강은 300∼400ppm의 토탈산소를 갖으며 Mn으로 탈산된 것을 포함하여 구성된다.In addition, the enamel steel of the present invention has a total oxygen of 300 ~ 400ppm and comprises a deoxidized with Mn.

이하 본 발명을 상세히 설명한다,.Hereinafter, the present invention will be described in detail.

본 발명은 Mn을 탈산제로 이용하므로써, 용강의 용존산소는 가능한 낮게 관리하면서, 주편상태에서의 토탈산소는 더 높일 수 있는 용강의 정련방법을 구체화한다는데, 그 특징이 있다.The present invention embodies a method for refining molten steel in which molten steel can be increased while maintaining the dissolved oxygen in molten steel as low as possible by using Mn as a deoxidizer.

지금까지 알려진 Al과 Si 탈산제는 산소와의 친화력이 높아 용강중에 산소의 농도제어는 용이하나, 주편에서의 목표토탈산소를 얻기 위해서는 용존산소를 높게 하여야 하므로 내화물의 용손이 심해져 용강유출사고 혹은 주조작업성의 악화를 초래할 우려가 높았다. 또한, 이로 부터 생긴 Al2O3또는 SiO2개재물은 압연성에도 좋지 않아 표면품질의 열화원인도 되었다.Al and Si deoxidizers known so far have high affinity with oxygen, making it easy to control the concentration of oxygen in molten steel, but in order to obtain the target total oxygen in the cast steel, the dissolved oxygen must be high. There was a high possibility of causing deterioration of sex. In addition, the Al 2 O 3 or SiO 2 inclusions produced therefrom were also poor in rollability, causing deterioration of surface quality.

본 발명에서는 이러한 문제를 해결하기 위한 연구과정에서 Mn이 법랑용 강의 탈산제로 적용되는 경우에 MnO를 잘 생성하면서 비중이 높아 용강중에서 분리부상이 잘 안되기 때문에 턴디쉬에서 용존산소를 낮게 하더라도 주편상태에서는 토탈산소를 높일 수 있다는데 주목하였다. 즉, 탈산공정에서 생성된 MnO와 그 이후의 공정에서 용존산소와 Mn의 반응으로 생성된 MnO가 주편에서 토탈산소를 높이는 작용을 하는 것이다. 이 MnO산화물은 기지와의 계면을 많이 만들어 수소를 후착할 수 있는 위치를 형성하므로 내피쉬스케이에 유효하였다.In the present invention, when Mn is applied as a deoxidizer of enameled steel in the course of research to solve this problem, since MnO is well formed and its specific gravity is high, separation in molten steel is not easily performed. It was noted that total oxygen could be increased. That is, MnO generated in the deoxidation process and MnO produced by the reaction of dissolved oxygen and Mn in the subsequent process act to increase the total oxygen in the slab. This MnO oxide was effective for endogenous fish scales because it formed a site where hydrogen could be deposited by making many interfaces with a matrix.

이와 같이, 본 발명에서는 법랑용 강의 정련공정에서 탈산제로 Mn을 사용한다는데 가장 큰 특징이 있다. Mn을 탈산제로 이용하는 경우에 용강의 주성분으로는, Mn 보다 산화력이 작은 성분으로 조성되어야 한다. 법랑용 강에 함유될 수 있는 성분들의 산화력을 구분하면 아래와 같다.As described above, the present invention has the greatest feature of using Mn as a deoxidizer in the refining process of enamel steel. In the case of using Mn as a deoxidizer, the main component of molten steel should be composed of a component having less oxidizing power than Mn. The oxidizing power of the components that may be contained in the enamel steel is as follows.

Al 〉 Ti 〉 Si 〉 Mn 〉 Fe 〉 PAl〉 Ti〉 Si〉 Mn〉 Fe〉 P

여기서, Si은 강의 5대성분으로서 불가피하게 함유되는데, 적어도 0.02%이하로 제한하는 것이 좋다. 이러한 산화력을 고려할때 본 발명에서 목적하는 강의 일례로는 C, Mn, P, S, Si로 조성될 수 있으며, 구체적으로는 C:0.005%이하, Mn:0.30%이하, P:0.020%이하, S:0.015%이하, Si:0.02%이하, 나머지 Fe와 기타 불가피한 성분으로 조성되는 것이다.Here, Si is inevitably contained as the five major components of the steel, it is preferably limited to at least 0.02% or less. Considering the oxidizing power as an example of the steel of the present invention may be composed of C, Mn, P, S, Si, specifically C: 0.005% or less, Mn: 0.30% or less, P: 0.020% or less, S: 0.015% or less, Si: 0.02% or less, and is composed of the remaining Fe and other unavoidable components.

본 발명에서는 레이들의 용강을 RH정련하기 전에 용존산소는 탈탄과 Mn탈산을 고려할때 700-800ppm으로 하는 것이 가장 바람직하다. 이 용강을 통상의 방법대로 탈탄한 다음, 본 발명에 따라 Mn을 탈산제로 이용하는데, 목표로 하는 용존산소를 제외한 그외의 투입조건은 통상의 방법에 준한다. 즉, 레이들의 용강을 RH정련공정에서 흡상하여 탈탄한 후에 Mn을 투입한다. 이때 목표로 하는 용존산소는, 최종적으로 주편에서 토탈산소를 어떻게 하느냐에 따라 결정된다.In the present invention, the dissolved oxygen is preferably 700-800 ppm in consideration of decarburization and Mn deoxidation before RH refining of the molten steel of the ladle. The molten steel is decarburized according to a conventional method, and then Mn is used as the deoxidizer according to the present invention. Other input conditions except for the target dissolved oxygen follow the conventional method. In other words, the molten steel of the ladle is sucked up in the RH refining process, decarburized and then Mn is added. At this time, the target dissolved oxygen is finally determined by how total oxygen is performed in the cast steel.

바람직하게는 Mn탈산제는 탈탄종료시점부터 탈산종료시점까지 2회에 걸쳐 분할 투입하는 것이 권장된다. 이렇게 하면 용존산소량을 목표로 하는 관리범이내로 미세관리할 수 있다.Preferably, the Mn deoxidizer is added in two portions from the end of decarburization to the end of deoxidation. This allows for fine control within a range of control targets that target dissolved oxygen.

또한, 종래 극저탄소강 정련의 경우는 용강내 탄소를 최대한 제거하고 용강 탈산후는 산화성 개재물의 부상분리 촉진을 위해 처리개시부터 처리 종료시까지 진공조내의 진공도를 5Torr이하의 고진공도를 유지하였다. 이와는 달리, 본 발명에서는 Mn탈산정련때에는 진공조내 진공도를 30-50Torr의 저진공도로 하는 것이 바람직하다. 이는 저진공도에 의해 용강환류속도를 저하시켜 망간투입으로 발생되는 산화망간의 부상분리 제거속도를 저감시킬 수 있기 때문이다.In addition, in the case of the conventional ultra low carbon steel refining, the vacuum in the vacuum chamber was maintained at a high vacuum of 5 Torr or less from the start of the treatment to the end of the treatment to remove the carbon in the molten steel as much as possible. In contrast, in the present invention, it is preferable that the vacuum degree in the vacuum chamber is set to a low vacuum of 30-50 Torr during Mn deoxidation refining. This is because a low vacuum degree can lower the molten steel reflux rate, thereby reducing the floating separation removal rate of manganese oxide generated by manganese injection.

이하에서는, 본 발명에 따라 Mn을 탈산제로 하여 RH정련할때 목표로 하는 용존산소를 내피쉬스케일성을 반영한 주편의 목표토탈산소를 통해 결정하는 이유를 설명한다.Hereinafter, the reason for determining the target dissolved oxygen through the target total oxygen of the cast steel reflecting the fish scale resistance when RH refining using Mn as a deoxidizer according to the present invention.

먼저, 도 2에서 알 수 있듯이, 주편에서의 토탈산소가 높을 수록 피쉬스케일이 생길 가능성은 줄어든다. 따라서, 주편의 토탈산소를 가능한 높게 하는 것이 내피쉬스케일성에 유리하므로 주조시 용강내 용존산소량을 높게 하여 주조해야 한다. 그런데, 용존산소량을 높게 하여 주조할 경우 내화물의 용손이 심해져 용강유출 혹은 주조작업성의 악화를 초래할 우려가 있다.First, as can be seen in Figure 2, the higher the total oxygen in the cast steel is less likely to occur fish scale. Therefore, the total oxygen of the cast steel as high as possible is advantageous to the fish scale resistance, the casting must be made by increasing the amount of dissolved oxygen in the molten steel during casting. However, when casting with a high dissolved oxygen amount, there is a fear that the melt loss of the refractory becomes severe, resulting in molten steel leakage or deterioration of casting workability.

도 3에서 알 수 있듯이, 용존산소가 250ppm부근을 기점으로 쉬라우드 노즐(shroud nozzle)의 용손속도가 급격히 증가하는 것을 알 수 있다. 따라서, 주조작업성의 안정성을 고려하여 턴디쉬에서의 산소상하치는 250ppm으로 하는 것이 바람직하다.As can be seen in FIG. 3, it can be seen that the dissolved oxygen speed of the shroud nozzle increases sharply around 250 ppm of dissolved oxygen. Therefore, in consideration of the stability of casting workability, the upper and lower oxygen values of the tundish are preferably 250 ppm.

도 4(Mn탈산제를 이용하는 경우)에서 보는 바와 같이, 턴디쉬내의 용강의 용존산소량이 250ppm정도이면 주편에서의 토탈산소는 400ppm 정도가 됨을 알 수 있다. 전술한 바와 같이, 주편에 용존산소가 300ppm이상으로 되면 내피쉬스케일성이 안정되게 확보되는 것을 고려할때(도 2), 턴디쉬에서 용강의 용존산소량은 200ppm이 되어야 함을 알 수 있다.As shown in FIG. 4 (when the Mn deoxidizer is used), when the dissolved oxygen amount of the molten steel in the tundish is about 250 ppm, the total oxygen in the cast steel is about 400 ppm. As described above, when dissolved oxygen in the cast steel is more than 300ppm considering that the fish scale stability is secured (Fig. 2), it can be seen that the dissolved oxygen amount of the molten steel in the tundish should be 200ppm.

이상에서 알 수 있듯이, 내피쉬스케일성 확보를 위해서는 턴디쉬내 용강에 용존산소가 200-250ppm이 되어야 한다.As can be seen from above, in order to secure fish scale resistance, dissolved oxygen in the molten steel should be 200-250ppm.

그런데, RH정련공정이후에는 레이들의 용강을 연주설비로 이동하고 턴디쉬로 용강을 장입하면서 연속주조하는데, 이때에는 용강의 온도가 떨어지게 된다. 용강의 온도가 낮아지면 용강의 산소용해도가 낮아져 용존산소가 줄어든다. 또한, 용존산소가 용강중의 유가원소와 산화반응을 일으켜 용존산소는 시간의 경과와 함께 점차 감소하게 된다. RH정련공정에서 연주설비로의 이동시간과 이때의 온도하락을 고려할때, 용존산소의 감소는 약 30ppm정도이다(도 5).However, after the RH refining process, the molten steel is moved to the performance equipment and continuously cast while charging the molten steel with a tundish, wherein the temperature of the molten steel drops. The lower the temperature of the molten steel, the lower the oxygen solubility of the molten steel is reduced dissolved oxygen. In addition, dissolved oxygen causes an oxidation reaction with the valuable elements in the molten steel so that the dissolved oxygen gradually decreases with time. In consideration of the transfer time to the playing equipment in the RH refining process and the temperature drop at this time, the reduction of dissolved oxygen is about 30 ppm (Fig. 5).

따라서, RH정련공정에서 탈산한 다음, 탈산된 용강에의 목표 용존산소는 250-280ppm으로 하여야 한다.Therefore, after deoxidation in the RH refining process, the target dissolved oxygen in the deoxidized molten steel should be 250-280 ppm.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

RH정련과정에서 용강의 탈탄완료후 탈산하는 방법에서 탈산재 종류별 조업 및 품질실적을 표 1에 나타내었다.Table 1 shows the operation and quality performance of deoxidizers in the method of deoxidation after decarburization of molten steel in the RH refining process.

탈산방법Deoxidation Method 턴디쉬내 용강의 용존산소Dissolved oxygen in molten steel in tundish 주편토탈산소Cast Oxygen Total Oxygen 소재내 잔류성분Residual ingredients in the material AlAl SiSi 종래예Conventional example Al탈산Al deoxidation 243-287ppm243-287ppm 271-311ppm271-311ppm 0.0011%0.0011% 0.015%0.015% Si탈산Si deoxidation 251-285ppm251-285ppm 287-321ppm287-321ppm -- 0.035%0.035% 발명예Inventive Example Mn탈산Mn Deoxidation 212-240ppm212-240ppm 354-380ppm354-380ppm -- 0.005%0.005% 4-9회 측정한 실시결과이며, 소재내 잔류성분은 평균치임Results of 4-9 measurements, the average of residual components in the material

표 1에서 보는 바와 같이, Al 또는 Si 탈산의 경우는 주편에서의 토탈산소 측정값이 목표로 하는 값(토탈산소:300ppm이상) 보다 낮게 나타났으며, 또한, Al, Si 탈산시는 소재내 Al, Si 성분이 잔류한다는 것을 알 수 있다.As shown in Table 1, in the case of Al or Si deoxidation, the total oxygen measured value in the slab was lower than the target value (total oxygen: 300 ppm or more). It can be seen that the Si component remains.

[실시예 2]Example 2

아래 표 1과 같은 용존산소를 갖으며 C:0.03-0.05, Si:0.01-0015, Mn:0.15-0.2%, P:0.02%이하, S:0.015%이하로 조성되는 레이들의 용강을 RH정련공정에서 흡상하여 탈탄하고, Mn을 투입하여 탈산한 다음, 이 탈산용강을 턴디쉬로 장입하고 연속주조하여 주편을 제조하였다.RH refining process of the ladle steel with dissolved oxygen as shown in Table 1 below, which is composed of C: 0.03-0.05, Si: 0.01-0015, Mn: 0.15-0.2%, P: 0.02% or less, and S: 0.015% or less After degassing by sucking, deoxidation by adding Mn, the deoxidation steel was charged into a tundish and continuously cast to prepare a cast.

턴디쉬에서 용강의 용존산소와 주편상태에서의 토탈산소를 조사하여 표 2에 나타내었으며, 주편에서의 산화물의 조성을 분석하여 표 3에 나타내었다.In the tundish, the dissolved oxygen of molten steel and the total oxygen in the slab state were investigated and shown in Table 2. The composition of the oxide in the slab was shown in Table 3.

구분division RH공정 도착 용강의 용존산소Dissolved oxygen in molten steel arriving at RH process RH출발 용강의 용존산소Dissolved oxygen of molten steel from RH 턴디쉬내 용강의 용존산소Dissolved oxygen in molten steel in tundish 주편의 토탈산소Total oxygen of cast steel 1One 780ppm780 ppm 280ppm280 ppm 240ppm240 ppm 380ppm380 ppm 22 234ppm234 ppm 370ppm370 ppm 33 740ppm740 ppm 255ppm255 ppm 238ppm238ppm 362ppm362 ppm 44 212ppm212 ppm 354ppm354ppm

구분division MnOMnO FeOFeO 1, 2의 경우1, 2 86%86% 13%13% 3, 4의 경우In the case of 3, 4 90%90% 8%8%

상기 표 2, 3에서 보는 바와 같이, 주편에서의 토탈산소는 350-380ppm 수준으로 주편에서 생성된 산화물은 대부분 산화망간을 위주로 하므로 내피쉬스케일성에 양호해짐을 알 수 있다(도 1).As shown in Tables 2 and 3, the total oxygen in the cast steel is 350-380ppm level, the oxide produced in the cast steel is mainly due to the manganese oxide can be seen that the good fish-scale resistance (Fig. 1).

상술한 바와 같이, 본 발명은 내화물 용손을 방지하면서 토탈산소가 높은 고산소 법랑용 강을 제공할 수 있는 효과가 있다.As described above, the present invention has the effect of providing a high total oxygen high enamel steel while preventing refractory loss.

Claims (7)

레이들의 용강을 RH에서 탈탄 및 탈산하는 정련공정을 행한 다음, 용강을 턴디쉬로 주입하여 연속주조하는 법랑용 강의 제조방법에 있어서,In the method for producing enameled steel in which the molten steel is decanted and deoxidized in RH, and then molten steel is injected into a tundish to continuously cast 상기 레이들의 용강은 Mn 보다 산화력이 작은 성분으로 조성되고;The molten steel of the ladle is composed of a component having a lower oxidation power than Mn; 상기 탈산은 용강에 Mn을 투입하여 용존산소를 250∼280ppm의 범위로 탈산하는 것을 포함하여 이루어지는 고산소 법랑용 강의 정련방법.The deoxidation is a refining method of high oxygen enameled steel comprising deoxidation of dissolved oxygen in the range of 250 ~ 280ppm by adding Mn to the molten steel. 제1항에 있어서, 상기 RH정련처리전 레이들의 용강은 용존산소가 700∼800ppm임을 특징으로 하는 정련방법.The method of claim 1, wherein the molten steel before the RH refining treatment has a dissolved oxygen of 700 to 800ppm. 제1항에 있어서, 상기 Mn의 투입이후에는 30∼50Torr의 저진공상태로 유지함을 특징으로 하는 정련방법.The refining method according to claim 1, wherein the Mn is maintained in a low vacuum state of 30 to 50 Torr after the Mn is introduced. 제1항에 있어서, 상기 턴디쉬내의 용강에는 용존산소가 200∼250ppm임을 특징으로 하는 정련방법.The refining method according to claim 1, wherein the molten steel in the tundish has a dissolved oxygen of 200 to 250 ppm. 제1항에 있어서, 상기 법랑강은 C:0.005%이하, Mn:0.30%이하, Si:0.02%이하, P:0.020%이하, S:0.015%이하, 나머지 Fe와 기타 불가피한 불순물로 조성됨을 특징으로 하는 정련방법.The method of claim 1, wherein the enamel steel is C: 0.005% or less, Mn: 0.30% or less, Si: 0.02% or less, P: 0.020% or less, S: 0.015% or less, and the remaining Fe and other unavoidable impurities Refining method 300∼400ppm의 토탈산소를 갖으며 Mn으로 탈산된 법랑용 강.Enamel steel deoxidized with Mn with total oxygen of 300-400ppm. 제6항에 있어서, C:0.005%이하, Mn:0.30%이하, Si:0.02%이하, P:0.020%이하, S:0.015%이하, 나머지 Fe와 기타 불가피한 불순물로 조성됨을 특징으로 하는 법랑용 강.8. The enamel preparation according to claim 6, which is composed of C: 0.005% or less, Mn: 0.30% or less, Si: 0.02% or less, P: 0.020% or less, S: 0.015% or less, and the remaining Fe and other unavoidable impurities. River.
KR1019990031252A 1999-07-30 1999-07-30 Refining method and porcelain anamelling steel manufacturing by it KR20010011732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990031252A KR20010011732A (en) 1999-07-30 1999-07-30 Refining method and porcelain anamelling steel manufacturing by it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990031252A KR20010011732A (en) 1999-07-30 1999-07-30 Refining method and porcelain anamelling steel manufacturing by it

Publications (1)

Publication Number Publication Date
KR20010011732A true KR20010011732A (en) 2001-02-15

Family

ID=19605706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990031252A KR20010011732A (en) 1999-07-30 1999-07-30 Refining method and porcelain anamelling steel manufacturing by it

Country Status (1)

Country Link
KR (1) KR20010011732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072245A (en) 2017-12-15 2019-06-25 주식회사 포스코 Method of refining molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072245A (en) 2017-12-15 2019-06-25 주식회사 포스코 Method of refining molten steel

Similar Documents

Publication Publication Date Title
JPS60194047A (en) High quality bearing steel and its production
JPH09263820A (en) Production of cluster-free aluminum killed steel
KR100860656B1 (en) Refining method of molten steel and method of producting extra-low-carbon steel using thereof
KR100361846B1 (en) Steel for thin sheet excellent in workability and method for deoxidation thereof
JP4000674B2 (en) Low carbon steel manufacturing method
KR101239459B1 (en) Method for Producing Niobium-added Stainless Steel
KR20010011732A (en) Refining method and porcelain anamelling steel manufacturing by it
CN114716256B (en) Refractory material for smelting rare earth steel and method for improving rare earth yield
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP3953626B2 (en) Ferritic stainless steel excellent in drawing workability and manufacturing method thereof
KR100916486B1 (en) Method for Refining Molten Steel of Titanium Added Partially Killed Steel
KR100815768B1 (en) Method for controlling refine slag of Grain-Oriented electrical Steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP3660811B2 (en) Steel wire rod and manufacturing method thereof
KR101064364B1 (en) Method for manufacturing the ferritic stainless steel having superior formability
US4555264A (en) Process for producing steel for an electrical steel sheet
KR0135001B1 (en) Method of manufacturing hot rolled coil
KR950012414B1 (en) Deoxidation method of low carbon ingot slag
KR880002484B1 (en) Making process of billet for soft steel sheet by wntinuous casting
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
RU2026364C1 (en) Method for making non-aging steel
KR900007443B1 (en) Method for preventing absorbtion of nitrogen to the molten steel
JP3537657B2 (en) Wire rod for steel wire and method of manufacturing the same
JPH09104912A (en) Method for refining stainless steel
JPH05306437A (en) Magnetically soft material and its production

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination