KR20010008730A - Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating - Google Patents

Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating Download PDF

Info

Publication number
KR20010008730A
KR20010008730A KR1019990026680A KR19990026680A KR20010008730A KR 20010008730 A KR20010008730 A KR 20010008730A KR 1019990026680 A KR1019990026680 A KR 1019990026680A KR 19990026680 A KR19990026680 A KR 19990026680A KR 20010008730 A KR20010008730 A KR 20010008730A
Authority
KR
South Korea
Prior art keywords
palladium
alumina
metal oxide
catalyst
lanthanum
Prior art date
Application number
KR1019990026680A
Other languages
Korean (ko)
Inventor
강성규
조성준
송광섭
서용석
류민웅
류인수
Original Assignee
손재익
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구소 filed Critical 손재익
Priority to KR1019990026680A priority Critical patent/KR20010008730A/en
Publication of KR20010008730A publication Critical patent/KR20010008730A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A process for preparing the title palladium catalyst by impregnating alumina which is doped with lanthanium with a palladium aqueous solution and coating a metal oxide sol on the alumina surface as a post treatment is provided, which makes the combustion reaction of methane stably generate even at a high temperature of 1,000deg.C for several thousand hours and contributes to the prevention of pollution by reducing the concentration of unburned CO, and NOx. CONSTITUTION: The palladium catalyst is prepared by a process consisting of: allowing alumina to support 1 to 10% by mole of lanthanium; impregnating 25 to 50% by weight of the alumina doped with lanthanium with 50 to 75% by weight of 19.96% palladium aqueous solution, drying under pressure, sintering at 500 to 600deg.C for 5.5 to 6.5 hr and reducing with hydrogen gas at 500 to 600deg.C for 5.5 to 6.5 hr.

Description

란타늄 도핑 알루미나와 금속 산화물 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법{Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating}Fabrication method of palladium catalyst for methane combustion by lanthanum doped alumina and metal oxide post-treatment {Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating}

본 발명은 메탄연소에 사용되는 팔라듐 촉매의 수명과 열적 안정성을 향상시키기 위하여 란타늄이 도핑된 알루미나와 금속 산화물의 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a palladium catalyst for methane combustion by post-treatment of lanthanum-doped alumina and metal oxides to improve the lifetime and thermal stability of the palladium catalyst used for methane combustion.

일반적으로 고온 메탄 연소에는 팔라듐계 촉매를 비롯하여 알루미나에 망간, 코발트, 구리, 니켈 또는 철과 같은 전이금속을 담지하여 이용하여 왔으나 낮은 촉매 활성 및 고온에서 촉매의 안정화가 이루어지지 않아 그 이용이 극히 제한적이었다. 지금까지 팔라듐 촉매를 고온에서 안정화시키고자 하는 연구가 많이 진행되어 ((1) Farrauto, R. J.; Hobson, M. C.; Kennelly, T.; Waterman, E. M. Appl. Catal. 1992, 81, 227. (2) Rodriguez, N. M.; Oh, S. G.; Dalla Betta, R. A.; Baker, R. T. K. J. Catal. 1995, 157, 676. (3) Widjaja, H.; Sekizawa, K.; Eguchi, K.; Arai, H. Catal. Today 1997, 35, 197. ) 왔으나 본 발명과 같이 티타늄 또는 지르코늄과 같은 금속산화물의 후처리에 의한 팔라듐 촉매의 안정화하는 기술은 보고되지 않고 있는데 이는 티타늄 졸과 지르코늄 졸을 제조하기가 매우 어렵기 때문인 것으로 알려지고 있다.In general, high-temperature methane combustion has used palladium-based catalysts and alumina supported with transition metals such as manganese, cobalt, copper, nickel, or iron, but the use of these catalysts is extremely limited due to low catalytic activity and stabilization of the catalyst at high temperatures. It was. Many studies have been conducted to stabilize the palladium catalyst at high temperature ((1) Farrauto, RJ; Hobson, MC; Kennelly, T .; Waterman, EM Appl. Catal. 1992, 81, 227. (2) Rodriguez , NM; Oh, SG; Dalla Betta, RA; Baker, RTKJ Catal. 1995, 157, 676. (3) Widjaja, H .; Sekizawa, K .; Eguchi, K .; Arai, H. Catal. Today 1997, 35, 197.) However, as described in the present invention, a technique for stabilizing a palladium catalyst by post-treatment of a metal oxide such as titanium or zirconium has not been reported because it is very difficult to prepare a titanium sol and zirconium sol. have.

한편 메탄가스를 이용한 연소시 안전사고를 예방하기 위하여 부취제로서 황을 첨가하여 공급하고 있는데 이 부취제는 촉매 피독 물질로서 팔라듐 촉매에 흡착되어 금속 촉매 입자의 소결 또는 반응성을 감소시킴으로써 촉매의 수명이 짧아진다.On the other hand, sulfur is added as an odorant in order to prevent safety accidents when burning with methane gas. The odorant is adsorbed on a palladium catalyst as a catalyst poisoning substance and reduces the sintering or reactivity of the metal catalyst particles, thereby extending the life of the catalyst. Shorten.

본 발명은 고온 메탄 연소용 팔라듐계 촉매의 수명과 열적안정성을 증대하기 위하여 담체로서 란타늄이 도핑진 알루미나에 티타늄 또는 지르코늄의 금속산화물로 후처리함으로써 메탄의 연소반응이 1,000℃ 이상에서 수천 시간이상 안정적으로 일어나도록 하고 우수한 촉매활성과 수명을 증대시킬 뿐만 아니라 메탄 연소반응에서 일산화탄소(CO), 질소산화물(NOx), 미연분(Total Hydrocarbon, THC)의 발생을 억제하여 대기오염 방지에 기여하는데 목적이 있다.The present invention is stable in the combustion reaction of methane for more than thousands of hours at 1,000 ℃ or more by post-treatment with a metal oxide of titanium or zirconium to lanthanum-doped alumina as a carrier to increase the lifetime and thermal stability of the palladium catalyst for high temperature methane combustion It aims to contribute to the prevention of air pollution by suppressing the occurrence of carbon monoxide (CO), nitrogen oxides (NOx), and total hydrocarbons (THC) in the methane combustion reaction. have.

도 1은 본 발명의 팔라듐계 촉매를 메탄연소기에 사용시 시간에 따른 온도 변화 그래프로.1 is a graph of temperature change with time when the palladium-based catalyst of the present invention is used in a methane burner.

도 2는 본 발명의 팔라듐계 촉매를 메탄연소기에 사용시 시간에 따른 배가스 농도 변화 그래프이다.2 is a graph of flue gas concentration change with time when the palladium-based catalyst of the present invention is used in a methane burner.

본 발명의 메탄 연소용 팔라듐계 금속촉매는 란타늄이 1∼10 mol% 도핑된 알루미나 25∼50 wt%를 팔라듐 수용액 50∼75wt%에 함침한 후 70∼100℃에서 1∼6시간 동안 감압건조하는 단계와, 건조된 촉매를 500∼600℃에서 5.5∼6.5시간 동안 소성하고 500∼600℃에서 5.5∼6.5시간 동안 수소로 환원반응 시켜 알루미나에 팔라듐을 담지하는 단계와, 팔라듐이 담지된 알루미나에 티타늄 졸을 혼합하고 100℃에서 6시간 동안 감압건조하는 단계와, 건조 후 750∼850℃에서 3.5∼4.5시간 동안 수소로 환원반응 시키는 단계를 거쳐 팔라듐계 금속촉매를 제조하는 단계로 구성된다.The palladium-based metal catalyst for methane combustion of the present invention is impregnated with 25 to 50 wt% of alumina doped with 1 to 10 mol% of lanthanum in 50 to 75 wt% of an aqueous palladium solution and then dried under reduced pressure at 70 to 100 ° C. for 1 to 6 hours. And the step of calcining the dried catalyst at 500 to 600 ° C. for 5.5 to 6.5 hours and reducing the reaction with hydrogen at 500 to 600 ° C. for 5.5 to 6.5 hours to carry palladium on the alumina and titanium on the alumina on which the palladium is supported. Mixing the sol and drying under reduced pressure for 6 hours at 100 ℃, and drying to reduce the hydrogen for 3.5 to 4.5 hours at 750 ~ 850 ℃ comprises a step of preparing a palladium-based metal catalyst.

이하 본 발명을 다음의 실시예 및 시험예를 통하여 상세히 설명하고자 한다. 그러나 이들이 본 발명의 기술적 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through the following examples and test examples. However, these do not limit the technical scope of the present invention.

〈 실시예 1 〉<Example 1>

란타늄(La)이 2 mol% 담지된 알루미나(La-Al2O3) 25 wt%를 팔라듐 (Pd(NO3)2, 19.96% Pd, Engelhard Chem. Co.) 수용액 75 wt%에 함침한 후 70℃에서 1시간 동안 감압건조하였다. 건조 후 550℃에서 6시간 동안 소성한 다음 550℃에서 6시간 동안 수소로 환원반응 시켜 Pd/La-Al2O3를 제조하였다.After immersing 25 wt% of lanthanum (La) -supported alumina (La-Al 2 O 3 ) in 75 wt% of an aqueous solution of palladium (Pd (NO 3 ) 2 , 19.96% Pd, Engelhard Chem. Co.) It dried under reduced pressure at 70 degreeC for 1 hour. After drying, the mixture was calcined at 550 ° C. for 6 hours and then reduced with hydrogen at 550 ° C. for 6 hours to prepare Pd / La-Al 2 O 3 .

Pd/La-Al2O3촉매에서 팔라듐의 함량은 Energy Dispersive X-ray Spectromscopy(EDX)의 방법으로 분석결과 2 wt% 였다. 후처리로 팔라듐이 2 wt% 담지된 Pd/La-Al2O3촉매와 10 mol% 티타늄 졸을 혼합하여 100℃에서 1시간 동안 감압건조하였다. 티타늄 졸은 티타늄테트라이소프로폭사이드(Ti[OCH(CH3)2]4, titaniumtetraisopropoxide, 97%, Aldrich)에 질량비로 10의 물을 첨가하여 침전시킨 후, 티타늄테트라이소프로폭사이드 대비 3배 몰비의 염산을 첨가하여 제조하였다. 건조된 촉매를 800℃에서 수소로 4시간 동안 환원하여 TiO2/Pd/La-Al2O3촉매를 제조하였다.The content of palladium in Pd / La-Al 2 O 3 catalyst was 2 wt% as a result of analysis by Energy Dispersive X-ray Spectromscopy (EDX). As a post-treatment, a pd / La-Al 2 O 3 catalyst having 2 wt% of palladium was mixed with a 10 mol% titanium sol and dried under reduced pressure at 100 ° C. for 1 hour. Titanium sol was precipitated by adding 10 water in a mass ratio to titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 , titaniumtetraisopropoxide, 97%, Aldrich), and then tripled compared with titanium tetraisopropoxide. Prepared by adding molar ratio of hydrochloric acid. The dried catalyst was reduced with hydrogen at 800 ° C. for 4 hours to prepare a TiO 2 / Pd / La-Al 2 O 3 catalyst.

〈 실시예 2 〉<Example 2>

후처리시 지르코늄 졸 10 mol%를 사용한 것을 제외하고는 실시예 1과 동일하게 하여 ZrO2/Pd/La-Al2O3촉매를 제조하였다.A ZrO 2 / Pd / La-Al 2 O 3 catalyst was prepared in the same manner as in Example 1 except that 10 mol% of zirconium sol was used in the post-treatment.

〈 시험예 〉<Test Example>

실시예 1과 실시예 2로부터 제조한 촉매의 성능 실험을 위하여 메탄 연소기 내에서 공기와 연료가 들어오는 입구에서부터 첫 번째 뮬라이트 하니콤, 실시예 1에서 제조한 팔라듐계 촉매, 두 번째 뮬라이트 하니콤, 실시예 2에서 제조한 팔라듐계 촉매를 놓고 메탄 연소기 내로 유입되는 공기는 270℃로 예열 후 공급하여 각각의 뮬라이트 하니콤과 팔라듐계 촉매가 있는 4곳에서 메탄 연소기의 연소시간에 따른 온도의 변화를 측정하여 그 결과를 도 2에 나타내었다. 도 2에서처럼 3,000 시간까지도 각 단계에서의 온도변화는 거의 없었으며 촉매활성도 저하되지 않았다. 또한 메탄 연소기의 배가스 분석결과를 측정하여 그 결과를 도 3의 그래프로 나타내었는데 도 3의 그래프에서 보는 바와 같이 연소기의 배가스 내에는 일산화탄소 (CO), 질소산화물(NOx), 미연분(Total Hydrocarbon, THC)의 농도가 낮아 청정 연소가 이루어짐을 알 수 있다.For the performance experiments of the catalysts prepared in Examples 1 and 2, the first mullite honeycomb from the inlet of air and fuel in the methane combustor, the palladium-based catalyst prepared in Example 1, the second mullite honeycomb, With the palladium-based catalyst prepared in Example 2, the air flowing into the methane combustor was preheated and supplied to 270 ° C to measure the change in temperature according to the combustion time of the methane combustor at each of four mullite honeycomb and palladium-based catalysts. The results are shown in FIG. 2. As shown in FIG. 2, there was almost no temperature change in each step and no catalytic activity was lowered up to 3,000 hours. In addition, the measurement results of the exhaust gas analysis of the methane combustor is shown in the graph of Figure 3, as shown in the graph of Figure 3 in the exhaust gas of the combustor carbon monoxide (CO), nitrogen oxides (NOx), unburned (Total Hydrocarbon, It can be seen that the low concentration of THC) results in clean combustion.

본 발명의 팔라듐계 촉매는 란타늄이 도핑된 알루미나에 팔라듐 수용액을 함침시키고 후처리로 금속산화물 졸을 알루미나 표면에 피복시켜 제조한 것으로서 메탄 연소반응에서 1,000℃의 고온에서도 연소가 안정적이고 CO, NOx,미연분의 농도를 낮추어 공해방지에 크게 기여한다.Palladium-containing catalyst of the present invention is lanthanum is in the metal oxide sol to then impregnated with a palladium solution the doped alumina treatment temperature of 1,000 ℃ in methane combustion as produced by coating the alumina surface combustion is stable, CO, NO x In addition, it contributes greatly to pollution prevention by reducing the concentration of unburnt.

Claims (4)

메탄 연소용 금속촉매에 있어서, 란타늄이 담지된 알루미나를 팔라듐 수용액에 함침한 후 감압 건조하는 단계와, 건조 후 소성하고 환원반응시키는 단계와, 후처리로 금속산화물을 혼합하여 감압증발하여 팔라듐계 금속촉매를 제조하는 것을 특징으로 하는 란타늄 도핑 알루미나와 금속산화물 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법.In the methane combustion metal catalyst, the pludium-containing alumina is impregnated in a palladium aqueous solution, followed by drying under reduced pressure, followed by drying and calcining and reducing the reaction, and evaporation of a metal oxide by post-treatment under reduced pressure to produce a palladium-based metal. A method of producing a palladium catalyst for methane combustion by lanthanum-doped alumina and metal oxide post-treatment, characterized by preparing a catalyst. 제 1항에 있어서, 란타늄 1∼10 mol%를 알루미나에 담지시켜 란타늄이 도핑된 알루미나 25∼50 wt%에 팔라듐 19.96% 수용액 50∼75 wt%에 함침한 후 감압건조하고, 건조된 촉매를 500∼600℃에서 5.5∼6.5시간 소성하고, 500∼600℃에서 5.5∼6.5시간 동안 수소가스로 환원하는 것을 특징으로 하는 란타늄 도핑 알루미나와 금속 산화물 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법.The method of claim 1, wherein 1 to 10 mol% of lanthanum is supported on alumina, 25-50 wt% of lanthanum-doped alumina is impregnated with 50 to 75 wt% of a 19.96% aqueous solution of palladium, and dried under reduced pressure. A method for producing a methane-burning palladium catalyst by post-treatment with lanthanum-doped alumina and metal oxides, which is calcined at ˜600 ° C. for 5.5 to 6.5 hours and reduced with hydrogen gas at 500 to 600 ° C. for 5.5 to 6.5 hours. 제 1항에 있어서, 후처리로 금속산화물인 티타늄 졸 또는 지르코늄 졸을 10 mol% 첨가하여 750∼850℃에서 3.5∼4.5시간 동안 수소가스로 환원하는 것을 특징으로 하는 란타늄 도핑 알루미나와 금속 산화물 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법.The lanthanum-doped alumina and the metal oxide post-treatment according to claim 1, wherein 10 mol% of titanium sol or zirconium sol, which is a metal oxide, is added to the post-treatment and reduced to hydrogen gas at 750-850 ° C. for 3.5-4.5 hours. Method for producing a palladium catalyst for methane combustion by the. 제 3항에 있어서, 티타늄 졸 또는 지르코늄 졸은 티타늄 또는 지르코늄에 질량비로 10배의 물을 첨가하여 침전시킨 후, 티타늄 또는 지르코늄 대비 염산 3몰을 첨가하여 티타늄 졸 또는 지르코니아 졸을 제조함을 특징으로 하는 란타늄 도핑 알루미나와 금속 산화물 후처리에 의한 메탄 연소용 팔라듐 촉매의 제조방법.[4] The method of claim 3, wherein the titanium sol or zirconium sol is precipitated by adding 10 times of water to titanium or zirconium in a mass ratio, and then 3 mol of hydrochloric acid is added to titanium or zirconium to prepare a titanium sol or zirconia sol. A method for producing a palladium catalyst for methane combustion by lanthanum doped alumina and metal oxide post-treatment.
KR1019990026680A 1999-07-02 1999-07-02 Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating KR20010008730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990026680A KR20010008730A (en) 1999-07-02 1999-07-02 Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990026680A KR20010008730A (en) 1999-07-02 1999-07-02 Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating

Publications (1)

Publication Number Publication Date
KR20010008730A true KR20010008730A (en) 2001-02-05

Family

ID=19599115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990026680A KR20010008730A (en) 1999-07-02 1999-07-02 Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating

Country Status (1)

Country Link
KR (1) KR20010008730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516480B1 (en) * 2003-05-16 2005-09-23 한국과학기술연구원 Reduction method of catalysts using non-thermal plasma
CN103131488A (en) * 2011-11-30 2013-06-05 中国科学院大连化学物理研究所 Low-concentration methane catalytic combustion catalyst and preparation method of the same
US11458457B2 (en) 2016-11-23 2022-10-04 Qatar University Palladium catalyst for oxidation of methane and method of preparation and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169934A (en) * 1986-01-21 1987-07-27 Toshiba Corp Combustor for gas turbine
JPH0377642A (en) * 1989-08-21 1991-04-03 Matsushita Electric Ind Co Ltd Catalyst for purification of exhaust gas
US5234881A (en) * 1992-06-05 1993-08-10 Ford Motor Company Binary LA-PA oxide catalyst and method of making the catalyst
JPH0949609A (en) * 1995-08-10 1997-02-18 Mitsubishi Heavy Ind Ltd Burning method for combustible gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169934A (en) * 1986-01-21 1987-07-27 Toshiba Corp Combustor for gas turbine
JPH0377642A (en) * 1989-08-21 1991-04-03 Matsushita Electric Ind Co Ltd Catalyst for purification of exhaust gas
US5234881A (en) * 1992-06-05 1993-08-10 Ford Motor Company Binary LA-PA oxide catalyst and method of making the catalyst
JPH0949609A (en) * 1995-08-10 1997-02-18 Mitsubishi Heavy Ind Ltd Burning method for combustible gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516480B1 (en) * 2003-05-16 2005-09-23 한국과학기술연구원 Reduction method of catalysts using non-thermal plasma
CN103131488A (en) * 2011-11-30 2013-06-05 中国科学院大连化学物理研究所 Low-concentration methane catalytic combustion catalyst and preparation method of the same
US11458457B2 (en) 2016-11-23 2022-10-04 Qatar University Palladium catalyst for oxidation of methane and method of preparation and use thereof

Similar Documents

Publication Publication Date Title
Dalla Betta Catalytic combustion gas turbine systems: the preferred technology for low emissions electric power production and co-generation
EP0960649B1 (en) Exhaust gas clean-up catalyst
JP5414786B2 (en) Catalytic treatment with hydrogen for control of NOx emissions
US5185311A (en) Catalytic composite for purifying exhaust gases and a method for preparing the same
KR102099165B1 (en) Supported noble metal catalyst for treating exhaust gas
US20040013592A1 (en) Catalyst for removing hydrocarbons from exhaust gas and method for purification of exhaust gas
US7988940B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst
JPH11244665A (en) Decrease of nitrogen oxides in oxidizing atmosphere and catalyst therefor containing at least one zeolite eu-1 and/or nu-86 and/or nu-87
US7976805B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst
KR20010008730A (en) Fabrication of Palladium Catalyst Using La-doped Alumina and Metal Oxide Post Coating
JPS61252409A (en) Method of igniting methane fuel
JPS6380847A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JP2531641B2 (en) Contact combustion catalyst
JP2976239B2 (en) Composite catalyst for high temperature combustion
Zwinkels et al. Catalytic fuel combustion in honeycomb monolith reactors
JP3368920B2 (en) Natural gas combustion method and natural gas combustor
US8071062B2 (en) High temperature catalytic process to reduce emissions of carbon monoxide
JP2563393B2 (en) Combustible gas oxidation catalyst
JPS634852A (en) Catalyst for combustion
JPH1066867A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst
Istratescu et al. Ageing Studies of Pt-and Pd-Based Catalysts for the Combustion of Lean Methane Mixtures. Processes 2023, 11, 1373
JP3638813B2 (en) Method for producing catalyst for combustion of methane fuel
JPS60206448A (en) Catalyst carrier for purifying exhaust gas
JP2005218976A (en) Emission gas purification catalyst and its producing method
JP2010104910A (en) S (sulfur)-storage catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application