KR20010004405A - Method for manufacturing electrode for direct methanol feul cell - Google Patents

Method for manufacturing electrode for direct methanol feul cell Download PDF

Info

Publication number
KR20010004405A
KR20010004405A KR1019990025037A KR19990025037A KR20010004405A KR 20010004405 A KR20010004405 A KR 20010004405A KR 1019990025037 A KR1019990025037 A KR 1019990025037A KR 19990025037 A KR19990025037 A KR 19990025037A KR 20010004405 A KR20010004405 A KR 20010004405A
Authority
KR
South Korea
Prior art keywords
electrode
catalyst
anode
fuel cell
direct methanol
Prior art date
Application number
KR1019990025037A
Other languages
Korean (ko)
Other versions
KR100311731B1 (en
Inventor
정두환
Original Assignee
손재익
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구소 filed Critical 손재익
Priority to KR1019990025037A priority Critical patent/KR100311731B1/en
Publication of KR20010004405A publication Critical patent/KR20010004405A/en
Application granted granted Critical
Publication of KR100311731B1 publication Critical patent/KR100311731B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method of making an electrode of a direct methanol fuel cell is provided to improve a performance of the fuel cell. CONSTITUTION: A method of making an electrode of a direct methanol fuel cell comprises coating a slurry on a carbon fabric and drying a result during one to twenty-four hours in a vacuum oven maintained at a temperature of 20 to 200 deg.C. The slurry is obtained by mixing an active carbon and a Nafion solution according to a weight rate of 1:1-50 and agitating a mixed result during 10 minutes to three hours. A catalyst is obtained by adding water to a catalyst of Pt-Ru/C of 5-60 wt% and adding and mixing isopropanol and Nafion solution to the added result. The catalyst is coated on a carbon fabric on which an active carbon is coated, and is dried in a vacuum oven.

Description

직접 메탄올 연료전지의 전극 제조방법{Method for manufacturing electrode for direct methanol feul cell}Method for manufacturing electrode for direct methanol fuel cell {Method for manufacturing electrode for direct methanol feul cell}

본 발명은 직접 메탄올 연료전지(Direct Methanol Feul Cell, DMFC)의 전극 제조방법에 관한 것으로, 보다 자세하게는 연료극 제조시 전극지지체로서의 탄소천위에 친수성 물질인 활성탄소분말을 도포하여 활성탄소층을 형성하고 그 위에 전극 촉매층을 도포하여 연료극을 제조함으로써 액상 연료인 메탄올이 친수성 활성탄소층에 의해 전극 촉매층으로 쉽게 도달될 수 있도록 하여 전지의 성능향상이 이루어질 수 있도록 한 직접 메탄올 연료전지의 전극 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode of a direct methanol fuel cell (DMFC), and more particularly, to form an activated carbon layer by coating an activated carbon powder, a hydrophilic material, on a carbon cloth as an electrode support when manufacturing an anode. A method of manufacturing an electrode of a direct methanol fuel cell in which an electrode catalyst layer is coated thereon to manufacture a fuel electrode, thereby allowing methanol, which is a liquid fuel, to be easily reached to the electrode catalyst layer by a hydrophilic activated carbon layer, thereby improving performance of the battery. will be.

연료전지(Feul Cell)는 메탄올이나 천연가스등의 탄화수소 계열의 연료중에 포함되어 있는 수소와 공기중의 산소를 전기화학 반응에 의해서 직접 전기에너지로 변환시키는 고효율의 청정 발전기술로서 1970년대에 미국에서 우주선의 전원공급용으로 개발된 이를 일반 전원용으로 사용하고자 하는 연구가 추진되어 왔으며, 현재 미국과 일본등의 선진국에서는 그 실용화를 위한 개발이 활발하게 진행되고 있다.A fuel cell is a high-efficiency clean power generation technology that converts hydrogen and oxygen contained in hydrocarbon fuels such as methanol and natural gas into electrical energy directly by electrochemical reactions. Research has been conducted to use this power supply developed for power supply for general power supply. Currently, developed countries for the practical use are being actively developed in developed countries such as the United States and Japan.

한편, 연료전지는 사용되는 연료의 종류에 따라 기체형 연료전지와 액체형 연료전지로 구분되며, 전해질의 종류에 따라서는 크게 알칼리형, 인산형, 용융탄산염형, 고체산화물형 및 고체고분자 전해질형 등으로 분류되고 있다.On the other hand, fuel cells are classified into gaseous fuel cells and liquid fuel cells according to the type of fuel used, and largely alkaline type, phosphoric acid type, molten carbonate type, solid oxide type and solid polymer electrolyte type depending on the type of electrolyte. Are classified as.

일반적으로 수소를 연료로 사용하는 기체형 연료전지는 에너지 밀도가 크다는 장점을 지니고 있으나, 수소가스의 취급에 주의를 요하고 연료가스인 수소가스를 생산하기 위하여 메탄이나 메탄올등을 이용한 연료개질 장치등의 부대 설비를 필요로 하는 문제점이 있다.In general, gaseous fuel cells that use hydrogen as a fuel have the advantage of high energy density, but require attention to handling hydrogen gas and fuel reformers using methane or methanol to produce hydrogen gas, which is fuel gas. There is a problem that needs additional equipment.

이에 반해 액체를 연료로 사용하는 액체형 연료전지는 기체형에 비해 에너지 밀도는 낮으나 연료의 취급이 용이하고 운전온도가 낮으며 특히 연료개질 장치를 필요로 하지 않는다는 특성에 기인하여, 소형, 범용 이동용 전원으로서 적합한 시스템으로 알려지고 있다.In contrast, liquid fuel cells using liquid as fuel have lower energy density than gas type, but are easy to handle fuel, have low operating temperature, and do not require fuel reforming device. It is known as a suitable system.

액체형 연료전지가 지니고 있는 상기의 장점에 기인하여 액체형 연료전지의 대표적인 한 형태인 직접 메탄올 연료전지(DMFC)에 대한 많은 연구가 수행되어 오고 있는 바, 최근 미국 Los Alamas 국립연구소에서는 고체 고분자막을 전해질로 이용하여 단위전지의 성능이 0.5V에서 670mA/cm2인 고성능의 DMFC의 개발을 발표하였고, Jet Propulsion Laboratory에서는 0.6V에서 180mA/cm2인 스택 개발을 발표함으로써 액상연료인 메탄올을 직접 발전용 연료로 이용한 연료전지의 실용화 가능성을 입증하기에 이르렀다.Due to the above advantages of liquid fuel cells, many studies on direct methanol fuel cells (DMFCs), a representative form of liquid fuel cells, have been conducted. Recently, the Los Alamas National Laboratory, USA, used a solid polymer membrane as an electrolyte. was used to release the development of high-performance, the performance of 670mA / cm 2 at 0.5V of the unit cell DMFC, Jet Propulsion Laboratory in the fuel for direct development of a liquid fuel is methanol released by the 180mA / cm 2 of a stack developed by 0.6V It has come to prove the possibility of practical use of the fuel cell.

직접 메탄올 연료전지는 메탄올의 산화반응이 일어나는 연료극 반응과 산소의 환원반응이 일어나는 공기극 반응으로부터 얻어지는 기전력의 힘이 발전의 근간을 이루며, 이때 연료극과 공기극에서 일어나는 반응은 아래와 같다.The direct methanol fuel cell is based on the power of the electromotive force obtained from the cathode reaction in which the oxidation reaction of methanol takes place and the cathode reaction in which the reduction reaction of oxygen occurs, and the reaction occurring in the anode and the cathode is as follows.

연료극: CH3OH + H2O → CO2+ H++ 6e-Ea= 0.04VFuel electrode: CH 3 OH + H 2 O → CO 2 + H + + 6e - E a = 0.04 V

공기극: 3/2O2+ 6H++ 6e-→ 3H2O Ec= 1.23V Cathode: 3 / 2O 2 + 6H + + 6e - → 3H 2 OE c = 1.23V

전체반응: CH3OH + 3/2O2→ CO2+ 3H2O Ecell= 1.19VTotal reaction: CH 3 OH + 3 / 2O 2 → CO 2 + 3H 2 OE cell = 1.19 V

상기의 연료극과 공기극에서 일어나는 반응에서 알 수 있듯이, 연료극에서는 액상인 메탄올(CH3OH)과 물(H2O)이 고상인 전극과 반응하는 2상 반응이기 때문에 친수성이 강한 전극이 요구되고 있다. 한편, 공기극에서는 수소이온(H+)과 산소(O2)가 반응하여 생선된 물(H2O)과 공기중의 산소(O2) 및 전극 촉매층이 3상으로 존재하고, 반응의 결과로 생성된 물이 빨리 외부로 배출되어야 하기 때문에 소수성이 강한 전극이 요구된다.As can be seen from the reactions occurring at the anode and the cathode, a highly hydrophilic electrode is required in the anode because a liquid phase methanol (CH 3 OH) and water (H 2 O) react with a solid phase electrode. . On the other hand, in the air electrode, hydrogen ions (H + ) and oxygen (O 2 ) react with the fish (H 2 O), oxygen (O 2 ) in the air, and the electrode catalyst layer exist in three phases. Since the generated water must be discharged to the outside quickly, a strong hydrophobic electrode is required.

이와같이 연료극과 공기극 각각에서 요구되는 조건을 만족시키기 위해서는 연료극의 경우 전극 촉매층 형성에 사용되는 소수성 결합제의 첨가량을 최소화시킴과 아울러 촉매의 분산성과 결합성을 높여야 하며, 공기극의 경우에는 소수성 결합제를 첨가하여 충분한 고·액·기상의 반응이 일어나도록 함과 동시에 충분한 반응성의 부여를 위해 촉매의 분산성 및 결합성을 높여야 할 것이다.As such, in order to satisfy the requirements of the anode and the cathode, the amount of the hydrophobic binder used to form the electrode catalyst layer should be minimized in the case of the anode, and the dispersibility and the bonding property of the catalyst should be increased. In order to allow sufficient solid, liquid, and gas phase reactions to occur, sufficient dispersibility and binding property of the catalyst should be increased.

그런데, 종래의 연료전지 전극 제조방법에서는 통상적으로 전극 촉매층 형성을 위한 슬러리 제조시 결합제의 첨가량에 대한 제어를 제대로 하지 않고, 또한 그 슬러리의 교반을 충분히 행하지 않음에 따라 촉매의 분산성 및 결합성이 떨어져서 만족할 만한 연료전지의 성능을 기대하기 어려운 실정이다.However, in the conventional fuel cell electrode manufacturing method, the dispersibility and the bondability of the catalyst are not normally controlled due to poor control of the addition amount of the binder during preparation of the slurry for forming the electrode catalyst layer and insufficient stirring of the slurry. It is difficult to expect satisfactory fuel cell performance due to the fall.

상기의 문제점을 감안하여 본 출원인은 결합제 첨가량의 제어 및 촉매 슬러리의 저온 교반을 통해서 촉매의 분산성과 결합성을 향상시킨 "직접 메탄올 연료전지의 전극 제조방법"을 특허출원 제 1998-22324호로 선출원한 바 있다.In view of the above problems, the present applicant has filed a patent application No. 1998-22324 for "Direct Methanol Fuel Cell Electrode Manufacturing Method" which improves the dispersibility and binding property of the catalyst through controlling the amount of binder added and stirring the catalyst slurry at low temperature. There is a bar.

상기 선출원의 전극 제조방법은 크게 연료극 제조방법과 공기극 제조방법의 두가지로 나뉘어 지며, 그 중 연료극 제조방법은 도1의 제조공정도에서와 같이, 먼저 5 ∼ 60wt% Pt-Ru/C 촉매에 물과 이소프로필 알콜(isopropyl alcohol)을 1 ∼The electrode manufacturing method of the prior application is largely divided into two methods, a cathode manufacturing method and a cathode manufacturing method. Among them, the anode manufacturing method includes water and 5 to 60wt% Pt-Ru / C catalyst as shown in the manufacturing process diagram of FIG. 1 to 1 isopropyl alcohol

100의 부피비로 가하여 장시간에 걸쳐 볼밀중에서 교반하여 촉매입자의 완전한 분산이 이루어지도록 슬러리를 제조한 후, 이 슬러리를 저온(0 ∼ 10℃)에서 교반을 행하면서 30 ∼ 60wt% 농도의 PTFE(Polytetrafluoroethylene) 용액을 서서히 가하여 장시간 동안 교반하여 얻어진 슬러리를 탄소종이위에 도포하여 50 ∼ 200℃의 온도에서 건조시키는 과정을 소정의 촉매함량이 될 때까지 반복한 다음 탄소종이위에 촉매가 도포된 전극의 PTFE를 소결시키고 수회에 걸쳐 롤링 머신을 통과시켜 탄소종이와 촉매간의 접착력의 증대가 이루어지도록 함으로써 연료극의 제조가 이루어지도록 하고 있다.After the slurry was prepared to complete dispersion of the catalyst particles by stirring in a ball mill over a long period of time at a volume ratio of 100, the slurry was stirred at a low temperature (0 to 10 ° C) and PTFE (Polytetrafluoroethylene) at a concentration of 30 to 60wt%. ) The solution obtained by gradually adding the solution and stirring for a long time is applied to the carbon paper and dried at a temperature of 50 to 200 ° C. until the predetermined catalyst content is reached. Then, PTFE of the electrode coated with the catalyst on the carbon paper is applied. By sintering and passing the rolling machine several times, the adhesion between the carbon paper and the catalyst is increased to produce the anode.

그리고, 상기 방법에서의 공기극 제조공정은 도2에서와 같이 전체적인 공정을 상기 연료극 제조공정과 대략 동일하게 수행함에 있어 다만 촉매로서 20 ∼ 80wt% Pt/C를 사용한다는 점에서 차이를 보이고 있다.In addition, the cathode manufacturing process in the above method has a difference in that 20 to 80wt% Pt / C is used as a catalyst in performing the overall process as in the anode manufacturing process as shown in FIG.

이와같은 선출원의 직접 메탄올 연료전지의 연료극 및 공기극 제조방법에서는 금속촉매와 용매를 혼합하여 슬러리를 제작할 때 볼밀링에 의한 충분한 교반이 이루어지도록 하여 촉매입자 상호간의 결합력을 저하시키고, 상기의 교반을 통해서 얻어진 슬러리에 테프론 결합제를 첨가하여 교반하는 작업을 저온에서 수행함으로써 교반시 발생되는 열을 억제시켜 결합제가 촉매층에 고르게 분산되도록 하고 있음을 알 수 있다.In the method of manufacturing a cathode and an anode of a direct methanol fuel cell of such an earlier source, when a slurry is prepared by mixing a metal catalyst and a solvent, sufficient agitation is performed by ball milling to decrease the bonding force between catalyst particles, and through the above agitation. By adding a Teflon binder to the obtained slurry and performing a stirring operation at a low temperature, it can be seen that the heat generated during stirring is suppressed so that the binder is evenly dispersed in the catalyst layer.

그런데, 상기와 같이 전극의 제조시 촉매와 용매간의 충분한 교반에 의해 분산성과 결합성을 향상시키는 데는 한계가 따르고 있음에 따라 이러한 전극을 사용하여 제작되는 연료전지의 성능개선 효과 역시도 일정수준 이상을 기대하기가 어려운 실정이다.However, as described above, there is a limit in improving dispersibility and bonding property by sufficient stirring between the catalyst and the solvent in the preparation of the electrode, and thus the performance improvement effect of the fuel cell manufactured using the electrode is also expected to be above a certain level. It is difficult to do.

본 발명은 종래 직접 메탄올 연료전지의 전극 제조방법에서 제기되는 상기의 문제점을 해결하여 연료전지의 성능을 향상시킬 수 있도록 하기 위하여 창안된 것으로, 연료극 제조시 전극지지체로서의 탄소천위에 친수성 물질인 활성탄소분말을 도포하고 그 위에 전극 촉매층을 도포하여 연료극을 제조함으로써 액상 연료인 메탄올이 친수성 활성탄소층에 의해 전극 촉매층으로 쉽게 도달될 수 있도록 하여 전지의 성능향상이 이루어질 수 있도록 한 직접 메탄올 연료전지의 전극 제조방법을 제공하는 데 목적을 두고 있다.The present invention was devised to improve the performance of the fuel cell by solving the above problems raised in the electrode manufacturing method of the conventional direct methanol fuel cell, and activated carbon which is a hydrophilic material on the carbon cloth as an electrode support when manufacturing the anode. The electrode of the direct methanol fuel cell which improves the performance of the battery by applying the powder and then applying the electrode catalyst layer thereon to produce a fuel electrode so that methanol, which is a liquid fuel, can be easily reached by the hydrophilic activated carbon layer to the electrode catalyst layer. The aim is to provide a method of manufacture.

도1은 종래 방법에 의한 직접 메탄올 연료전지의 연료극 제조공정도.1 is a fuel electrode manufacturing process diagram of a direct methanol fuel cell by a conventional method.

도2는 종래 방법에 의한 직접 메탄올 연료전지의 공기극 제조공정도.Figure 2 is a cathode manufacturing process of a direct methanol fuel cell by a conventional method.

도3은 본 발명의 방법에 의한 연료극 제조공정도.3 is a manufacturing process of the anode according to the method of the present invention.

도4은 본 발명의 방법에 의해 제조된 연료극의 단면구조도.4 is a cross-sectional structural view of a fuel electrode manufactured by the method of the present invention.

도5는 본 발명의 방법에 따른 연료극이 사용된 단위전지와 종래 방식에 의한 단위전지간의 전지성능 비교그래프.5 is a cell performance comparison graph between a unit cell using a fuel electrode according to the method of the present invention and a unit cell according to a conventional method.

도6은 본 발명의 방법에 따른 연료극이 사용된 단위전지의 운전온도에 따른 단위전지 성능곡선6 is a unit cell performance curve according to the operating temperature of the unit cell using the anode according to the method of the present invention

도7은 본 발명의 방법에 따른 연료극이 사용된 단위전지의 메탄올 농도에 따른 단위전지 성능곡선7 is a unit cell performance curve according to the methanol concentration of the unit cell using the anode according to the method of the present invention

도8은 본 발명의 방법에 따른 연료극이 사용된 단위전지의 운전압력에 따른 단위전지 성능곡선8 is a unit cell performance curve according to the operating pressure of the unit cell using the anode according to the method of the present invention

본 발명 직접 메탄올 연료전지의 연료극 제조방법은, 전극지지체로서의 탄소천위에 활성탄소분말과 나피온용액의 슬러리를 도포하여 친수성 활성탄소층을 형성하는 단계와, 5 ∼ 60wt% Pt-Ru/C 촉매와 5 ∼ 20wt% 나피온(Nafion) 용액을 혼합,교반하여 얻어진 촉매 슬러리를 상기 활성탄소층이 도포된 전극지지체위에 소정의 함량이 될 때까지 반복해서 도포하여 진공오븐중에서 건조시키는 단계 및 탄소천과 촉매간의 접착력 증대를 위해 상기 소성건조된 전극을 롤링 머신에 통과시키는 단계로 이루어진다.The method of manufacturing a cathode of a direct methanol fuel cell of the present invention comprises the steps of applying a slurry of activated carbon powder and a Nafion solution on a carbon cloth as an electrode support to form a hydrophilic activated carbon layer, and a 5 to 60 wt% Pt-Ru / C catalyst. And a catalyst slurry obtained by mixing and stirring a 5-20 wt% Nafion solution and repeatedly applying it to a predetermined content on the electrode support to which the activated carbon layer is applied to dry in a vacuum oven and a carbon cloth. Passing the calcined electrode through a rolling machine to increase the adhesion between the catalyst and the catalyst.

한편, 본 발명의 직접 메탄올 연료전지 전극 제조방법에서 공기극은 앞서 살펴본 바의 본원인에 의해 선출원된 공기극 제조방법과 동일한 공정을 통해서 제조된다.On the other hand, in the direct methanol fuel cell electrode manufacturing method of the present invention, the cathode is manufactured through the same process as the cathode manufacturing method previously filed by the present applicant as described above.

도3은 본 발명 직접 메탄올 연료전지의 연료극 제조공정도로서, 이에 의거하여 연료극 제조과정을 살펴보면 다음과 같다.3 is a process diagram of manufacturing a cathode of a direct methanol fuel cell of the present invention.

먼저, 연료극의 확산층으로서의 친수성 활성 탄소층의 형성을 위해 탄소천위에 활성탄소분말과 5 ∼ 20wt% 나피온 용액을 1:1 ∼ 50의 무게비로 혼합하여 10분 ∼ 3시간동안 교반하여 얻어진 슬러리를 도포한 후 20 ∼ 200℃의 온도로 유지된 진공오븐중에서 1 ∼ 24시간정도 건조시킨다.First, in order to form a hydrophilic activated carbon layer as a diffusion layer of the anode, a slurry obtained by mixing an activated carbon powder and a 5-20 wt% Nafion solution on a carbon cloth at a weight ratio of 1: 1-50 was stirred for 10 minutes to 3 hours. After coating, it is dried for about 1 to 24 hours in a vacuum oven maintained at a temperature of 20 to 200 ℃.

다음, 5 ∼ 60wt% Pt-Ru/C 촉매에 적정량의 물을 첨가한 후 이소프로판올(Isopropanol)과 5 ∼ 20wt% 나피온(Nafion) 용액을 첨가하여 혼합한 후 교반을 행하여 촉매 슬러리를 만든 후 상기 활성탄소층이 도포된 탄소천위에 도포하고 진공오븐중에서 건조시킨다.Next, an appropriate amount of water is added to the 5 to 60 wt% Pt-Ru / C catalyst, then isopropanol and 5 to 20 wt% Nafion solution are added and mixed, followed by stirring to form a catalyst slurry. The activated carbon layer is applied onto the coated carbon cloth and dried in a vacuum oven.

상기 촉매층의 도포 및 건조과정은 촉매의 함량이 소정치에 도달할 때까지 반복되며, 최종적으로 롤링 머신(rolling machine)을 2 ∼ 5회 가량 통과시킴에 의해 촉매층과 전극지지체간의 접착력이 증대되도록 함에 의해서 본 발명의 연료극이 얻어지게 된다.The coating and drying process of the catalyst layer is repeated until the content of the catalyst reaches a predetermined value, and finally, the adhesive force between the catalyst layer and the electrode support is increased by passing the rolling machine about 2 to 5 times. As a result, the anode of the present invention is obtained.

도4는 상기의 제조과정을 통해서 얻어진 본 발명 직접 메탄올 연료전지의 연료극에 대한 단면구조도로서, 도시된 바와같이 본 발명의 연료극은 탄소천(Carbon Cloth)으로 이루어진 전극지지체(1)와 이온교환막(Proton Exchange Membrane)(2) 사이에 탄소지지체(Carbon Support)(3a)로서의 카본 블랙(Carbon black) 표면에 촉매(Pt-Ru)입자(3b)가 부착되어진 금속 촉매층(3)이 개재되어 구성되는 통상의 연료극에 있어서, 상기 전극지지체(1)와 금속 촉매층(3) 사이에 친수성 기(Hydrophilic Group)를 갖는 활성탄소분말(Active Carbon)로 이루어진 확산층(4)이 개재되어 있다.4 is a cross-sectional structure diagram of an anode of a direct methanol fuel cell of the present invention obtained through the above manufacturing process. As shown in the drawing, the anode of the present invention comprises an electrode support 1 made of carbon cloth and an ion exchange membrane ( Between the Proton Exchange Membrane (2), a metal catalyst layer (3) having a catalyst (Pt-Ru) particle (3b) attached to a surface of a carbon black as a carbon support (3a) is interposed. In a conventional fuel electrode, a diffusion layer 4 made of active carbon having a hydrophilic group (Hydrophilic Group) is interposed between the electrode support 1 and the metal catalyst layer 3.

상기 친수성 활성탄소층으로서의 확산층(4)은 전극지지체(1)의 외부로부터 유입되는 양극 연료(Anode feul)로서의 메탄올(CH3OH+H2O)이 전극 표면의 금속 촉매층(3)으로 쉽게 도달하도록 하는 역할을 함으로써 연료극에서의 반응이 활발하게 이루어지도록 하여 연료전지의 성능을 개선시키게 된다.In the diffusion layer 4 as the hydrophilic activated carbon layer, methanol (CH 3 OH + H 2 O) as anode fuel (CH 3 OH + H 2 O) flowing from the outside of the electrode support 1 easily reaches the metal catalyst layer 3 on the electrode surface. By doing so, the reaction at the anode is actively performed, thereby improving the performance of the fuel cell.

본 발명의 실시예는 다음과 같다.Embodiments of the present invention are as follows.

연료극 제조Anode production

연료극의 확산층은 Kuray Chemical사의 표면적(Surface area)이 300 ∼ 2000m2/g 활성탄소를 사용하여 제조하였다. 먼저, 상기 활성탄소와 5 ∼ 20wt% 나피온 용액을 1 : 1 ∼ 50의 무게비로 혼합하여 10분 ∼ 3시간동안 교반하여 얻어진 슬러리 적당량을 탄소천위에 도포한 후 20 ∼ 200℃의 온도로 유지된 진공오븐중에서 1 ∼ 24시간정도 건조시켰다.The diffusion layer of the anode was prepared using a surface area (surface area) of Kuray Chemical Co., Ltd. 300 ~ 2000m 2 / g activated carbon. First, after applying the appropriate amount of slurry obtained by mixing the activated carbon and 5-20 wt% Nafion solution in a weight ratio of 1: 1-50, stirring for 10 minutes to 3 hours, and then maintained at a temperature of 20 ~ 200 ℃ It dried for about 1 to 24 hours in the vacuum oven.

다음, 5 ∼ 60wt% Pt-Ru/C 촉매에 적당량의 물을 첨가한 후 이소프로판올(Isopropanol)과 5 ∼ 20wt% 나피온(Nafion) 용액을 첨가하여 혼합한 후 초음파 교반 및 기계적인 교반을 행하여 촉매 슬러리를 만든 후 이를 상기 활성탄소층이 도포된 탄소천위에 도포하고 20 ∼ 200℃의 온도로 유지된 진공오븐중에서 1 ∼ 24시간 건조시키는 과정을 소정의 촉매함량에 도달될 때까지 반복하였다.Next, an appropriate amount of water is added to the 5 to 60 wt% Pt-Ru / C catalyst, then isopropanol and 5 to 20 wt% Nafion solution are added and mixed, followed by ultrasonic stirring and mechanical stirring. After the slurry was prepared, it was applied on the carbon cloth to which the activated carbon layer was applied and dried in a vacuum oven maintained at a temperature of 20 to 200 ° C. for 1 to 24 hours until the predetermined catalyst content was reached.

이어서, 상기 탄소천위에 확산층과 금속촉매층이 순차도포된 전극 성형체를 롤링 머신(rolling machine)에 2 ∼ 5회 가량 통과시켜 촉매층과 탄소천간의 접착력이 증대되도록 하여 본 발명의 연료극을 얻었다.Subsequently, the electrode molded body in which the diffusion layer and the metal catalyst layer were sequentially coated on the carbon cloth was passed through a rolling machine about 2 to 5 times to increase the adhesion between the catalyst layer and the carbon cloth to obtain the fuel electrode of the present invention.

한편, 상기 본 발명의 방법에 의해 얻어진 연료극과의 비교를 위한 종래예 시편으로서의 종래 연료극을 앞서 살펴본 바의 도1의 제조방법에 의해 제작하였다.On the other hand, the conventional anode as a conventional example specimen for comparison with the anode obtained by the method of the present invention was produced by the manufacturing method of FIG.

상기 종래예 연료극에서 금속촉매의 함량은 Pt-Ru/C 촉매는 백금함량 기준으로 0.1 ∼ 3mg/cm2이 되도록 하였으며, 최종 건조된 촉매층을 2 ∼ 4℃/min의 승온속도로 200 ∼ 250℃ 까지 가열한 후 20 ∼ 60분간 이 온도에서 유지시키고, 2 ∼ 4℃/min의 승온속도로 300 ∼ 380℃의 온도에서 가열해서 PTFE의 소결이 이루어지도록 하였다.In the conventional anode, the content of the metal catalyst was 0.1 to 3 mg / cm 2 based on the platinum content of the Pt-Ru / C catalyst, and the final dried catalyst layer was heated to 200 to 250 ° C. at a heating rate of 2 to 4 ° C./min. After heating up to 20 to 60 minutes at this temperature, it was heated at a temperature of 300 to 380 ℃ at a temperature increase rate of 2 to 4 ℃ / min to achieve the sintering of PTFE.

공기극 제조Air cathode manufacturers

공기극은 본인의 선출원 공기극 제조방법, 즉 도2의 공기극 제조공정도에 의거하여 공기극을 제작하였다.The cathode was fabricated in accordance with the method of producing a prior application cathode, that is, the cathode manufacturing process diagram of FIG. 2.

먼저, 공기극 촉매는 비표면적이 넓은 카본블랙에 20 ∼ 80wt% Pt/C (몰비 1:1)의 금속촉매가 담지된 촉매를 사용하였다. 상기 금속촉매에 순수한 물과 이소프로필 알콜을 1 ∼ 100의 부피비로 가하여 1 ∼ 24시간 혹은 가능하다면 장시간에 걸쳐 볼밀을 이용하여 교반하여 촉매입자의 완전한 분산이 이루어지도록 하였다.First, as the cathode catalyst, a catalyst in which 20 to 80 wt% Pt / C (molar ratio 1: 1) is supported on a carbon black having a large specific surface area was used. Pure water and isopropyl alcohol were added to the metal catalyst in a volume ratio of 1 to 100, followed by stirring using a ball mill for 1 to 24 hours or, if possible, to achieve complete dispersion of the catalyst particles.

이어서, 상기 슬러리를 0℃에서 10℃ 미만의 온도로 유지되는 저온분위기(ice-bath)에서 혹은 동결되지 않는 최저의 온도에서 교반을 행하면서 30 ∼ 60wt% 농도를 갖는 PTFE 용액을 가능한 한 소량씩 서서히 가하여 30분에서 1시간 정도 혹은 가능하다면 장시간 동안 교반하여 슬러리를 1차로 제조하였다.Subsequently, as little as possible, a PTFE solution having a concentration of 30 to 60 wt% was stirred in an ice-bath kept at a temperature of 0 ° C. to less than 10 ° C. or at the lowest temperature without freezing. The slurry was first prepared by slowly adding and stirring for about 30 minutes to 1 hour or, if possible, for a long time.

이렇게 제조된 슬러리를 탄소종이위에 도포하여 50 ∼ 200℃의 온도범위에서 10 ∼ 24시간 동안 건조시킨 후에 무게를 측정하여 원하는 촉매함량에 이를 때까지 반복해서 탄소종이위에 슬러리를 균일하게 도포하였다.The slurry thus prepared was coated on carbon paper and dried for 10 to 24 hours at a temperature in the range of 50 to 200 ° C., and the weight was repeatedly measured until the desired catalyst content was repeatedly applied to the slurry evenly on the carbon paper.

탄소종이위에 촉매가 도포된 전극은 상온에서 하루정도 건조시킨 후에 PTFE를 소결시키기 위해 3℃/min의 승온속도로 230 ∼ 250℃ 까지 가열한 후 20 ∼ 60분간 이 온도에서 유지시키고, 3℃/min의 승온속도로 320 ∼ 380℃의 온도로 가열하여 이 온도에서 20 ∼ 60분간 유지시켜서 촉매층을 제조하였다. 이때 오븐의 분위기는 질소분위기로 하였다.The electrode coated with the catalyst on the carbon paper was dried at room temperature for about one day, and then heated to 230 to 250 ° C at a heating rate of 3 ° C / min to sinter PTFE, and then maintained at this temperature for 20 to 60 minutes, and maintained at 3 ° C / The catalyst layer was manufactured by heating to the temperature of 320-380 degreeC at the temperature increase rate of min, hold | maintaining at this temperature for 20 to 60 minutes. At this time, the atmosphere of the oven was nitrogen atmosphere.

이렇게 소성된 전극은 탄소종이와 촉매와의 접착력을 증대시키기 위항여 롤링 머신을 2 ∼ 5회가량 통과시켜서 공기극을 얻었다.The calcined electrode was passed through a rolling machine about 2 to 5 times to increase the adhesion between carbon paper and the catalyst to obtain an air electrode.

단위전지의 성능평가Performance Evaluation of Unit Battery

본 발명의 방법에 의해 제작된 친수성 활성탄소층이 구비된 전극이 연료극으로 사용된 단위전지와 종래 방식에 의해 제조된 연료극이 사용된 단위전지간의 전류밀도(Current dessity)에 따른 전지전압(Cell voltage)을 비교측정하여 보았던 바, 그 결과는 도5에 나타나 있다.Cell voltage according to the current density between the unit cell in which the electrode having the hydrophilic activated carbon layer manufactured by the method of the present invention is used as the anode and the unit cell in which the anode manufactured by the conventional method is used. ), The results are shown in FIG.

이때, 연료 메탄올의 농도는 0.5 M(몰) 내지 4.0M 인 것이 사용되었으며, 고분자막은 나피온(Nafion) 117 이 이용되었다. 그리고, 연료극 촉매로는 5 ∼ 60wt% Pt-Ru/C가 그리고 공기극 촉매로는 20 ∼ 80wt% Pt/C가 사용되었다.At this time, the concentration of the fuel methanol was used 0.5M (mol) to 4.0M, Nafion (117) was used as the polymer membrane. In addition, 5 to 60 wt% Pt-Ru / C was used as the anode catalyst, and 20 to 80 wt% Pt / C was used as the cathode catalyst.

도5에서와 같이, 종래 연료극이 사용된 전지의 경우 100℃일 때 0.4V에서 336mA/cm2의 전류밀도 값을 나타냄에 비해 본 발명의 연료극이 사용된 전지의 경우에는 0.4V에서 427mA/cm2의 전류밀도 값을 나타냄을 알 수 있다.As shown in FIG. 5, the battery having the conventional anode shows a current density value of 336 mA / cm 2 at 0.4 ° C. at 100 ° C., whereas the battery having the anode of the present invention has 427 mA / cm at 0.4 V. It can be seen that the current density value of 2 .

즉, 상기 두 전극 사이에는 약 91mA/cm2의 전류밀도 차이를 보이고 있음을 알 수 있는 데, 이는 본 발명의 방법에 의해 제조된 연료극이 친수성 활성탄소층이 존재함에 기인하여 메탄올 연료가 촉매층까지 더 쉽게 전극에 도달되어서 전극 성능기 개선된 것으로 해석된다.That is, it can be seen that there is a difference in current density of about 91 mA / cm 2 between the two electrodes, which is due to the presence of a hydrophilic activated carbon layer in the anode prepared by the method of the present invention. Reaching the electrode more easily translates into improved electrode performance.

운전조건에 따른 전지 성능평가Battery Performance Evaluation According to Operating Conditions

본 발명의 방법에 따라 제작된 연료극과 통상의 방법으로 제조된 공기극 및 나피온 117 고분자막으로 제작된 단위전지의 운전조건 변화, 즉 운전온도, 메탄올 농도 및 압력에 따른 성능을 관찰하여 보았다.The performance of the fuel cell manufactured according to the method of the present invention, the air electrode manufactured by the conventional method, and the unit cell made of the Nafion 117 polymer membrane, the performance according to the operating temperature, methanol concentration and pressure were observed.

먼저, 도6은 운전온도의 변화에 따른 직접 메탄올 연료전지의 전압-전류 특성을 보인 그래프이다. 도6에서와 같이 출력전압 0.4V를 기준으로 볼 때, 운전온도 100℃, 110℃ 및 120℃ 에서 전류밀도는 423mA/cm2, 470 mA/cm2및 513mA/cm2이었다.First, FIG. 6 is a graph showing voltage-current characteristics of a direct methanol fuel cell according to a change in operating temperature. Based on the output voltage 0.4V as shown in Figure 6, the current density at the operating temperature 100 ℃, 110 ℃ and 120 ℃ was 423mA / cm 2 , 470 mA / cm 2 and 513mA / cm 2 .

이로부터 직접 메탄올 연료전지의 전압-전류 특성은 운전온도에 크게 의존함을 알 수 있는 데, 이는 운전온도가 증가함에 따라 연료극 메탄올의 산화반응 속도의 증가와 연료극으로부터 전해질 막을 통과해 온 수소이온이 공기극에서 산소분자와 반응하는 환원반응의 속도 상승 및 전극저항의 감소에 기인된 결과이다.From this, it can be seen that the voltage-current characteristics of the methanol fuel cell directly depend on the operating temperature. As the operating temperature increases, the oxidation reaction rate of the anode methanol increases and the hydrogen ions passing through the electrolyte membrane from the anode are increased. This is due to the increase in the rate of reduction reaction and the decrease in electrode resistance in the cathode.

다음, 도7은 연료 메탄올의 농도를 0.1M, 0.5M, 1M, 2.5M 및 4M 로 변화시키고, 운전온도가 90℃, 100℃ 및 110℃인 경우 일정 전지전압에서의 전류밀도 특성 곡선이다. 도7에서와 같이 메탄올의 농도는 단위전지의 성능과 밀접한 관계에 있음을 알 수 있다. 메탄올 농도가 2.5M 일 때에 가장 우수한 전류 특성값을 나타내며, 연료의 농도가 낮을수록 일정한 전압에서 전류밀도가 감소함을 알 수 있는 데, 이는 수소이온의 확산속도 지연에 따른 농도분극에 기인된 현상이다.Next, FIG. 7 is a current density characteristic curve at a constant cell voltage when the concentration of fuel methanol is changed to 0.1 M, 0.5 M, 1 M, 2.5 M, and 4 M, and the operating temperatures are 90 ° C., 100 ° C., and 110 ° C. FIG. As shown in Figure 7, it can be seen that the concentration of methanol is closely related to the performance of the unit cell. When methanol concentration is 2.5M, it shows the best current characteristic value, and it can be seen that the lower the concentration of fuel, the current density decreases at a constant voltage, which is caused by concentration polarization due to the diffusion rate of hydrogen ions. to be.

한편, 도8은 임의의 메탄올 농도를 갖는 연료를 이용하여 110℃에서 운전하였을 때 운전차압(공기극 - 연료극)에 따른 전압-전류 특성곡선이다.On the other hand, Figure 8 is a voltage-current characteristic curve according to the operating differential pressure (air cathode-anode) when operating at 110 ℃ using a fuel having an arbitrary methanol concentration.

운전차압이 높을 수록 높은 전압-전류 특성치를 얻을 수 있음을 알 수 있는 데, 운전차압을 1kgf/cm2, 2kgf/cm2, 3kgf/cm2, 4kgf/cm2및 5kgf/cm2로 증가시켰을 경우에는 0.4V의 일정 전압에서 각각 206mA/cm2, 322mA/cm2, 396mA/cm2, 434mA/cm2및 450mA/cm2로 전류밀도 값이 상승되었다.It can be seen that the higher the differential pressure, the higher the voltage-current characteristic can be obtained.The differential pressure was increased to 1kgf / cm 2 , 2kgf / cm 2 , 3kgf / cm 2 , 4kgf / cm 2 and 5kgf / cm 2 . case, each of 206mA / cm 2, 322mA / cm 2, 396mA / cm 2, 434mA / cm 2 and 450mA / cm 2 at a current density value in the constant voltage of 0.4V was increased.

이와같은 현상은 공기극의 압력상승으로 인하여 연료극으로부터 공기극으로 통과하는 메탄올의 크로스오버(crossover)가 억제되고 또한 산소압의 상승으로 인하여 공기극에서 수소이온과 산소의 반응이 전극 촉매층에서 활발하게 일어난 결과이다.This phenomenon is caused by the crossover of methanol passing from the anode to the cathode due to the pressure rise of the cathode and the reaction of hydrogen ions and oxygen in the cathode due to the increase in oxygen pressure. .

이상에서 살펴본 바와같이, 본 발명 직접 메탄올 연료전지의 연료극 제조방법에 의해 제조된 연료극은 전극 지지체(탄소천)와 전극 촉매층 사이에 존재하는 확산층으로서의 친수성 활성탄소층에 의해서 전극지지체를 통해 유입되는 메탄올이 촉매가 도포된 전극표면까지 쉽게 확산되어 도달되기 때문에 연료전지의 성능향상이 기대되고 있다.As described above, the anode prepared by the method of manufacturing the anode of the present invention direct methanol fuel cell is methanol introduced through the electrode support by a hydrophilic activated carbon layer as a diffusion layer existing between the electrode support (carbon cloth) and the electrode catalyst layer. It is expected that the performance of the fuel cell will be improved since the catalyst is easily diffused and reached to the coated electrode surface.

Claims (2)

직접 메탄올 연료전지의 전극 제조방법에 있어서, 연료극의 제조는 전극지지체로서의 탄소천위에 활성탄소분말과 5 ∼ 20wt% 나피온 용액을 혼합,교반시켜 얻어진 슬러리를 도포하여 친수성 활성탄소층을 형성하는 단계와, 5 ∼ 60wt% Pt-Ru/C 촉매와 5 ∼ 20wt% 나피온(Nafion) 용액을 혼합,교반하여 얻어진 촉매 슬러리를 상기 활성탄소층이 도포된 전극지지체위에 도포하여 건조시키는 단계 및 탄소천과 촉매간의 접착력 증대를 위해 상기 건조된 전극을 롤링 머신에 통과시키는 단계로 이루어짐을 특징으로 하는 직접 메탄올 연료전지의 전극 제조방법.In the method of manufacturing an electrode of a direct methanol fuel cell, the manufacturing of the anode is performed by applying a slurry obtained by mixing and stirring an activated carbon powder and a 5-20 wt% Nafion solution on a carbon cloth as an electrode support to form a hydrophilic activated carbon layer. And a catalyst slurry obtained by mixing and stirring a 5 to 60 wt% Pt-Ru / C catalyst and a 5 to 20 wt% Nafion solution on the electrode support coated with the activated carbon layer and drying the carbon cloth. And passing the dried electrode through a rolling machine to increase adhesion between the catalyst and the catalyst. 제1항에 있어서, 상기 탄소천위에 활성탄소층과 촉매층이 순차 도포된 전극 성형체는 20 ∼ 200℃의 진공오븐에서 1 ∼ 24 시간 유지시켜 건조됨을 특징으로 하는 직접 메탄올 연료전지의 전극 제조방법.2. The method of claim 1, wherein the electrode molded body in which the activated carbon layer and the catalyst layer are sequentially coated on the carbon cloth is dried in a vacuum oven at 20 to 200 ° C. for 1 to 24 hours and dried.
KR1019990025037A 1999-06-28 1999-06-28 Method for manufacturing electrode for direct methanol feul cell KR100311731B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025037A KR100311731B1 (en) 1999-06-28 1999-06-28 Method for manufacturing electrode for direct methanol feul cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025037A KR100311731B1 (en) 1999-06-28 1999-06-28 Method for manufacturing electrode for direct methanol feul cell

Publications (2)

Publication Number Publication Date
KR20010004405A true KR20010004405A (en) 2001-01-15
KR100311731B1 KR100311731B1 (en) 2001-11-02

Family

ID=19596540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025037A KR100311731B1 (en) 1999-06-28 1999-06-28 Method for manufacturing electrode for direct methanol feul cell

Country Status (1)

Country Link
KR (1) KR100311731B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442843B1 (en) * 2002-03-13 2004-08-02 삼성에스디아이 주식회사 Membrane and electrode assembly(MEA), production method of the same and fuel cell employing the same
WO2006065096A1 (en) * 2004-12-17 2006-06-22 Lg Chem, Ltd. Electrode catalyst for fuel cell
KR100601984B1 (en) * 2005-01-20 2006-07-18 삼성에스디아이 주식회사 Supported catalyst and preparing method thereof
KR100773585B1 (en) * 2006-11-09 2007-11-08 재단법인서울대학교산학협력재단 Method of producing an electrode for fuel cell
KR101256934B1 (en) * 2010-11-11 2013-04-25 서울대학교산학협력단 Cathode catalyst layer of direct methanol fuel cell composed of heterogeneous composites and fuel cell therewith
CN109428062A (en) * 2017-08-28 2019-03-05 内蒙古欣蒙碳纳米科技有限公司 A kind of graphene-silicon composite cathode material and preparation method thereof
CN112133928A (en) * 2020-08-21 2020-12-25 同济大学 Stable and high-performance proton exchange membrane fuel cell catalyst slurry and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442843B1 (en) * 2002-03-13 2004-08-02 삼성에스디아이 주식회사 Membrane and electrode assembly(MEA), production method of the same and fuel cell employing the same
WO2006065096A1 (en) * 2004-12-17 2006-06-22 Lg Chem, Ltd. Electrode catalyst for fuel cell
US9343747B2 (en) 2004-12-17 2016-05-17 Lg Chem, Ltd. Membrane electrode assembly, fuel cell comprising the membrane electrode assembly, and method for preparing an electrode catalyst
KR100601984B1 (en) * 2005-01-20 2006-07-18 삼성에스디아이 주식회사 Supported catalyst and preparing method thereof
KR100773585B1 (en) * 2006-11-09 2007-11-08 재단법인서울대학교산학협력재단 Method of producing an electrode for fuel cell
KR101256934B1 (en) * 2010-11-11 2013-04-25 서울대학교산학협력단 Cathode catalyst layer of direct methanol fuel cell composed of heterogeneous composites and fuel cell therewith
CN109428062A (en) * 2017-08-28 2019-03-05 内蒙古欣蒙碳纳米科技有限公司 A kind of graphene-silicon composite cathode material and preparation method thereof
CN112133928A (en) * 2020-08-21 2020-12-25 同济大学 Stable and high-performance proton exchange membrane fuel cell catalyst slurry and preparation method thereof
CN112133928B (en) * 2020-08-21 2022-08-19 同济大学 Stable and high-performance proton exchange membrane fuel cell catalyst slurry and preparation method thereof

Also Published As

Publication number Publication date
KR100311731B1 (en) 2001-11-02

Similar Documents

Publication Publication Date Title
Hwang et al. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells
CN100353603C (en) Proton conductor
CN100508266C (en) Membrane electrode unit
KR20050030455A (en) Diffusion electrode for fuel cell
JP4252072B2 (en) POLYMER FILM, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
KR20170069783A (en) Catalyst slurry composition for polymer electrolyte fuel cell, membrane electrode assembly, and manufacturing methode of membrane electrode assembly
KR100311731B1 (en) Method for manufacturing electrode for direct methanol feul cell
JP4349826B2 (en) Fuel cell and fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
KR100551035B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
KR20080032962A (en) Cathod for fuel cell, membrane-electrode assembly for fuel cell comprising same, and fuel cell system comprising same
JP4325873B2 (en) Hydrogen ion conductive copolymer, polymer electrolyte membrane and fuel cell
CN101978536B (en) Membrane electrode assembly and fuel cell
US20110200914A1 (en) High power direct oxidation fuel cell
KR20070094839A (en) Fuel cell
Thangamuthu et al. DBSA-doped PEG/SiO2 proton-conducting hybrid membranes for low-temperature fuel cell applications
KR20060001536A (en) Electrode for fuel cell and fuel cell comprising same
KR20150138103A (en) Electrode for fuel cell, membrane electrode assembly comprising the same and fuel cell comprising the membrane electrode assembly
KR100570769B1 (en) A electrode for fuel cell and a fuel cell comprising the same
KR20090030665A (en) Electrode for fuel cell and fuel cell system including same
KR100551034B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
US8278001B2 (en) Low-porosity anode diffusion media for high concentration direct methanol fuel cells and method of making
KR100909299B1 (en) Fuel cell
KR20020076653A (en) A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties
KR20040043877A (en) Functional Polymer Electrolyte Membrane for Fuel Cell and Method for Preparing the Same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120919

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150924

Year of fee payment: 15

EXPY Expiration of term