KR20000074521A - Emergency core cooling system for pressurized water reactor - Google Patents

Emergency core cooling system for pressurized water reactor Download PDF

Info

Publication number
KR20000074521A
KR20000074521A KR1019990018529A KR19990018529A KR20000074521A KR 20000074521 A KR20000074521 A KR 20000074521A KR 1019990018529 A KR1019990018529 A KR 1019990018529A KR 19990018529 A KR19990018529 A KR 19990018529A KR 20000074521 A KR20000074521 A KR 20000074521A
Authority
KR
South Korea
Prior art keywords
coolant
reactor
emergency
injection
core
Prior art date
Application number
KR1019990018529A
Other languages
Korean (ko)
Other versions
KR100319068B1 (en
Inventor
최한림
Original Assignee
이호림
한국전력기술 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이호림, 한국전력기술 주식회사 filed Critical 이호림
Priority to KR1019990018529A priority Critical patent/KR100319068B1/en
Publication of KR20000074521A publication Critical patent/KR20000074521A/en
Application granted granted Critical
Publication of KR100319068B1 publication Critical patent/KR100319068B1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE: A safe injection light water in an atomic furnace is provided to maximize the amount of emergency coolant arriving at a core by minimizing the amount of the emergency coolant effusing from a low temperature tube. CONSTITUTION: An atomic furnace comprises an emergency core cooling system which consists of a direct container injection nozzle(6) and a safe injection duct(10). The direct container injection nozzle(6) is installed higher than an atomic furnace input nozzle(7) so as to buffer a pressed heating impact at injecting an emergency coolant through a safe injection tube(5) and to minimize a coolant discharge amount at damage of the safe injection tube(5). The safe injection duct(10) is connected to the direct container injection nozzle(6). The safe injection duct(10) makes the emergency coolant, discharged from the direct container injection nozzle(6), become detour so that an emergency coolant is prevented from being discharged with a coolant into a low temperature tube(4) at damage of the low temperature tube(4).

Description

가압경수로용 비상 노심 냉각계통{EMERGENCY CORE COOLING SYSTEM FOR PRESSURIZED WATER REACTOR}Emergency core cooling system for pressurized water reactor {EMERGENCY CORE COOLING SYSTEM FOR PRESSURIZED WATER REACTOR}

본 발명은, 가압 경수형 원자로(이하, 가압경수로)에 있어서, 원자로 냉각재 상실사고(Loss of Coolant Accident: LOCA)시, 냉각재 부족에 따른 노심 온도의 급격한 상승을 막기 위하여 비상냉각재를 원자로에 투입하는 비상 노심 냉각계통에 관한 것으로, 특히, 냉각재 유입관인 저온관 파단사고시, 그 저온관으로 유출되는 비상냉각재의 양을 최소화할 수 있고, 또 비상냉각재 주입관인 안전주입관의 파단사고시에는 그 안전주입관을 통해 냉각재가 지속적으로 유출되게 하는 사이펀 효과(Siphon Effect)를 차단함으로써 노심의 냉각재 수위를 일정 이상의 최소 높이로 유지시킬 수 있는 가압경수로용 비상 노심 냉각계통에 관한 것이다.According to the present invention, in a pressurized water reactor (hereinafter referred to as a pressurized water reactor), an emergency coolant is introduced into the reactor in order to prevent a sudden rise in core temperature due to the lack of coolant during a loss of coolant accelerator (LOCA). It relates to the emergency core cooling system, in particular, in the event of breakage of the cold pipe which is the coolant inlet pipe, it is possible to minimize the amount of emergency coolant that flows out into the cold pipe, and the safety injection pipe when the safety injection pipe of the emergency coolant injection pipe is broken. It relates to an emergency core cooling system for pressurized water reactors that can maintain the coolant level of the core to a minimum height by blocking the siphon effect that allows the coolant to continuously flow through.

핵을 연료로 사용하여 에너지를 생산하는 원자로 중에서, 특히, 핵연료의 핵반응에 의해 발생된 열에너지 운반매체인 냉각재(Reactor Coolant)로써 경수(Light Water)를 사용하고 또 그 냉각재가 원자로 용기(Reactor Vessel) 내에서 비등하지 않도록 원자로 내부의 압력이 일정크기 이상으로 유지되도록 하는 원자로를 가압형 경수로(Pressurized Water Reactor)라고 한다.Among nuclear reactors that produce energy using nuclear fuel, in particular, light water is used as a reactor coolant, which is a heat energy transport medium generated by nuclear reaction of nuclear fuel, and the coolant is a reactor vessel. A reactor that keeps the pressure inside the reactor above a certain size so as not to boil inside is called a Pressurized Water Reactor.

통상, 가압경수로의 계통은, 도 1에 도시된 바와 같은 원자로, 증기발생기, 원자로 냉각재 펌프, 그리고, 가압기 등으로 이루어져, 상기 각 구성들을 연결하는 배관인 저온관(Cool Leg)과 고온관(Hot Leg)에 의해 하나의 냉각재 순환 회로(1 차 계통)를 이루게 된다.In general, the system of a pressurized water reactor consists of a reactor, a steam generator, a reactor coolant pump, and a pressurizer as shown in FIG. 1, and includes a cold leg and a hot tube, which are pipes connecting the above components. Legs form one coolant circulation circuit (primary system).

이러한 구성에 따라, 냉각재인 경수는 냉각재 펌프에 의해 도 1에 도시된 바와 같은 원자로의 용기(1)내로 들어가 원자로 내에 핵다발인 노심(Reactor Core)(2)의 핵반응에 의해 발생되는 열에너지에 의해 고온으로 가열된 후, 고온관(3)을 통해 증기발생기(도시되지 않음)를 순환하면서 증기발생기의 2 차 계통 물(증기터어빈 구동용)을 가열하여 증기로 변하게 한 후 냉각되고, 이어 저온관(4)을 통해 다시 원자로 용기(1)내로 돌아온다. 이러한 과정에서 2 차 계통에서 순환되는 물은 증기발생기에서 증기가 되어 증기터어빈을 구동하고, 증기터어빈은 발전기를 구동하여 최종적으로 발전기에 의해 전기에너지가 발생하게 된다. 이를 에너지 관점에서 보면, 원자로에서 핵반응으로 발생된 열에너지가 1 차계통의 냉각재에 흡수되어 증기발생기를 통해 2 차 계통의 냉각재로 전달된 후 증기터어빈과 발전기에 의해 운동에너지를 거쳐 전기에너지로 변환되는 것을 의미한다.According to this configuration, the hard water as the coolant enters into the vessel 1 of the reactor as shown in FIG. 1 by the coolant pump and is caused by the heat energy generated by the nuclear reaction of the reactor core 2 as the nuclear bundle in the reactor. After being heated to high temperature, the steam generator (not shown) is circulated through the hot tube 3 to heat the secondary system water of the steam generator (for driving the steam turbine) to become steam and then cooled, and then the cold tube Return to reactor vessel 1 through (4). In this process, the water circulated in the secondary system becomes a steam in the steam generator to drive a steam turbine, and the steam turbine drives a generator, and finally electric energy is generated by the generator. From the energy point of view, the thermal energy generated by the nuclear reaction in the reactor is absorbed by the coolant of the primary system and transferred to the coolant of the secondary system through the steam generator, and then converted into electrical energy through the kinetic energy by the steam turbine and generator. Means that.

이러한 원자력 발전소가 설계되고 건설되기까지의 과정에서는 안전을 위해 실제로 발생하기 어려운 가상사고까지 고려되는 바, 사전에 그 가상사고의 경위와 영향 등을 분석한 후, 그 결과에 따라 원자로 냉각재 계통이 비정상적인 상태가 되는 사고발생시 노심에 미치는 영향을 최소화할 수 있는 계통을 추가함으로써, 발전소의 안전성이 확보,유지되도록 하고 있다.In the process of designing and constructing such a nuclear power plant, virtual accidents, which are difficult to occur in practice, are considered. Therefore, after analyzing the circumstances and effects of the virtual accidents, the reactor coolant system is abnormal. By adding a system that can minimize the impact on the core in the event of a state accident, the safety of the power plant is ensured and maintained.

원자력 발전소 설계시 고려되는 가상사고 중에서 원자로 냉각재 계통의 경계가 손상되어 냉각재가 계통 외부로 유출되는 사고를 특히 냉각재 상실사고라고 한다.Among the accidents considered in the design of nuclear power plants, accidents in which coolant flows out of the system due to damaged boundary of the reactor coolant system are called loss of coolant.

원자로에서 냉각재 상실사고가 발생되면, 원자로 냉각재 계통의 압력이 냉각재의 비등점 이하로 낮아져 연료봉 표면에서 핵비등이 발생하기 때문에, 핵연료와 냉각재 사이의 열전달률이 급격히 감소되어 노심표면의 온도가 급상승하게 된다. 따라서, 원자로에는 이렇게 노심표면 온도를 급상승시키는 냉각재 상실사고에 대비하여, 원자로 내의 냉각재가 상실되는 경우 비상냉각재(Safty Injection Water)를 외부에서 고압으로 원자로 용기 내부로 주입할 수 있는 안전장치가 설치되는데, 이것을 통상 안전주입계통의 비상노심 냉각계통(Emergency Core Cooling System: ECCS)이라고 말한다.When a coolant loss occurs in a reactor, the pressure in the reactor coolant system drops below the coolant boiling point, causing nuclear boiling on the fuel rod surface, which rapidly reduces the heat transfer rate between the fuel and the coolant, resulting in a sharp rise in the core surface temperature. . Therefore, in case of a coolant loss accident that rapidly increases the core surface temperature, the reactor is equipped with a safety device that can inject emergency injection water into the reactor vessel at high pressure from the outside when the coolant in the reactor is lost. This is commonly referred to as the Emergency Core Cooling System (ECCS) of the safety injection system.

비상노심 냉각계통은 일반적으로 노심에 주입될 비상냉각재를 가압상태로 저장하는 피동안전주입탱크와, 상기 피동안전주입탱크에 저장된 비상냉각재를 감압상태의 원자로 냉각재 계통으로 주입시키기 위한 안전주입펌프, 그리고, 상기 탱크와 펌프로부터 원자로 냉각재 계통까지의 비상냉각재 유로를 형성하는 안전주입관 등으로 구성된다. 이러한 비상 노심 냉각계통에 있어서, 원자로 용기 내부로 연결되어 직접 비상냉각재를 토출하는 안전주입관은 통상 저온관의 수와 같은 개수(個數)로 설치된다. 참고로, 전형적인 가압경수형 원자로에 있어서 저온관은 통상 3 개 내지 4 개 정도 설치된다.The emergency core cooling system generally includes a pre-injection tank for storing the emergency coolant to be injected into the core under pressure, a safety injection pump for injecting the emergency coolant stored in the pre-injection tank into the reactor coolant system under reduced pressure, and And a safety injection pipe forming an emergency coolant flow path from the tank and the pump to the reactor coolant system. In such an emergency core cooling system, safety injection pipes connected to the reactor vessel and directly discharging emergency coolant are usually installed in the same number as the number of low temperature pipes. For reference, in a typical PWR reactor, three to four low temperature pipes are usually installed.

비상 노심 냉각계통에서, 상기 안전주입관의 끝에서 원자로 내로 비상냉각재를 토출하는 부분을 안전주입노즐라고 하는데, 종래에는 이 안전주입노즐들이 각 저온관에 연결되어 비상냉각재를 그 저온관을 통하여 주입하는 비상 노심 냉각계통들이 사용되어 왔다.In the emergency core cooling system, a part of discharging the emergency coolant from the end of the safety injection pipe into the reactor is called a safety injection nozzle. In the related art, these safety injection nozzles are connected to each low temperature pipe to inject the emergency coolant through the low temperature pipe. Emergency core cooling systems have been used.

그런데, 종래 비상 노심 냉각계통에서와 같이, 안전주입노즐이 저온관에 연결되면, 저온관 파단 사고시, 안전주입노즐을 통해 원자로 노심측으로 토출되어야 할 비상냉각재(안전주입수)가 저온관쪽으로 역류하여 노심에 도달치 못하는 문제가 생기게 된다. 즉, 안전주입노즐을 통해 유입되는 비상냉각재가 압력차에 의해 저온관으로 역류하는 1 차 계통 냉각재에 혼합되어 저온관의 파단부분을 통해 1차 계통 냉각재와 함께 원자로 냉각재계통의 외부 격납건물로 동반유출되기 때문에 비상냉각재가 정작 노심에는 도달치 못하게 되는 현상이 일어난다.However, as in the conventional emergency core cooling system, when the safety injection nozzle is connected to the low temperature pipe, the emergency coolant (safe injection water) to be discharged to the reactor core side through the safety injection nozzle in the event of breakage of the low temperature pipe flows back toward the low temperature pipe. There is a problem of not reaching the core. That is, the emergency coolant flowing through the safety injection nozzle is mixed with the primary system coolant flowing back to the low temperature pipe by the pressure difference, and accompanied by the primary system coolant along with the primary system coolant through the breakage of the low temperature pipe to the external containment building of the reactor coolant system. Because of the spill, the emergency coolant does not reach the core.

근래에는, 이러한 문제가 감안되어, 도 1에 도시된 바와 같이, 안전주입관(5)을 원자로 용기(1)에 직접 연결하여 비상냉각재를 원자로 용기(1)내로 직접 토출시킴으로써, 저온관(4)이 파단되더라도 안전주입수가 파단된 저온관(4)을 통해 계통외부로 유출되지 않는, 따라서, 비상냉각재가 바로 노심(2)측으로 도달되게 하여 노심을 냉각시킬 수 있게 하는 방안이 제시되었다. 이렇게 안전주입관(5)의 안전주입노즐(6)을 원자로 용기(1)에 직접 연결하여 비상냉각재가 직접 원자로 용기(1) 속으로 분사되게 하는 방식을 직접용기주입 방식이라고 하며, 특히, 원자로 용기(1)에 직접 부착되는 안전주입관(Safety Injection Pipe)(5)의 출구부분을 직접용기주입노즐(Direct Vessel Injection Nozzle)(6)이라고 한다.In recent years, such a problem has been taken into consideration, and as shown in FIG. 1, the safety injection pipe 5 is directly connected to the reactor vessel 1 so that the emergency coolant is directly discharged into the reactor vessel 1, thereby allowing the low temperature tube 4 to be discharged. Even if) is broken, the safety injection water does not flow out of the system through the broken low temperature pipe (4), thus, a method of cooling the core by allowing the emergency coolant to directly reach the core (2) side has been proposed. The method of directly connecting the safety injection nozzle 6 of the safety injection pipe 5 to the reactor vessel 1 so that the emergency coolant is directly injected into the reactor vessel 1 is called a direct container injection method. The outlet portion of the safety injection pipe (5) directly attached to the container (1) is called a direct vessel injection nozzle (6).

그러나, 이와 같은 직접용기주입방식에 있어서도 안전주입수가 유출될 가능성이 있다. 즉, 직접용기주입노즐(6)이 1차 계통 냉각재 유입구인 원자로 입구노즐(Reactor Inlet Nozzle)(7)의 위쪽에 설치되면, 냉각재 유입관인 저온관(4)이 파단된 경우에는, 직접용기주입노즐(6)을 통해 주입되는 비상냉각재가 원자로 용기(1) 내벽과 노심지지통(Core Support Barrel)(8) 사이의 하향유로(Downcomer)(9)를 따라 이동하다가 파단된 저온관(4)으로 역류하는 냉각재와 함께 원자로 입구노즐(7)을 통하여 상당량 동반 유출될 우려가 있다. 이렇게 되면, 직접용기주입노즐(6)이 원자로 용기(1)에 직접 부착되었을지라도 안전주입의 결과인 비상노심냉각 효과는 상대적으로 낮을 수밖에 없다. 따라서, 직접용기주입방식에서는 직접용기주입노즐(6)을 저온관(4)의 아래쪽에 부착하는 것이 저온관(4) 위쪽에 부착하는 것보다 훨씬 향상된 비상냉각재 주입의 효과를 얻을 수 있다.However, even in such a direct container injection method, there is a possibility that the safety injection water flows out. That is, when the direct container injection nozzle 6 is installed above the reactor inlet nozzle 7, which is the primary system coolant inlet, when the low temperature pipe 4, which is the coolant inlet pipe, is broken, the direct container injection is performed. The cold coolant 4 injected through the nozzle 6 moves along the downcomer 9 between the inner wall of the reactor vessel 1 and the core support barrel 8 and is broken. Along with the coolant flowing back to the reactor through the reactor inlet nozzle (7) there is a possibility that a significant amount of outflow. In this case, even if the direct container injection nozzle 6 is directly attached to the reactor vessel 1, the emergency core cooling effect resulting from the safety injection is relatively low. Therefore, in the direct container injection method, attaching the direct container injection nozzle 6 to the lower part of the cold tube 4 can obtain an effect of emergency coolant injection which is much improved than attaching to the upper part of the cold tube 4.

그러나, 직접용기주입방식의 비상 노심 냉각계통에 있어서, 직접용기주입노즐(6)이 원자로 입구노즐(7)의 아래에 부착되면, 이 직접용기주입노즐(6)을 통해 저온의 비상냉각재가 고온고압상태의 원자로 용기(1)에 급속히 유입되어 가압 열충격 등이 발생하므로 원자로 용기(1)의 건전성 문제가 야기될 뿐만 아니라, 특히 안전주입관(5)이 파단되는 경우 안전주입관(5)을 통해 유출되는 냉각재의 양이 직접용기주입노즐(6)을 원자로 입구노즐(7)의 위에 부착되는 경우 보다 훨씬 많다는 문제점이 생기게 된다.However, in the emergency core cooling system of the direct container injection method, when the direct container injection nozzle 6 is attached to the bottom of the reactor inlet nozzle 7, the low-temperature emergency coolant through the direct container injection nozzle 6 has a high temperature. The rapid inflow into the high-pressure reactor vessel (1) to generate a pressurized thermal shock not only causes a health problem of the reactor vessel (1), but in particular when the safety injection pipe (5) breaks the safety injection pipe (5) There is a problem that the amount of coolant flowing through is much higher than when the direct container injection nozzle (6) is attached on top of the reactor inlet nozzle (7).

이러한 문제를 해소하기 위하여, 미국 특허 공개번호 제 5135708 호의 "Method of Injection To or Near Core Inlet"에서는 안전주입의 효과를 최대화할 목적으로 원자로 용기 내부에 저온관 상부의 직접용기주입노즐(6)로부터 노심지지통(8) 하단까지 원통형 또는 관형의 안전주입 통로를 설치하는 방법을 공개하고 있다.In order to solve this problem, US Patent Publication No. 5135708, "Method of Injection To or Near Core Inlet", is directed from a direct vessel injection nozzle (6) at the top of a cold tube inside a reactor vessel for the purpose of maximizing the effect of safety injection. It discloses a method of installing a cylindrical or tubular safety injection passage to the bottom of the core support (8).

그러나, 이 방법은, 저온관(4) 파단사고의 경우 비상냉각재를 노심(2)의 하단으로 직접 공급할 수는 있으나, 원자로 용기(1) 밖의 안전주입관(4)이 파단되는 사고가 발생되면, 사이펀 효과(Siphon Effect)에 의해 원자로내 냉각재가 원자로 용기(1)내 냉각재 수위가 노심이 완전히 노출될 때까지 지속적으로 빠져나가기 때문에, 원자로 용기(1)속에서 노심의 용융을 방지해야할 냉각재의 양이 크게 부족하게 되는 심각한 결과를 초래하게 된다.However, in this case, the emergency coolant can be directly supplied to the lower end of the core 2 in the case of the low temperature pipe 4 breakage accident, but if the safety injection pipe 4 outside the reactor vessel 1 breaks, Because of the siphon effect, the coolant level in the reactor vessel continuously exits until the core level is completely exposed by the siphon effect, thereby preventing the core from melting in the reactor vessel (1). The result is a serious shortage of sheep.

이 문제를 보완하기 위해, 미국 특허 공개번호 제 5377242 호의 "Method and System for Emergency Core Cooling"에서는, 노심지지통(8)을 둘러싸 저온관(4) 파단사고시 직접용기주입노즐(6)에서 토출되는 비상냉각재를 유도하여 노심지지통(8) 하단에까지 도달되게 하면서 그 상부에 안전주입관(5) 파단사고시 사이펀 효과를 차단할 수 있는 구멍들을 갖는 원통을 포함하여 이루어진 비상 노심 냉각계통을 공개하고 있다.To solve this problem, US Patent Publication No. 5377242, "Method and System for Emergency Core Cooling", surrounds the core support container (8) and is discharged from the direct container injection nozzle (6) in the event of breakage of the low temperature pipe (4). Inducing the emergency coolant to reach the bottom of the core support (8) while revealing the emergency core cooling system including a cylinder having a hole in the upper portion to block the siphon effect in the event of breakage accident.

그러나, 앞서 언급된 두 가지 종래 기술(미국공개 제 5377242 호 및 제 5135708 호)들은 노심지지통(8)의 중량을 크게 증가시키기 때문에, 이 노심지지통(8)이 포함된 원자로 용기(1)를 지지하는 원자로 용기 지지구조물들이 큰 하중에 견딜 수 있도록 설계되어야 하는 문제점을 가지고 있었다.However, the two prior arts mentioned above (US Published Patent Nos. 5377242 and 5135708) greatly increase the weight of the core holder 8, so that the reactor vessel 1 containing the core holder 8 is included. The reactor vessel support structures supporting the reactor had to be designed to withstand large loads.

본 발명은, 상술한 바와 같은 종래 비상 노심 냉각계통들이 가진 문제점들을 일소할 수 있는 비상 노심 냉각계통으로서, 냉각재 유입관인 저온관 파단사고시 그 저온관으로 유출되는 비상냉각재의 양을 최소화하여 노심에 도달하는 비상냉각재의 양을 극대화할 수 있고, 또, 비상냉각재 주입관인 안전주입관의 파단사고시에는 그 안전주입관을 통해 원자로내 냉각재가 지속적으로 유출되게 하는 사이펀 효과를 차단함으로써 원자로내 냉각재 수위를 적어도 노심이 잠기는 정도의 최소 높이로 유지시킬 수 있으며, 뿐만 아니라, 노심지지통의 중량을 거의 증가시키지 않음으로써 원자로 지지구조물에 대한 하중설계도 어렵게 하지 않는 가압경수로용 비상 노심 냉각계통을 제공하는데 그 목적이 있다.The present invention is an emergency core cooling system capable of eliminating the problems of the conventional emergency core cooling systems as described above, and reaches the core by minimizing the amount of emergency coolant flowing into the cold tube in the event of a cold tube breakage that is a coolant inlet tube. The amount of emergency coolant can be maximized, and in case of breakage of the safety injection pipe, which is an emergency coolant injection pipe, the level of coolant level in the reactor can be reduced by blocking the siphon effect that causes the coolant in the reactor to continuously flow through the safety injection pipe. Its purpose is to provide an emergency core cooling system for pressurized water reactors that can be maintained at the minimum height that the core is submerged and, in addition, hardly increases the load design of the reactor support structure by hardly increasing the weight of the core bearings. have.

도 1은 종래 가압경수로용 비상 노심 냉각계통이 설치된 가압경수로의 종단면모식도.1 is a vertical cross-sectional view of a pressurized water reactor in which an emergency core cooling system for a conventional pressurized water reactor is installed.

도 2는 본 발명의 일 실시예에 따른 가압경수로용 비상 노심 냉각계통이 설치된 가압경수로의 원자로 종단면 모식도.Figure 2 is a schematic view of the reactor longitudinal section of the pressurized water reactor is installed emergency core cooling system for the pressurized water reactor according to an embodiment of the present invention.

도 3은 도 2의 확대도.3 is an enlarged view of FIG. 2;

도 4는 도 2의 Ⅳ-Ⅳ 선 단면도.4 is a cross-sectional view taken along the line IV-IV of FIG. 2.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

1 : 원자로 용기2 : 노심1: reactor vessel 2: core

4 : 저온관5 : 안전주입관4: low temperature pipe 5: safety injection pipe

6 : 직접용기주입노즐7 : 원자로 입구노즐6: direct container injection nozzle 7: reactor entrance nozzle

8 : 노심지지통10 : 안전주입덕트8: core support 10: safety injection duct

11 : 돌출부12 : 플랜지11 protrusion 12 flange

14 : 틈새14: niche

본 발명은, 비상냉각재를 가압상태로 저장하는 피동안전주입탱크와; 상기 피동안전주입탱크를 원자로 용기의 직접용기주입노즐로 연결하는 안전주입관과; 상기 피동안전주입탱크와 상기 안전주입관 사이에서 원자로 냉각재 상실사고시 상기 피동안전주입탱크에 저장된 비상냉각재를 원자로 용기의 직접용기주입노즐로 펌핑하는 안전주입펌프를 포함하여 이루어지는 비상 노심 냉각계통에 있어서, 상기 직접용기주입노즐은 원자로 입구노즐보다 상대적으로 높은 위치에 설치되고, 상기 직접용기주입노즐에 틈새를 가지고 그 입구가 결합되어 상기 직접용기주입노즐에서 토출되는 비상냉각재를 상기 원자로 입구노즐을 우회,유도하여 상기 원자로 입구노즐보다 낮은 위치의 출구로 토출하는 안전주입덕트(Safty Injection Duct)를 더 포함하여 이루어지는 것을 특징으로 한다.The present invention provides a pre-injection tank for storing the emergency coolant under pressure; A safety injection pipe connecting the blood injection tank to a direct container injection nozzle of a reactor vessel; In the emergency core cooling system comprising a safety injection pump for pumping the emergency coolant stored in the pre-injection tank to the direct container injection nozzle of the reactor vessel in case of loss of the reactor coolant between the pre-injection tank and the safety injection pipe, The direct container injection nozzle is installed at a position relatively higher than the reactor inlet nozzle, the inlet is coupled to the direct container injection nozzle and the inlet is combined with the emergency coolant discharged from the direct container injection nozzle bypasses the reactor inlet nozzle, It further comprises a safety injection duct (Safty Injection Duct) for inducing to discharge to the outlet of the position lower than the reactor inlet nozzle.

상술한 바와 같은 가압경수로용 비상 노심 냉각계통의 구성에 있어서, 상기 안전주입덕트는 노심의 상단 보다 상대적으로 높은 위치에 출구를 가지는 것이 바람직하다.In the configuration of the emergency core cooling system for the pressurized water reactor as described above, the safety injection duct preferably has an outlet at a position higher than the upper end of the core.

또한, 더욱 바람직하게는 상기 안전주입덕트가 원자로내 노심지지통의 외벽에 부착되며, 또, 그 입구 둘레의 플랜지(Duct Flange)가 상기 직접용기주입노즐 둘레에서 돌출된 돌출부(Direct Vessel Lower Intrusion)에 간극을 두고 결합된다.More preferably, the safety injection duct is attached to the outer wall of the core support in the reactor, and a flange around the inlet is projected by a direct vessel lower intrusion around the direct container injection nozzle. Are spaced apart and combined.

이하, 첨부된 도면으로 제시된 본 발명의 바람직한 실시예를 통하여 이상의 각 구성들의 기능과 작용을 보다 구체적으로 설명한다.Hereinafter, the functions and operations of the above components will be described in more detail with reference to the accompanying drawings.

본 실시예를 설명함에 있어, 서두에서 설명된 종래의 기술과 동일한 본 발명의 구성에 대해서는 동일한 부호를 사용한다.In describing the present embodiment, the same reference numerals are used for the configuration of the present invention that is the same as the conventional technology described at the outset.

설명에 앞서 먼저 첨부된 도면을 간단히 살펴보면, 도 2는 본 발명의 일 실시예에 따른 가압경수로용 비상 노심 냉각계통이 설치된 가압경수로의 원자로 종단면 모식도이고, 도 3과 도 4는 각각 도 2의 확대도와 도 2의 Ⅳ-Ⅳ 선 단면도임을 알 수 있다.First, a brief description of the accompanying drawings, FIG. 2 is a schematic cross-sectional view of a reactor in a pressurized water reactor equipped with an emergency core cooling system for a pressurized water reactor according to an embodiment of the present invention, and FIGS. 3 and 4 are enlarged views of FIG. 2, respectively. In addition, it can be seen that the cross-sectional view of the IV-IV line of FIG.

통상, 가압경수로는 핵연료의 핵반응 결과로 발생하는 열에너지를 운반하는 매체로써 경수를 냉각재로 사용하고, 냉각재의 비등을 막기 위해 가압기로써 냉각재 계통 내부를 소정의 압력으로 가압하는 원자로를 말한다.Generally, a pressurized water reactor refers to a reactor that uses hard water as a coolant as a medium for transporting thermal energy generated as a result of nuclear reaction of nuclear fuel and pressurizes the inside of the coolant system to a predetermined pressure with a pressurizer to prevent boiling of the coolant.

가압경수로의 계통은 원자로, 증기발생기, 원자로 냉각재 펌프, 가압기, 그리고, 저온관 및 고온관 등으로 구성되는 바, 이들은 냉각재 유동시킬 수 있는 배관인 상기 저온관과 고온관에 의해 연결되어 하나의 냉각재 순환회로를 이루게 된다.The system of pressurized water reactor consists of a reactor, steam generator, reactor coolant pump, pressurizer, and low temperature tube and high temperature tube. A circuit is formed.

이러한 계통에 있어서 원자로는 밀폐된 공간에서 핵연료를 핵반응시켜 열에너지를 생성하는 핵반응장치로서, 도 2에 도시된 바와 같이, 핵반응이 일어나는 밀폐공간을 형성하는 원자로 용기(1)와, 이 용기(1) 내부에 규칙적으로 배열된 핵다발이 형성하는 노심(2), 그리고, 노심(2)을 용기에 대하여 지지하는 노심지지통(8) 등을 포함하여 이루어진다. 이 원자로의 용기(1)에는 원자로 냉각재 펌프(미도시)의 펌핑에 의해 원자로, 고온관(3), 증기발생기(미도시), 원자로 냉각재 펌프(미도시), 저온관(4), 그리고 다시 원자로 용기(1)순으로 순환되는 냉각재가 충전되는데, 이러한 냉각재 순환과정에서 냉각재는 노심(2)에서 핵연료 다발의 핵반응을 통해 생성된 열에너지를 흡수하여 가열된 후, 1 차계통 열교환기인 증기발생기로 이송되어, 증기발생기의 세관을 지나면서 2 차계통에서 순환되는 2 차 계통 냉각재에 열을 전달한 후 냉각재 펌프에 의해 저온관(4)을 지나 원자로 입구노즐(7)을 통해 원자로 용기(1)내로 회귀한다. 이어 원자로 용기(1) 내벽과 노심지지통(8) 사이 하향유로(9)를 따라 원자로 용기(1)의 하부공간(Reacter Vessel Lower Plenum)(1a)으로 흘러 내린 후 상방향으로 선회하여 노심(2)으로 재유입된다. 이상과 같이 노심(2)에서 출발하여 다시 노심(2)으로 되돌아오는 냉각재를 증기발생기와 증기터어빈을 순환하는 2 차 냉각재와 구별하여 원자로 냉각재 또는 1 차계통 냉각재라고 한다.In this system, a nuclear reactor is a nuclear reactor that generates thermal energy by nuclear reaction of nuclear fuel in an enclosed space. As shown in FIG. 2, a reactor vessel (1) forming a confined space in which a nuclear reaction occurs, and the vessel (1) And a core 2 formed by the nuclear bundles regularly arranged therein, and a core support cylinder 8 supporting the core 2 with respect to the container. The reactor 1 of this reactor is pumped by a reactor coolant pump (not shown), and a reactor, a high temperature tube 3, a steam generator (not shown), a reactor coolant pump (not shown), a cold tube 4, and again The coolant circulated in the reactor vessel (1) is filled. In the coolant circulation process, the coolant is heated by absorbing thermal energy generated through the nuclear reaction of the fuel bundle in the core (2), and then, the steam is a primary system heat exchanger. Transferred to the secondary system coolant circulated in the secondary system as it passes through the steam generator's tubing and then passes through the low temperature pipe (4) by the coolant pump and into the reactor vessel (1) through the reactor inlet nozzle (7). Regress Subsequently, the reactor vessel 1 flows down the reactor vessel 1 through a downward passage 9 between the inner wall of the reactor vessel 1 and the core support 8 to the lower vessel 1a of the reactor vessel 1 and then pivots upward. Flows back into 2). As described above, the coolant starting from the core 2 and returning back to the core 2 is referred to as a reactor coolant or a primary system coolant as distinguished from a secondary coolant circulating in the steam generator and the steam turbine.

이러한 가압경수로의 계통에 있어서, 피동안전주입탱크, 안전주입관 및 안전주입펌프 등의 구성들로 이루어지는 본 발명에 따른 가압경수로용 비상 노심 냉각계통은, 특히, 도 2 및 도 3에 도시된 바와 같이, 원자로 용기 내로 비상냉각재를 토출하는 토출구인 직접용기주입노즐(6)과 이 직접용기주입노즐(6)에서 토출된 비상냉각재를 노심(2)까지 유도하는 안전주입덕트(10)를 포함하여 이루어진다.In the system of such a pressurized water reactor, the emergency core cooling system for a pressurized water reactor according to the present invention composed of components such as a pre-injection tank, a safety injection pipe, a safety injection pump, and the like, in particular, is illustrated in FIGS. 2 and 3. Similarly, a direct container injection nozzle 6, which is a discharge port for discharging emergency coolant into the reactor vessel, and a safety injection duct 10 for guiding the emergency coolant discharged from the direct container injection nozzle 6 to the core 2 are included. Is done.

이러한 본 발명에 따른 구성에 있어서, 상기 직접용기주입노즐(6)은, 안전주입관(5)을 통한 비상냉각재 투입시 가압열충격을 완화함과 동시에 안전주입관(5) 파단시 냉각수 유출량을 최소화할 수 있게 1 차 계통 냉각재 유입구인 원자로 입구노즐(7)보다 상대적으로 높은 위치에 설치된다.In the configuration according to the present invention, the direct container injection nozzle (6), while reducing the emergency thermal shock when the emergency coolant input through the safety injection pipe (5) while minimizing the amount of cooling water outflow when breaking the safety injection pipe (5) It is installed at a position higher than the reactor inlet nozzle (7), which is the primary system coolant inlet.

이 직접용기주입노즐(6)은 도 4에 도시된 바와 같이 횡단면으로 볼 때 원자로 입구노즐(7)과는 상이한 방위각 상에 위치하고 있으나, 도 3의 종단면도에서는 편의를 위해 동일한 단면에 나타내었다.This direct container injection nozzle 6 is located on a different azimuth angle from the reactor inlet nozzle 7 when viewed in cross section as shown in FIG. 4, but is shown in the same section for the sake of convenience in the longitudinal cross-sectional view of FIG. 3.

한편, 직접용기주입노즐(6)에는 안전주입덕트(10)가 연결되는데, 이 연결을 위하여, 도 3과 4에 도시된 바와 같이, 직접용기주입노즐(6) 둘레의 원자로 용기(1) 내벽에는 돌출부(11)가 성형되며, 이 돌출부(11)에 맞대어져 결합되는 안전주입덕트(10)의 입구부(16) 둘레에는 상기 돌출부(11)에 대응하는 플랜지(12)가 성형된다. 이에, 직접용기주입노즐(6)로 유입되는 비상냉각재는 돌출부(11)와 플랜지(12)를 지나 안전주입덕트(10)를 따라 아래로 흘러 원자로 입구노즐(7)로 유입되는 원자로 냉각재와 혼합한 후 하향유로(9)를 따라 흘러내려 원자로 용기(1) 하부공간(1a)에서 선회하고 노심(2)으로 재유입되어 노심(2)을 냉각시킨다. 이 때, 안전주입덕트(10)는 직접용기주입노즐(6)에서 토출되어 나오는 비상냉각재를 원자로 입구노즐(6)을 우회하여 하향으로 유도함으로써, 저온관(4) 파단시 비상냉각재가 그 저온관(4)으로 증기유량에 의해 냉각재와 동반유출되지 않게 하는 역할을 하게 된다.Meanwhile, a safety injection duct 10 is connected to the direct container injection nozzle 6, and for this connection, as illustrated in FIGS. 3 and 4, an inner wall of the reactor vessel 1 around the direct container injection nozzle 6 is provided. The protrusion 11 is formed, and a flange 12 corresponding to the protrusion 11 is formed around the inlet 16 of the safety injection duct 10 which is coupled to the protrusion 11. Thus, the emergency coolant flowing directly into the container injection nozzle (6) flows down through the protrusion (11) and the flange 12 along the safety injection duct (10) and mixed with the reactor coolant flowing into the reactor inlet nozzle (7). After that, it flows down the downflow path 9 and pivots in the lower space 1a of the reactor vessel 1 and flows back into the core 2 to cool the core 2. At this time, the safety injection duct 10 directs the emergency coolant discharged from the direct container injection nozzle 6 downwardly by bypassing the reactor inlet nozzle 6, so that the emergency coolant at the time of breaking the cold pipe 4 is lowered. The pipe (4) serves to prevent the outflow with the coolant by the steam flow.

한편, 직접용기주입노즐(6)의 돌출부(11)와 맞대어지는 안전주입덕트(10) 입구(16)의 플랜지(12)는, 이 안전주입덕트(10)가 고착된 노심지지통(8)이 원자로 용기(1)에 끼워질 때 노심지지통(8)을 지지하는 원자로 용기(1) 상부 내벽의 용기턱(13)에 간섭되지 않게 하여 설치 및 인양이 가능하도록 원자로 용기턱(13)에 미치지 않는 높이로 돌출성형된다. 이 안전주입덕트(10)의 플랜지(12)는 직접용기주입노즐(6)의 돌출부(11)에 간극을 두고 맞대어져 그 플랜지(12)와 돌출부(11)와의 사이에 틈새(14)를 형성하게 되는데, 이들 사이 간극은, 직접용기주입노즐(6)로 유입된 비상냉각재가 그 틈새(14)로 과도하게 유출되는 것을 방지할 수 있으면서 노심지지통(8)이 원자로 용기턱(13)에 간섭되지 않고 인양이 가능하도록 적정한 크기로 제한된다.On the other hand, the flange 12 of the inlet 16 of the safety injection duct 10 which is opposed to the protrusion 11 of the direct container injection nozzle 6 has a core support cylinder 8 to which the safety injection duct 10 is fixed. When fitted into the reactor vessel 1, the reactor vessel 13 supporting the core support 8 does not interfere with the vessel jaw 13 of the upper inner wall of the reactor vessel 1. It is extruded to a height not exceeding. The flange 12 of the safety injection duct 10 is abutted against the protrusion 11 of the direct container injection nozzle 6 to form a gap 14 between the flange 12 and the protrusion 11. The gap between the core support cylinder 8 and the reactor vessel jaw 13 can prevent the excessive coolant flowing into the gap 14 from the emergency coolant flowing into the direct container injection nozzle 6. It is limited in size to allow for lifting without interference.

그런데, 만약 이 틈새(14)가 없다면, 안전주입관(5)이 파단되는 사고가 발생하는 경우, 사이펀 효과에 의해 원자로 용기(1) 속의 압력이 용기(1)밖의 압력과 동일하게 될 때까지 원자로 용기(1) 속의 냉각재가 파단된 안전주입관(5) 쪽으로 역류하여 외부로 유출되므로, 안전주입덕트(10)가 오히려 노심 냉각에 필요한 냉각재량을 크게 감소시키는 역효과가 초래될 염려가 있다. 그러므로, 틈새(14)는 안전주입관(4) 파단으로 원자로 용기(1)의 냉각재 수위가 그 틈새의 높이 이하로 내려가게 되는 경우에 안전주입관(5) 내로 원자로 용기(1)속의 증기 혹은 공기가 유입되게 함으로써 사이펀 효과에 따른 냉각재의 지속적인 유출을 멈추게 하는 사이펀 효과 차단기 역할을 한다.However, if this gap 14 is not present, in the event of an accident that the safety injection pipe 5 breaks, the pressure in the reactor vessel 1 is equal to the pressure outside the vessel 1 by the siphon effect. Since the coolant in the reactor vessel 1 flows back to the broken safety injection pipe 5 and flows out, the safety injection duct 10 may cause adverse effects such that the amount of coolant required for core cooling is greatly reduced. Therefore, the gap 14 is the vapor in the reactor vessel 1 into the safety injection pipe 5 when the coolant level of the reactor vessel 1 is lowered below the height of the gap due to breakage of the safety injection pipe 4. By allowing air to flow, it acts as a siphon effect blocker to stop the continuous outflow of coolant due to the siphon effect.

한편, 상기 안전주입덕트(10)는 노심지지통(8) 외벽에 부착되어 비상냉각재를 유도하는 역할을 하는데, 그 단면적을 직접용기주입노즐(6)의 통로 단면적과 비슷하게 함으로써 비상냉각재의 유속변화가 크지 않도록 한다.On the other hand, the safety injection duct 10 is attached to the outer wall of the core support cylinder (8) serves to guide the emergency coolant, the cross-sectional area of the direct coolant injection nozzle (6) by changing the flow path of the emergency coolant by changing the cross-sectional area Do not be large.

그리고, 안전주입덕트(10)의 길이는 그 하단의 출구(15)가 원자로 입구노즐(7)의 바닥 보다는 낮고 노심(2)의 상면보다는 높게 위치하도록 설계된다.In addition, the length of the safety injection duct 10 is designed such that the outlet 15 at the lower end thereof is lower than the bottom of the reactor inlet nozzle 7 and higher than the upper surface of the core 2.

안전주입덕트(10) 출구(15)의 높이를 원자로 입구노즐(7)의 바닥보다 낮게 하는 것은 저온관(4) 파단사고시 비상냉각재가 증기유량으로 인하여 저온관(4)을 통해 냉각재와 함께 동반유출될 가능성이 있기 때문에 증기유량과의 접촉을 차단함으로써 비상냉각재가 유출되는 것을 방지하고, 또, 직접용기주입노즐(6)에서 토출된 비상냉각재가 원자로 입구노즐(7)을 우회하여 원자로 용기(1) 하부에 고여 있는 원자로 냉각재 속으로 분사되도록 하기 위한 것이다. 그리고, 안전주입덕트(10) 출구(15)의 높이를 노심(2)의 상면보다 높게 하는 것은 원자로 외부의 안전주입관(5) 파단사고 발생시 플랜지(12)와 돌출부(11) 사이의 틈새(14)가 원자로 용기(1) 속에 침적되었던 파편들로 막혀 사이펀 효과 차단기 역할을 하지 못하게 되는 경우에 대비한 것이다. 즉, 틈새(14)가 파편에 의해 막혀 제기능(사이펀 효과 차단기능)을 수행하지 못하게 되더라도 사이펀 효과에 따른 냉각재 유출이 노심(2)의 상면보다 높은 위치(안전주입덕트 출구(15) 높이)에서 더 이상 진행되지 않게 함으로써, 원자로의 냉각재 수위가 적어도 노심(2)의 상면 이상으로 유지되게 하기 위한 것이다.Lowering the height of the safety injection duct (10) outlet (15) below the bottom of the reactor inlet nozzle (7) is accompanied by the coolant through the low temperature pipe (4) due to the steam flow in case of the low temperature pipe (4) failure Since there is a possibility of leakage, the emergency coolant is prevented from flowing out by blocking the contact with the steam flow rate, and the emergency coolant discharged from the direct container injection nozzle 6 bypasses the reactor inlet nozzle 7 and the reactor vessel ( 1) To be injected into the reactor coolant accumulated in the lower part. In addition, the height of the safety injection duct 10 and the exit 15 higher than the upper surface of the core 2 is such that a gap between the flange 12 and the protrusion 11 when the safety injection pipe 5 breakage occurs outside the reactor. This is in case 14 is blocked by debris that has been deposited in the reactor vessel (1) to prevent the siphon effect blocker. That is, even if the gap 14 is blocked by debris and prevents the function (siphon effect blocking function), the coolant outflow due to the siphon effect is higher than the upper surface of the core 2 (safe injection duct outlet 15 height). By not proceeding further at, the coolant level in the reactor is maintained at least above the top surface of the core 2.

다음의 표 1은 원자로 냉각재 상실사고 중 가장 심각한 가상사고인 저온관(4) 파단사고의 발생시, 직접용기주입노즐(6)만으로 비상냉각재를 주입하는 종래 비상 노심 냉각계통을 적용할 경우와, 안전주입덕트(10)로써 비상냉각재를 원자로 입구노즐(7)을 우회하여 주입하는 본 발명에 따른 비상 노심 냉각계통이 적용할 경우를 현재 사용되고 있는 열수력계통 과도해석(Thermal-Hydraulic Transient Analysis)을 위한 RELAP5/MOD3/K 컴퓨터 코드를 이용하여 예시 계산한 결과를 비교하여 보인 것이다.Table 1 below shows the safety and safety of the conventional emergency core cooling system in which the emergency coolant is injected only by the direct container injection nozzle (6) in the event of breakage of the low temperature pipe (4), the most serious virtual accident among the reactor coolant loss accidents. When the emergency core cooling system according to the present invention which injects emergency coolant into the reactor inlet nozzle 7 as the injection duct 10 is applied for thermal-hydraulic transient analysis. The results of the example calculations using the RELAP5 / MOD3 / K computer code are compared.

표 1에서 알 수 있듯이, 저온관(4) 파단이 파단되어 냉각재가 상실되는 가상사고가 발생된 후 노심에 비상냉각재가 채워지는 재관수단계에서, 현재 허용기준 온도(1204 ℃)에 대비한 핵연료 피복재의 온도비는 본 발명에 따른 비상 노심 냉각계통이 적용된 경우에 약 0.7 정도에 불과하고 종래의 비상 노심 냉각계통가 적용된 경우에는 약 1.0 까지 상승하는 것으로 나타났다. 이와 같이, 본 발명에 따른 비상 노심 냉각계통은 재관수단계에서 허용기준온도에 대한 온도비로 볼 때 종래 비상 노심 냉각계통 보다 약 0.3 정도의 온도비 차이를 보이면서 노심에 대하여 크게 향상된 냉각효과를 발휘하는 것으로 나타났다.As can be seen in Table 1, after the breakdown of the cold tube 4 breakage and the loss of coolant, the core is filled with emergency coolant and the fuel is prepared for the current allowable reference temperature (1204 ℃). The temperature ratio of the cladding was only about 0.7 when the emergency core cooling system according to the present invention was applied, and increased to about 1.0 when the conventional emergency core cooling system was applied. As described above, the emergency core cooling system according to the present invention exhibits a significantly improved cooling effect on the core while showing a difference in temperature ratio of about 0.3 from the conventional emergency core cooling system in view of the temperature ratio to the allowable reference temperature in the re-watering stage. Appeared.

주요 비상 노심 냉각 평가항목Major emergency core cooling endpoints 종래 제안된 방식인 직접용기주입노즐이 원자로용기 입구노즐의 약 2 M 상부에 위치할 경우When the direct container injection nozzle of the conventionally proposed method is located at about 2 M above the reactor vessel inlet nozzle, 직접용기주입노즐에 발명의 안전주입덕트가 추가 될 경우When the safety injection duct of the invention is added to the direct container injection nozzle 비상냉각재 주입 후의 허용기준 온도에 대한 핵연료 피복재 온도비Nuclear Fuel Cladding Temperature Ratio to Acceptance Criteria Temperature after Emergency Coolant Injection 1.01.0 0.70.7 평 가 결 과Evaluation results 재관수단계에서 본 발명의 안전주입덕트의 효과가 반영되어 피복재온도가 상대적으로 낮아짐.In the re-watering step, the effect of the safety injection duct of the present invention is reflected, so that the cladding temperature is relatively low.

표 1) 저온관 파단 냉각재 상실사고시 재관수단계의 핵연료 피복재 온도비Table 1 Temperature Ratio of Nuclear Fuel Cladding in Re-Irrigation Phase

이상에서 상세히 설명한 바와 같은 본 발명에 따른 가압경수로용 비상 노심 냉각계통에 따르면, 냉각재 유입관인 저온관 파단사고시 그 저온관으로 유출되는 비상냉각재의 양을 최소화하여 노심에 도달하는 비상냉각재의 양을 극대화할 수 있고, 또, 비상냉각재 주입관인 안전주입관의 파단사고시, 그 안전주입관을 통해 냉각재가 지속적으로 유출되게 하는 사이펀 효과를 차단하여 원자로 내 냉각재 수위를 노심이 냉각재에 잠기는 일정 이상의 최소 높이로 유지시킬 수 있음으로써 가압경수로의 안전도를 크게 높일 수 있다.According to the emergency core cooling system for the pressurized water reactor according to the present invention as described in detail above, in the case of a cold tube breakage, which is a coolant inlet pipe, the amount of emergency coolant reaching the core is maximized by minimizing the amount of emergency coolant flowing into the cold tube. In addition, in case of breakdown of the safety injection pipe, which is an emergency coolant injection pipe, the siphon effect that causes the coolant to continuously flow through the safety injection pipe is blocked so that the level of the coolant in the reactor to a minimum height above a certain level where the core is submerged in the coolant. By maintaining it, the safety of the pressurized water reactor can be greatly increased.

뿐만 아니라, 본 발명에 따른 비상 노심 냉각계통은 종래 비상 노심 냉각계통에 비해 노심 지지통의 중량을 거의 증가시키지 않음으로써 원자로 지지구조물에 대한 하중 설계 및 건설을 용이하게 하여 원자로 건설비용을 크게 절감케 한다.In addition, the emergency core cooling system according to the present invention greatly reduces the construction cost by facilitating the load design and construction of the reactor support structure by hardly increasing the weight of the core support cylinder compared to the conventional emergency core cooling system. do.

Claims (4)

비상냉각재를 가압상태로 저장하는 피동안전주입탱크와; 상기 피동안전주입탱크를 원자로 용기의 직접용기주입노즐로 연결하는 안전주입관과; 상기 피동안전주입탱크와 상기 안전주입관 사이에서 원자로 냉각재 상실사고시 상기 피동안전주입탱크에 저장된 비상냉각재를 원자로 용기의 직접용기주입노즐로 펌핑하는 안전주입펌프를 포함하여 이루어지는 가압경수로용 비상 노심 냉각계통에 있어서,A pre-injection tank for storing the emergency coolant under pressure; A safety injection pipe connecting the blood injection tank to a direct container injection nozzle of a reactor vessel; Emergency core cooling system for pressurized water reactor comprising a safety injection pump for pumping the emergency coolant stored in the pre-injection tank to the direct container injection nozzle of the reactor vessel in case of loss of the reactor coolant between the pre-injection tank and the safety injection pipe. To 상기 직접용기주입노즐은 원자로 입구노즐보다 상대적으로 높은 위치에 설치되고,The direct container injection nozzle is installed at a position relatively higher than the reactor inlet nozzle, 상기 직접용기주입노즐에 틈새를 가지고 그 입구가 결합되어, 상기 직접용기주입노즐에서 토출되는 비상냉각재를 상기 원자로 입구노즐을 우회,유도하여 상기 원자로 입구노즐 보다 낮은 위치의 출구를 통하여 토출하는 안전주입덕트를 더 포함하여 이루어지는 것을 특징으로 하는 가압경수로용 비상 노심 냉각계통.Safety injection for discharging the emergency coolant discharged from the direct container injection nozzle, bypassing the reactor inlet nozzle to discharge the coolant discharged from the direct container injection nozzle through the outlet lower than the reactor inlet nozzle Emergency core cooling system for pressurized water reactor characterized in that it further comprises a duct. 제 1 항에 있어서,The method of claim 1, 상기 안전주입덕트는 그 입구 둘레의 플랜지가 상기 직접용기주입노즐 둘레에서 돌출된 돌출부에 간극을 두고 결합되는 것을 특징으로 하는 가압경수로용 비상 노심 냉각계통.The safety injection duct is an emergency core cooling system for a pressurized water reactor, characterized in that the flange of the inlet circumference is coupled to the protrusion projecting from the circumference of the direct container injection nozzle. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 안전주입덕트는, 노심의 상단 보다 상대적으로 높은 위치에 출구를 가지는 것을 특징으로 하는 가압경수로용 비상 노심 냉각계통.The safety injection duct, the emergency core cooling system for pressurized water, characterized in that having an outlet at a position higher than the upper end of the core. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 안전주입덕트는 원자로내 노심지지통의 외벽에 부착되는 것을 특징으로 하는 가압경수로용 비상 노심 냉각계통.The safety injection duct is an emergency core cooling system for a pressurized water reactor, characterized in that attached to the outer wall of the core support in the reactor.
KR1019990018529A 1999-05-21 1999-05-21 Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow KR100319068B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990018529A KR100319068B1 (en) 1999-05-21 1999-05-21 Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990018529A KR100319068B1 (en) 1999-05-21 1999-05-21 Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow

Publications (2)

Publication Number Publication Date
KR20000074521A true KR20000074521A (en) 2000-12-15
KR100319068B1 KR100319068B1 (en) 2002-01-05

Family

ID=19587157

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990018529A KR100319068B1 (en) 1999-05-21 1999-05-21 Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow

Country Status (1)

Country Link
KR (1) KR100319068B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063177A1 (en) * 2002-01-24 2003-07-31 Philosophia, Inc. Direct vessel injection system for emergency core cooling water using vertical injection pipe, sparger, internal spiral threaded injection pipe, and inclined injection pipe
KR100681487B1 (en) * 2002-10-30 2007-02-09 한국전력공사 Best Estimated Evaluation System for Safety Analysis at Nuclear Power Plant
JP2009222697A (en) * 2008-03-17 2009-10-01 Korea Atom Energ Res Inst Safety injection system with injection extension duct above core barrel
EP2246861A2 (en) 2009-04-29 2010-11-03 Korea Atomic Energy Research Institute Emergency cooling duct for emergency cooling water injection of a nuclear reactor core
KR20230000560A (en) * 2021-06-25 2023-01-03 한국수력원자력 주식회사 Apparatus for guiding emergency core coolant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445962B1 (en) 2013-02-22 2014-09-29 한국원자력연구원 Long-term cooling device for reactor and the reactor cooling method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631484B1 (en) * 1988-05-13 1992-08-21 Framatome Sa NUCLEAR REACTOR WITH EMERGENCY COOLING WATER INJECTION DEVICE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063177A1 (en) * 2002-01-24 2003-07-31 Philosophia, Inc. Direct vessel injection system for emergency core cooling water using vertical injection pipe, sparger, internal spiral threaded injection pipe, and inclined injection pipe
KR100681487B1 (en) * 2002-10-30 2007-02-09 한국전력공사 Best Estimated Evaluation System for Safety Analysis at Nuclear Power Plant
JP2009222697A (en) * 2008-03-17 2009-10-01 Korea Atom Energ Res Inst Safety injection system with injection extension duct above core barrel
EP2133884A1 (en) * 2008-03-17 2009-12-16 Korea Atomic Energy Research Institute Emergency core cooling system having core barrel injection extension ducts
US7983377B2 (en) 2008-03-17 2011-07-19 Korea Atomic Energy Research Institute Emergency core cooling system having core barrel injection extension ducts
EP2246861A2 (en) 2009-04-29 2010-11-03 Korea Atomic Energy Research Institute Emergency cooling duct for emergency cooling water injection of a nuclear reactor core
JP2010261927A (en) * 2009-04-29 2010-11-18 Korea Atomic Energy Research Inst Cooling duct for pouring emergency core cooling water of nuclear reactor
US8630385B2 (en) 2009-04-29 2014-01-14 Korea Atomic Energy Ressearch Institute Emergency core cooling duct for emergency core cooling water injection of a nuclear reactor
KR20230000560A (en) * 2021-06-25 2023-01-03 한국수력원자력 주식회사 Apparatus for guiding emergency core coolant

Also Published As

Publication number Publication date
KR100319068B1 (en) 2002-01-05

Similar Documents

Publication Publication Date Title
KR102111813B1 (en) Small modular reactor safety systems
JP4313204B2 (en) Compact pressurized water reactor
US4473528A (en) Passive containment system
US20040196948A1 (en) Integral pwr with diverse emergency cooling and method of operating same
JP2846897B2 (en) Pressurized water intrinsic safety reactor
EP2165339B1 (en) Nuclear reactor downcomer flow deflector
KR101060871B1 (en) Cooling duct for reactor emergency core coolant injection
KR20140037825A (en) Emergency core cooling systems for pressurized water reactor
US5513234A (en) Structural member for nuclear reactor pressure tubes
US5045274A (en) Water cooled nuclear reactors
KR20010066821A (en) Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
WO2014133658A1 (en) Pressurized water reactor depressurization system
US4702879A (en) Nuclear reactor with passive safety system
US5825838A (en) Reactor flooding system for a retaining molten core materials in a reactor vessel by the improved external vessel cooling capability
KR100319068B1 (en) Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow
JP4731577B2 (en) Emergency reactor cooling water reactor vessel direct injection device
US4812286A (en) Shroud tank and fill pipe for a boiling water nuclear reactor
KR100572046B1 (en) Direct vessel injection system for emergency core cooling water using vertical injection pipe, sparger, internal spiral threaded injection pipe, and inclined injection pipe
Gaudet et al. Conceptual plant layout of the Canadian generation IV supercritical water-cooled reactor
RU2762391C1 (en) Fast neutron reactor with a passive core cooling system
JP2718855B2 (en) Nuclear fuel channel and its own safe water cooled tube reactor
JP2022032025A (en) Integrated type fast neutron reactor including exclusive safety device for reducing core meltdown accident
JP3125596B2 (en) Emergency core cooling equipment for nuclear reactors
RU2037216C1 (en) Nuclear reactor
WO2022197206A1 (en) Nuclear reactor with a heavy liquid metal coolant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131128

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171123

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee