KR20000072642A - Manufacturing technology of gallium nitride powder using transition metal catalyst - Google Patents

Manufacturing technology of gallium nitride powder using transition metal catalyst Download PDF

Info

Publication number
KR20000072642A
KR20000072642A KR1020000054524A KR20000054524A KR20000072642A KR 20000072642 A KR20000072642 A KR 20000072642A KR 1020000054524 A KR1020000054524 A KR 1020000054524A KR 20000054524 A KR20000054524 A KR 20000054524A KR 20000072642 A KR20000072642 A KR 20000072642A
Authority
KR
South Korea
Prior art keywords
gallium nitride
gallium
catalyst
transition metal
metal catalyst
Prior art date
Application number
KR1020000054524A
Other languages
Korean (ko)
Other versions
KR100386967B1 (en
Inventor
남기석
안상현
Original Assignee
남기석
안상현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019990040316A external-priority patent/KR20000000123A/en
Application filed by 남기석, 안상현 filed Critical 남기석
Priority to KR10-2000-0054524A priority Critical patent/KR100386967B1/en
Publication of KR20000072642A publication Critical patent/KR20000072642A/en
Application granted granted Critical
Publication of KR100386967B1 publication Critical patent/KR100386967B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A preparation of gallium nitride(GaN) powder using transition metal catalyst is provided, which has improved crystallinity increased reaction rate and high yield. CONSTITUTION: The preparation of gallium nitride(GaN) is characterized in that a powder or net-typed transition metal catalyst such as Ni, Co, Pt and Pd is used in a conventional GaN powder produced from gallium and ammonia in a temperature of 900-1200°C, followed by extracting and refining with an inorganic acid such as HCl, HNO3 and H2SO4.

Description

전이금속 촉매를 이용한 질화갈륨 분말의 제조 기술{.}Manufacturing technology of gallium nitride powder using transition metal catalyst {.}

본 발명은 전이금속을 촉매를 사용하여 국내·외적으로 처음 시도되어진 질화갈륨(GaN, gallium nitride) 분말 제조에 관한 것이다.The present invention relates to the production of gallium nitride (GaN) powder, which has been attempted at home and abroad using a transition metal as a catalyst.

기존의 질화갈륨 분말의 제조는 1) 1984년 S Porowski 등이 고압 반응기에서 갈륨과 암모니아를 반응하여 질화갈륨 분말을 제조하였다. 비교적 낮은 온도에서 질화갈륨 분말을 제조하였지만 제조에 높은 압력을 필요로 한다는 점과 제조시간이 비교적 다른 방법에 비해 오랜 시간을 필요로 한다는 단점을 가지고 있다. "J. Karpinski, J. Jun, S. Porowski, J. Crystal Growth, 66, 11(1984)"The production of conventional gallium nitride powder 1) In 1984, S Porowski et al prepared gallium nitride powder by reacting gallium and ammonia in a high pressure reactor. Although gallium nitride powder is manufactured at a relatively low temperature, it has disadvantages in that it requires a high pressure in manufacturing and a manufacturing time requires a longer time than other methods. "J. Karpinski, J. Jun, S. Porowski, J. Crystal Growth, 66, 11 (1984)"

2) 전구물질을 이용한 질화갈륨 분말의 제조법들은 1996년 Jerzy F. Janik등에 의해 낮은 온도와 낮은 압력에서 제조을 실행하였으나 실온에서 불안정한 전구체의 제조가 쉽지 않으며 전구물질의 제조과정은 많은 주의와 산소가 없는 진공에서의 작업을 필요로 한다. 이로 인하여 여러 단계의 과정을 필요로 하며 세심한 주의를 요구한다. "Jerzy F. Janik, Chem. Mater., 8, 2708(1996)"2) The preparation of gallium nitride powder using precursors was carried out at low temperature and low pressure by Jerzy F. Janik et al. In 1996, but it is not easy to prepare unstable precursors at room temperature. Requires working in a vacuum. This requires a multi-step process and requires careful attention. "Jerzy F. Janik, Chem. Mater., 8, 2708 (1996)"

3) 박막 질화갈륨의 원료로 사용되어지는 질화갈륨 분말의 제조에 이용되어지는 직접 반응법은 1940년 Juza 와 Hahn에 의해 처음으로 질화갈륨을 제조하였다. 그러나 고온의 제조온도와 장시간의 제조시간을 필요로 하는 단점을 가지고 있다. "R.Juza and H. Hahn, Anorg, Allgem. Chem., 234, 244(1940)"3) The direct reaction method used to produce gallium nitride powder, which is used as a raw material for thin gallium nitride, was first manufactured by Juza and Hahn in 1940. However, it has a disadvantage of requiring a high production temperature and a long production time. "R.Juza and H. Hahn, Anorg, Allgem. Chem., 234, 244 (1940)"

4) 액체갈륨에 암모니아 기체를 불어넣어 암모니아 기체 방울을 만들고 액체 속에서 질화갈륨을 제조하는 방법은 비교적 낮은 온도에서 질화갈륨을 제조하고 장치의 대량 생산과 산업화에 적합한 것으로 판단되어 진다. 그러나 이 방법은 장시간의 제조 시간을 필요로 한다.4) The method of blowing ammonia gas into the liquid gallium to form ammonia gas droplets and producing gallium nitride in the liquid is considered suitable for producing gallium nitride at a relatively low temperature and for mass production and industrialization of the device. However, this method requires a long production time.

본 발명은 지금까지 보고된 질화갈륨 분말 제조 과정에서 제기된 문제점을 보완한 촉매를 이용한 새로운 개념의 질화갈륨의 제조법을 제안하고 있다. 이 발명에서는 갈륨 액체에 암모니아 기체를 공급하여 갈륨 액체 속에서 질화갈륨 분말을 제조하는 기존의 방법에 전이금속 촉매를 반응에 참여시킴으로써 더 높은 수율, 빠른 제조 속도, 고 품질의 질화갈륨 분말을 얻는데 목적을 두고 있다.The present invention proposes a new method of preparing gallium nitride using a catalyst that supplements the problems raised in the manufacturing process of gallium nitride powder reported so far. The present invention aims to obtain a higher yield, faster production speed, and higher quality gallium nitride powder by incorporating a transition metal catalyst into the reaction of the conventional method for producing gallium nitride powder in gallium liquid by supplying ammonia gas to the gallium liquid. Leave.

도 1은 본 발명으로 제조한 질화갈륨의 (A)방향과 (B)방향으로의 투과 전자 회절 (TED) 패턴 사진이다.Figure 1 (A) of gallium nitride prepared by the present invention Direction and (B) Transmission electron diffraction (TED) pattern photograph in the direction.

도 2는 본 발명으로 제조한 질화갈륨의 광 루미니센스 (PL) 스펙트럼이다.2 is an optical luminisense (PL) spectrum of gallium nitride prepared by the present invention.

도 3은 본 발명으로 제조한 질화갈륨의 전자현미경 (SEM) 사진으로 (a) 촉매를 이용하지 않은 경우와 (b) Ni 촉매를 이용한 경우이다.3 is an electron microscope (SEM) photograph of gallium nitride prepared according to the present invention, in which (a) catalyst is not used and (b) Ni catalyst is used.

[ 부호의 설명 ][Description of the Code]

상기 목적을 달성하기 위해 본 발명에서는 갈륨과 암모니아가 직접 반응하고 있는 갈륨 액체 속에 촉매를 도입하여 질화갈륨 분말을 제조하는 새로운 방법을 제시한다.In order to achieve the above object, the present invention proposes a new method for preparing gallium nitride powder by introducing a catalyst into a gallium liquid in which gallium and ammonia are directly reacted.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

종래의 질화갈륨의 제조는 반응 중 암모니아 기체를 갈륨 액체 속으로 불어넣는 방법을 사용하여 질화갈륨을 제조하였다. 본 발명은 암모니아와 갈륨의 반응을 전위금속 촉매를 사용하여 활성화시켜 질화갈륨 제조을 촉진시키는 방법을 제공한다. 즉 종전의 질화갈륨의 제조법에 촉매를 도입함으로서 공급되어지는 기체의 분해를 촉진하고 촉매의 표면에서의 제조반응이 활성화됨으로서 반응시간의 감소 및 질화갈륨의 결정성을 향상시키고 수율을 증가할 수 있다.Conventional gallium nitride was prepared by using a method of blowing ammonia gas into a gallium liquid during the reaction. The present invention provides a method of activating the reaction of ammonia and gallium by using a potential metal catalyst to promote gallium nitride production. In other words, by introducing a catalyst into the conventional method for producing gallium nitride, it is possible to accelerate the decomposition of the gas to be supplied and to activate the production reaction on the surface of the catalyst, thereby reducing the reaction time and improving the crystallinity of gallium nitride and increasing the yield. .

[실시예 1]Example 1

반응기에 니켈(Ni) 촉매를 1 wt% 이하 설치하고 갈륨(8g)을 넣는다. 반응기를 전기로에 설치한 후 질소를 흘려 반응기안의 압력을 상압으로 조절하였다. 반응기의 압력이 상압이 될 때 온도를 상승하면서 질소기체 대신에 수소기체를 800℃까지 공급하고 공급기체를 암모니아로 전환한 후 반응온도에서 질화갈륨의 분말을 제조한다.1 wt% or less of nickel (Ni) catalyst is installed in the reactor, and gallium (8 g) is added thereto. After the reactor was installed in an electric furnace, nitrogen was flowed to adjust the pressure in the reactor to atmospheric pressure. When the pressure of the reactor is at atmospheric pressure, the hydrogen gas is supplied up to 800 ° C. instead of nitrogen gas, the feed gas is converted to ammonia, and the powder of gallium nitride is prepared at the reaction temperature.

질화갈륨의 제조는 1100℃에서 수행하였다. 제조된 질화갈륨은 산을 이용하여 미 반응물질과 분리하였다. 산과 반응하지 않는 생성물(GaN)을 추출한 다음 증류수에 세척하고 필터를 이용하여 분리한 후 진공오븐에서 건조하였다. 미 반응한 갈륨과 질화갈륨의 정제를 위하여 염산(HCl) 을 이용하였다.The preparation of gallium nitride was carried out at 1100 ° C. The gallium nitride prepared was separated from the unreacted material by using an acid. The product (GaN), which does not react with acid, was extracted, washed with distilled water, separated using a filter, and dried in a vacuum oven. Hydrochloric acid (HCl) was used to purify the unreacted gallium and gallium nitride.

[실시예2]Example 2

반응기에 갈륨(8g)과 코발트(Co) 촉매를 함께 넣고 반응기를 전기로에 설치한 후 실시예1과 동일하게 반응을 실행하였다.The gallium (8g) and cobalt (Co) catalyst was put together in the reactor and the reactor was installed in an electric furnace and the reaction was carried out in the same manner as in Example 1.

[실시예3]Example 3

반응기에 갈륨(8g)과 백금(Pt) 촉매를 함께 넣고 반응기를 전기로에 설치한 후 실시예1과 동일하게 반응을 실행하였다.The gallium (8g) and platinum (Pt) catalyst was put together in the reactor and the reactor was installed in an electric furnace, and the reaction was performed in the same manner as in Example 1.

[실시예4]Example 4

반응기에 갈륨(8g)과 팔라듐(Pd) 촉매를 함께 넣고 반응기를 전기로에 설치한 후 실시예1과 동일하게 반응을 실행하였다.The gallium (8g) and palladium (Pd) catalyst was put together in the reactor, the reactor was installed in an electric furnace and the reaction was carried out in the same manner as in Example 1.

[비교예][Comparative Example]

종래의 기술과 비교하기 위해 촉매를 도입하지 않고 반응기에 갈륨(8g)만 넣고 반응기를 전기로에 설치한 후 실시예1과 동일하게 반응을 실행하였다.In order to compare with the prior art, only gallium (8 g) was added to the reactor without introducing a catalyst, and the reactor was installed in an electric furnace.

[표1] 촉매 존재 하에서 온도에 따른 질화갈륨의 생성율 비교.Table 1 Comparison of production rates of gallium nitride with temperature in the presence of a catalyst.

표1의 결과에서 알 수 있듯이 니켈 촉매를 사용하여 질화갈륨을 제조한 실시예1의 생성률이 종래 기술로 제조한 비교예의 생성률과 비교하였을 때 1000℃에서는 2배 1050℃에서는 5배, 1100℃에서는 9배 1150℃에서는 10배로 온도가 증가할수록 급격히 증가하였다. 또한 다른 전위금속 촉매를 이용한 실시예2, 실시예3, 실시예4 에서도 실시예1에서 관찰된 촉매 효과를 얻었다. 반응온도가 증가하면 제조속도가 급격히 증가하여 반응시간도 급격히 감소하였다.As can be seen from the results in Table 1, the production rate of Example 1 in which gallium nitride was prepared using a nickel catalyst was doubled at 1000 ° C. and 5 times at 1050 ° C., at 1100 ° C., compared to the production rate of the comparative example prepared in the prior art. At 9 times 1150 ℃, it increased rapidly as the temperature increased 10 times. The catalytic effects observed in Example 1 were also obtained in Examples 2, 3, and 4 using other potential metal catalysts. As the reaction temperature increased, the production rate rapidly increased and the reaction time also decreased drastically.

표1에서 생성한 시료의 구조와 광 특성을 조사하기 위해 투과 전자 회절 (TED) 패턴과 광 루미니센스(PL) 스펙트럼을 각각 측정하였다. 모든 시료가 질화갈륨의 전형적인 투과전자회절 패턴과 광 루미니센스 스펙트럼을 보임을 관찰할 수 있었다. 전자현미경(SEM)을 이용하여 시료의 크기를 확인한 결과 촉매를 사용한 실시예1, 실시예2, 실시예3, 실시예4의 경우 촉매를 사용하지 않는 비교예의 경우보다 2배 이상의 크기를 갖는 입자가 제조되는 것을 보였다.In order to investigate the structure and optical properties of the sample produced in Table 1, the transmission electron diffraction (TED) pattern and the light luminisense (PL) spectrum were measured, respectively. All samples showed typical transmission electron diffraction pattern and photoluminescence spectra of gallium nitride. As a result of confirming the size of the sample by using an electron microscope (SEM), in the case of Example 1, Example 2, Example 3, and Example 4 using the catalyst particles having a size more than twice the size of the comparative example without the catalyst Seemed to be prepared.

이는 촉매가 질화갈륨의 생성 활성화에너지를 감소시켜 반응속도를 증가하며, 공급된 암모니아의 열분해를 촉진하는 역할도 동시에 하기 때문이다. 전달관을 통해 액체 갈륨 안으로 주입된 암모니아기체는 촉매 사이를 통과하면서 분해과정이 촉진되어지고 분해된 암모니아 이온과 갈륨 액체는 촉매에 의해서 반응이 촉진한다. 촉매의 표면에서 공급되어지는 기체의 분해과정과 질화갈륨의 제조과정이 함께 이루어지고 활성화 에너지가 낮은 반응경로를 따라 화학 반응이 일어나 반응시간을 줄일 수 있으며, 원하는 생성물의 선택성을 향상시킬 수 있어 질화갈륨 분말의 결정성 향상과 수율을 크게 증가 할 수 있다.This is because the catalyst reduces the production activation energy of gallium nitride to increase the reaction rate, and at the same time promotes the thermal decomposition of the supplied ammonia. As the ammonia gas injected into the liquid gallium through the delivery tube passes between the catalysts, the decomposition process is accelerated, and the decomposed ammonia ions and the gallium liquid are accelerated by the catalyst. Decomposition of the gas supplied from the surface of the catalyst and the manufacturing process of gallium nitride are performed together, and the chemical reaction takes place along the reaction path with low activation energy, thereby reducing the reaction time and improving the selectivity of the desired product. Improved crystallinity and yield of gallium powder can be greatly increased.

표1의 실시예에서 확인된 촉매를 사용하여 질화갈륨을 제조한 결과 생성된 질화갈륨의 양이 급격히 증가함을 알 수 있었으며, 입자크기도 증가함을 확인할 수 있었다.As a result of preparing gallium nitride using the catalysts identified in the examples in Table 1, it was found that the amount of gallium nitride produced increased rapidly, and the particle size was increased.

위에서 상술한 바와 같이 촉매를 사용함으로서 합성의 활성화 에너지를 감소시켜 생성속도를 증가시킬 수 있으며, 이로 인한 생성물의 수율을 높일 수 있다. 반응 초기 촉매는 핵의 생성자리를 제공하며 질화갈륨 분말의 크기를 증가시킨다. 또한 촉매는 공급되어지는 암모니아의 열분해 과정에서 암모니아의 분해를 촉진하여 공급되어지는 기체의 과포화도를 증가시켜 질화갈륨 분말의 결정성을 향상시킨다.By using the catalyst as described above, it is possible to reduce the activation energy of the synthesis to increase the production rate, thereby increasing the yield of the product. The initial catalyst provides a nucleation site and increases the size of the gallium nitride powder. In addition, the catalyst promotes decomposition of ammonia during the pyrolysis of the ammonia to be supplied, thereby increasing the supersaturation of the gas to be supplied, thereby improving the crystallinity of the gallium nitride powder.

Claims (4)

갈륨과 암모니아를 사용하여 질화갈륨 분말을 제조하는 방법에 전이금속을 촉매로 사용하여 제조한 후 무기산으로 추출하여 정제하는 것을 특징으로 하는 질화갈륨의 제조 방법.A method of producing gallium nitride using gallium and ammonia, the method of producing gallium nitride powder using a transition metal as a catalyst, and then extracting and purifying with an inorganic acid. 제1항에 있어서 전이금속촉매는 니켈(Ni), 코발트(Co), 백금(Pt), 팔라듐(Pd) 중 하나인 제조 방법.The method of claim 1, wherein the transition metal catalyst is one of nickel (Ni), cobalt (Co), platinum (Pt), and palladium (Pd). 제1항 및 제2항에 있어서 질화갈륨의 제조를 900 ∼ 1,200℃ 온도범위에 수행하는 방법The method according to claim 1 or 2, wherein the preparation of gallium nitride is carried out at a temperature range of 900 to 1,200 ° C. 제1항 내지 제3항에 있어서 무기산은 염산(HCl), 질산(HNO3), 황산(H2SO4) 중 하나를 사용하는 제조 방법.The process according to claim 1, wherein the inorganic acid uses one of hydrochloric acid (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ).
KR10-2000-0054524A 1999-09-18 2000-09-16 Process for preparing gallium nitride powder using transition metal catalyst KR100386967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0054524A KR100386967B1 (en) 1999-09-18 2000-09-16 Process for preparing gallium nitride powder using transition metal catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019990040316A KR20000000123A (en) 1999-09-18 1999-09-18 Catalyst growing method of gallium nitride
KR1019990040316 1999-09-18
KR10-2000-0054524A KR100386967B1 (en) 1999-09-18 2000-09-16 Process for preparing gallium nitride powder using transition metal catalyst

Publications (2)

Publication Number Publication Date
KR20000072642A true KR20000072642A (en) 2000-12-05
KR100386967B1 KR100386967B1 (en) 2003-06-09

Family

ID=26636143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0054524A KR100386967B1 (en) 1999-09-18 2000-09-16 Process for preparing gallium nitride powder using transition metal catalyst

Country Status (1)

Country Link
KR (1) KR100386967B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114123A (en) * 2000-06-21 2001-12-29 김시중 Integrated Virtual Mart System Using Internet and Business Method thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198978A (en) * 1998-12-28 2000-07-18 Futaba Corp Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
KR20000000123A (en) * 1999-09-18 2000-01-15 남기석 Catalyst growing method of gallium nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114123A (en) * 2000-06-21 2001-12-29 김시중 Integrated Virtual Mart System Using Internet and Business Method thereby

Also Published As

Publication number Publication date
KR100386967B1 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
CN107640751B (en) One-dimensional boron nitride nano material and preparation method thereof
CN109395764B (en) Preparation method of phosphorus-doped carbon nitride, product and application thereof
CN108559101B (en) Method for preparing two-dimensional sheet Cu-MOF material
CN109317180B (en) High-performance photocatalytic nitrogen fixation g-C capable of being industrially produced3N4Preparation method of/oxide composite material
CN113198520B (en) One-pot preparation method of molecular sieve supported palladium carbon catalyst and application of molecular sieve supported palladium carbon catalyst in synthesis of dimethyl carbonate by gas phase method
CN111592011A (en) Method for directly synthesizing SSZ-13 zeolite molecular sieve by using TEAOH as organic template agent
CN114524466B (en) Synthesis method of high-activity catalyst
CN103496679B (en) A kind of beta-silicon nitride powder and preparation method thereof
CN103658677A (en) Nanometer tungsten carbide powder preparing method
CN112777646B (en) Preparation method of sea urchin-shaped basic cobalt carbonate
CN114632526A (en) Cerium-silicon oxide supported ruthenium-nickel bimetallic catalyst for ammonia synthesis and preparation method and application thereof
CN112076776B (en) Protonated carbon nitrides for selective photocatalytic oxidation of alcohols to esters and uses thereof
CN113351203A (en) Graphene composite material ammonia synthesis catalyst, preparation method and ammonia preparation method
CN107754831A (en) Amorphous alloy catalyst, preparation method thereof and application thereof in ammonia borane decomposition hydrogen production
KR20000072642A (en) Manufacturing technology of gallium nitride powder using transition metal catalyst
CN1208245C (en) Preparation of boron nitride nano tube
CN114054055B (en) Carrier material for loading noble metal catalyst and preparation method thereof
CN113512162B (en) Thioether-based covalent organic framework material and preparation method and application thereof
CN110255516B (en) Synthesis method of active boron nitride nanotube
CN110550639B (en) Method for preparing borazine
CN110947405B (en) g-C in regular arrangement 3 N 4 Nanotube catalyst and method for preparing same
US20130192975A1 (en) Method of Manufacturing a Porous Gallium (III) Oxide Photocatalyst for Preparation of Hydrocarbons
CN108190858B (en) Preparation method of graphite fluoride
Zheng et al. Preparation and characterization of nanocrystal V2O5
CN108047026B (en) Method for preparing glyoxylic acid by catalytic oxidation reaction extraction of glyoxal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee