KR20000066010A - Method for manufacturing SOI semiconductor substrate - Google Patents

Method for manufacturing SOI semiconductor substrate Download PDF

Info

Publication number
KR20000066010A
KR20000066010A KR1019990012827A KR19990012827A KR20000066010A KR 20000066010 A KR20000066010 A KR 20000066010A KR 1019990012827 A KR1019990012827 A KR 1019990012827A KR 19990012827 A KR19990012827 A KR 19990012827A KR 20000066010 A KR20000066010 A KR 20000066010A
Authority
KR
South Korea
Prior art keywords
wafer
single crystal
crystal silicon
layer
silicon layer
Prior art date
Application number
KR1019990012827A
Other languages
Korean (ko)
Other versions
KR100291519B1 (en
Inventor
소상문
이성은
김헌도
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990012827A priority Critical patent/KR100291519B1/en
Publication of KR20000066010A publication Critical patent/KR20000066010A/en
Application granted granted Critical
Publication of KR100291519B1 publication Critical patent/KR100291519B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Abstract

PURPOSE: A method of fabricating a SOI semiconductor substrate is provided to prevent the porous ion from penetrating into a silicon layer by removing boron ion and easily to control the knee voltage CONSTITUTION: In a method of fabricating a SOI(silicon on insulator) semiconductor substrate, a first(11,31) wafer and a second wafer(20,40) is provided, a boron ion layer(12,32) is formed in the first wafer(11,31), a buffer silicon single crystal layer grows on the boron ion layer(12,32), a single silicon crystal layer(12,32) is formed on the boron layer(12,32) and finally the insulating oxide layer(15,21) is formed on the first and second wafer(11,20). Subsequently the insulating oxide layer(15,21) on the first and the second wafer is bonded. Wherein the first wafer is etched down to the depth on the boron ion layer. The boron ion layer, the first wafer ,and the buffer silicon single crystal including the boron ion are etched.

Description

에스오아이 반도체 기판의 제조방법{Method for manufacturing SOI semiconductor substrate}Method for manufacturing SOI semiconductor substrate

본 발명은 에스오아이(Silicon on insulator: 이하 SOI) 반도체 기판의 제조방법에 관한 것으로, 보다 구체적으로는, SOI 기판에 형성되는 반도체 소자의 문턱 전압 특성을 확보할 수 있는 에스오아이 반도체 기판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a silicon on insulator (SOI) semiconductor substrate, and more particularly, to a method for manufacturing a S.O. semiconductor substrate capable of securing threshold voltage characteristics of a semiconductor device formed on the SOI substrate. It is about.

일반적으로 CMOS 트랜지스터의 제조공정에서, 소자 분리는 소자간의 분리 및 CMOS 트랜지스터의 래치 업 현상을 방지하기 위하여, 비교적 넓은 면적을 확보하도록 형성된다. 그러나, 이러한 소자 분리 영역은 칩 면적을 감소시키고, 고집적화를 저해하는 요소가 된다.In general, in the manufacturing process of a CMOS transistor, device isolation is formed to ensure a relatively large area in order to prevent separation between devices and latch-up of the CMOS transistor. However, this device isolation region reduces chip area and becomes a factor of inhibiting high integration.

이와같은 문제점을 해결하기 위하여 종래에는 반도체 기판 대신에 SOI 기판을 사용하였다.In order to solve such a problem, a conventional SOI substrate is used instead of a semiconductor substrate.

이 SOI 기판은 실리콘 핸들링 기판과, 디바이스용 실리콘 기판 사이에 소정 두께의 베리드 절연층이 샌드위치되어 이루어진다. 이러한 SOI 기판은 완전한 소자 분리를 이룩할 수 있어, CMOS 트랜지스터의 래치업 현상을 방지할 수 있어, 소자의 고속 동작이 가능하게 한다는 장점을 지닌다.The SOI substrate is formed by sandwiching a buried insulating layer having a predetermined thickness between the silicon handling substrate and the device silicon substrate. Such an SOI substrate can achieve complete device isolation, thereby preventing the latch-up phenomenon of the CMOS transistor, thereby enabling high-speed operation of the device.

이러한 SOI 기판을 형성하는 방법중 하나는, 실리콘 기판내에 산소 이온을 주입하는 SIMOX(Separation by Implanted OXygen) 기술이 있다. 그러나, 이 SIMOX 기술은 산소를 이온 주입하는 과정에서, 디바이스 형성면에 전위(dislocation)가 발생되기 쉽고, 디바이스 형성되는 층의 두께를 정확히 조절할 수 없다는 단점을 지니므로, 다량의 누설 전류가 발생된다.One method of forming such an SOI substrate is the Separation by Implanted Oxygen (SIOX) technique, which injects oxygen ions into a silicon substrate. However, this SIMOX technology is disadvantageous in that dislocation is easily generated in the device formation surface during oxygen ion implantation, and the thickness of the device formation layer cannot be precisely controlled, resulting in a large amount of leakage current. .

또한, 종래의 다른 방법으로는 적어도 하나의 웨이퍼에는 절연층이 형성된 두 개의 실리콘 기판를 본딩한후, 디바이스용 실리콘 기판를 에치백하여 디바이스가 형성되는 실리콘층을 형성하는 BESOI(Bond and Etch-back SOI) 기술이 있다.In another conventional method, Bond and Etch-back SOI (BESOI) is formed by bonding two silicon substrates having an insulating layer formed on at least one wafer, and then etching back the silicon substrate for the device to form a silicon layer on which the device is formed. There is technology.

종래의 BESOI 기술은 도 1a에 도시된 바와 같이, 제 1 실리콘 웨이퍼(1)와 제 2 웨이퍼(2)가 준비된다. 제 1 및 제 2 웨이퍼(1,2)는 모두 실리콘 웨이퍼이다. 제 1 웨이퍼(1)내에는 붕소 이온을 소정 깊이로 이온 주입하여 붕소 이온층(2)을 형성한다. 이 붕소 이온층(2)이 형성됨에 따라, 제 1 웨이퍼(1)는 제 1 실리콘층(1 a)과 제 2 실리콘층(1b)로 구분된다. 제 2 실리콘층(1b) 상부에 매몰 절연막용 제 1 산화막(3)을 증착한다.In the conventional BESOI technique, as illustrated in FIG. 1A, a first silicon wafer 1 and a second wafer 2 are prepared. The first and second wafers 1 and 2 are both silicon wafers. Boron ions are implanted into the first wafer 1 to a predetermined depth to form the boron ion layer 2. As the boron ion layer 2 is formed, the first wafer 1 is divided into a first silicon layer 1 a and a second silicon layer 1b. The first oxide film 3 for the buried insulating film is deposited on the second silicon layer 1b.

한편, 제 2 웨이퍼(5) 상부에도 역시 매몰 절연막용 제 2 산화막(6)을 형성한다.On the other hand, the second oxide film 6 for the buried insulating film is also formed on the second wafer 5.

그 다음, 도 1b에서와 같이, 제 1 산화막(3)과 제 2 산화막(6)이 맞닿도록 접합시킨다음, 열공정을 실시한다. 그리고나서, 제 1 실리콘층(1a)을 붕소 이온층(2)이 노출될때까지 연마한다. 이때, 상기의 열공정으로 제 1 산화막(3)과 제 2 산화막(6)은 하나의 매몰 절연막(7)이 된다.Then, as shown in FIG. 1B, the first oxide film 3 and the second oxide film 6 are bonded to each other to be brought into contact with each other, and then a thermal process is performed. Then, the first silicon layer 1a is polished until the boron ion layer 2 is exposed. At this time, the first oxide film 3 and the second oxide film 6 become one buried insulating film 7 in the above thermal process.

그후, 도 1c에서와 같이, 붕소 이온층(2)을 선택 습식 식각 방식으로 통하여 제거하여, 제 2 실리콘층(1b)이 남도록 한다. 이때, 남겨진 제 2 실리콘층(1b)이 이후 반도체 소자가 형성될 반도체층이 된다.Thereafter, as shown in FIG. 1C, the boron ion layer 2 is removed through a selective wet etching method so that the second silicon layer 1b remains. At this time, the remaining second silicon layer 1b becomes a semiconductor layer on which a semiconductor device is to be formed.

그러나, 상기한 SOI 반도체 기판을 제조하는데는 다음과 같은 문제점이 있다.However, there are the following problems in manufacturing the SOI semiconductor substrate.

즉, 상기와 같이 균일한 반도체층을 형성하기 위하여 식각 정지층으로 붕소 이온층(2)을 형성하게 되면, 상기 붕소 이온층(2)내의 붕소 이온들이 반도체층으로 동작하는 제 2 실리콘층(1b)에 일부 유입된다.That is, when the boron ion layer 2 is formed as an etch stop layer in order to form a uniform semiconductor layer as described above, the boron ions in the boron ion layer 2 act on the second silicon layer 1b acting as a semiconductor layer. Some inflow.

이로 인하여, 반도체 소자가 형성될 영역의 불순물 농도가 실질적으로 증가되므로써, 이후 형성될 반도체 소자의 문턱 전압을 제어하는데 어려움이 따른다.As a result, the impurity concentration of the region in which the semiconductor element is to be formed is substantially increased, thereby making it difficult to control the threshold voltage of the semiconductor element to be formed later.

따라서, 본 발명의 목적은 SOI 기판의 반도체층내에 잔류하는 붕소 이온을 제거하여, SOI 기판에 형성되는 반도체 소자의 문턱 전압 특성을 개선할 수 있는 SOI 반도체 기판의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for manufacturing an SOI semiconductor substrate which can remove the boron ions remaining in the semiconductor layer of the SOI substrate, thereby improving the threshold voltage characteristic of the semiconductor element formed on the SOI substrate.

도 1a 내지 도 1c는 종래의 에스오아이 반도체 기판을 제조하는 방법을 설명하기 위한 단면도.1A to 1C are cross-sectional views for explaining a method of manufacturing a conventional SOH semiconductor substrate.

도 2a 내지 도 2f는 본 발명의 제 1 실시예를 설명하기 위한 각 공정별 단면도.2A to 2F are cross-sectional views of respective processes for explaining the first embodiment of the present invention.

도 3a 내지 도 3g는 본 발명의 제 2 실시예를 설명하기 위한 각 공정별 단면도.3A to 3G are cross-sectional views of respective processes for explaining the second embodiment of the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

11,31 - 제 1 웨이퍼 12,32 - 붕소 이온층11,31-First Wafer 12,32-Boron Ion Layer

13,33 - 완충 단결정 실리콘층 14,34 - 단결정 실리콘층13,33-Buffered Monocrystalline Silicon Layer 14,34-Monocrystalline Silicon Layer

15,21,36,38,41 - 매몰 절연막용 산화막15,21,36,38,41-Oxide film for investment insulating film

20,40 - 제 2 웨이퍼 37 - 캐패시터 전극20,40-Second Wafer 37-Capacitor Electrode

상기한 본 발명의 목적을 달성하기 위하여, 본 발명은, 제 1 및 제 2 웨이퍼를 준비하는 단계와, 제 1 웨이퍼 내의 소정 깊이에 붕소 이온층을 형성하는 단계와, 상기 붕소 이온층 상부에 완충 단결정 실리콘층을 성장시키는 단계와, 상기 완충 단결정 실리콘층 상에 단결정 실리콘층을 성장시키는 단계와, 상기 제 1 웨이퍼의 단결정 실리콘층과 제 2 웨이퍼 상부에 매몰 절연막용 산화막을 각각 형성하는 단계와, 상기 제 1 웨이퍼와 제 2 웨이퍼를 상기 매몰 절연용 산화막이 맞닿도록 본딩하는 단계와, 상기 제 1 웨이퍼를 상기 붕소 이온층을 식각 정지층으로 하여 제거하는 단계, 및 상기 단결정 실리콘층을 식각 정지층으로 하여 붕소 이온층과 잔류하는 제 1 웨이퍼 및 완충 단결정 실리콘층을 제거하는 단계를 포함한다.In order to achieve the above object of the present invention, the present invention provides a method for preparing a first wafer and a second wafer, forming a boron ion layer at a predetermined depth in the first wafer, and buffering single crystal silicon on the boron ion layer. Growing a layer, growing a single crystal silicon layer on the buffer single crystal silicon layer, forming an oxide film for a buried insulating film on the single crystal silicon layer of the first wafer and the second wafer, respectively, Bonding a first wafer and a second wafer to abut the oxide film for buried insulation, removing the first wafer with the boron ion layer as an etch stop layer, and boron with the single crystal silicon layer as an etch stop layer Removing the ionic layer and the remaining first wafer and the buffer single crystal silicon layer.

여기서, 상기 단결정 실리콘층을 형성하는 단계와 제 1 웨이퍼상에 매몰 절연막용 산화막을 형성하는 단계사이에, 상기 단결정 실리콘층과 콘택되도록 캐패시터 전극을 형성하는 단계를 더 포함한다.The method may further include forming a capacitor electrode to contact the single crystal silicon layer between forming the single crystal silicon layer and forming an oxide film for a buried insulation film on the first wafer.

본 발명에 의하면, 붕소 이온층을 식각 정지층으로 이용하면서, 붕소 이온층 상부의 웨이퍼층을 반도체층으로 이용하지 않고 웨이퍼상에 성장된 단결정 실리콘층을 반도체층으로 이용한다. 이에따라, 붕소 이온이 유입되는 것이 방지되어, 붕소 이온의 영향울 줄일 수 있어, 문턱 전압의 제어가 용이하다.According to the present invention, the single crystal silicon layer grown on the wafer is used as the semiconductor layer while the boron ion layer is used as the etch stop layer, and the wafer layer on the boron ion layer is not used as the semiconductor layer. As a result, the inflow of boron ions is prevented, and the influence of the boron ions can be reduced, so that the threshold voltage can be easily controlled.

(실시예)(Example)

이하 첨부한 도면에 의거하여 본 발명을 자세히 설명하도록 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도면 도 2a 내지 도 2f는 본 발명의 제 1 실시예를 설명하기 위한 각 공정별 단면도이고, 도 3a 내지 도 3g는 본 발명의 제 2 실시예를 설명하기 위한 각 공정별 단면도이다.2A to 2F are cross-sectional views for each process for describing the first embodiment of the present invention, and FIGS. 3A to 3G are cross-sectional views for each process for explaining the second embodiment of the present invention.

먼저, 제 1 실시예에 대하여 설명한다.First, the first embodiment will be described.

도 2a를 참조하여, 실리콘 소재로 된 제 1 웨이퍼(11)가 준비된다. 제 1 웨이퍼(11)에 붕소(B) 이온을 주입하여 붕소 이온층(12)을 형성한다. 이때, 붕소 이온층(12)은 1014내지 1017dose/㎠의 이온을 10 내지 200KeV의 에너지로 이온 주입하여 형성된다. 그 다음으로, 붕소 이온층(12)이 형성된 제 1 웨이퍼(11) 상에 완충 단결정 실리콘층(13)을 약 100 내지 5000Å 두께로 성장시킨다. 이때, 완충 단결정 실리콘층(13)은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min 정도 흘려주면서 증착한다.Referring to Fig. 2A, a first wafer 11 made of silicon material is prepared. Boron (B) ions are implanted into the first wafer 11 to form the boron ion layer 12. In this case, the boron ion layer 12 is formed by ion implantation of ions of 10 14 to 10 17 dose / cm 2 with energy of 10 to 200 KeV. Next, the buffer single crystal silicon layer 13 is grown to a thickness of about 100 to 5000 mm 3 on the first wafer 11 on which the boron ion layer 12 is formed. At this time, the buffer single crystal silicon layer 13 is deposited while flowing a SiHCl 3 or SiH 2 Cl 2 solution 0.5 to 3L / min, B 2 H 6 solution 0.1 to 5L / min.

이어서, 도 2b에 도시된 바와 같이, 완충 단결정 실리콘층(13) 상에 단결정 실리콘층(14)를 형성하고, 그 상부에 매몰 절연막용 제 1 산화막(15)을 형성한다. 이때, 단결정 실리콘층(14)은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min 정도 흘려주면서 약 100 내지 2000Å 두께로 성장시킴이 바람직하다. 여기서, 상기 단결정 실리콘층(14)은 이후, 반도체 소자가 형성될 층으로서, 이 반도체층의 막 청결도를 확보하기 위하여 상기와 같이 완충 단결정 실리콘층(13)을 형성한 후에 단결정 실리콘층(14)을 형성하는 것이 바람직하다.Subsequently, as shown in FIG. 2B, the single crystal silicon layer 14 is formed on the buffer single crystal silicon layer 13, and the first oxide film 15 for the buried insulation film is formed thereon. At this time, the single crystal silicon layer 14 is preferably grown to a thickness of about 100 to 2000 kPa while flowing SiHCl 3 or SiH 2 Cl 2 solution at 0.5 to 3 L / min and B 2 H 6 solution at about 0.1 to 5 L / min. Here, the single crystal silicon layer 14 is a layer on which a semiconductor device is to be formed, and after forming the buffer single crystal silicon layer 13 as described above in order to secure the film cleanliness of the semiconductor layer, the single crystal silicon layer 14 is formed. It is preferable to form

또한, 제 1 산화막(15)은 화학 기상 증착 방식으로 약 1000 내지 10000Å 두께로 형성하며, BPSG막, HDP 산화막, PE-TEOS 산화막, SOG 산화막 중 어느 하나가 이용될 수 있다.In addition, the first oxide film 15 may be formed to a thickness of about 1000 to 10000 kPa by chemical vapor deposition, and any one of a BPSG film, an HDP oxide film, a PE-TEOS oxide film, and an SOG oxide film may be used.

한편, 도 2c에서와 같이, 제 2 웨이퍼(20)가 준비된다. 제 2 웨이퍼(20)의 상부에 매몰 절연막용 제 2 산화막(21)이 형성된다. 제 2 산화막(21) 역시 화학 기상 증착 방식으로 형성되고, 상기에 열거된 산화막 중 어느 하나로 형성될 수 있으며, 그 두께는 1000 내지 10000Å 정도가 적당하다.Meanwhile, as shown in FIG. 2C, the second wafer 20 is prepared. The second oxide film 21 for the buried insulating film is formed on the second wafer 20. The second oxide film 21 may also be formed by chemical vapor deposition, and may be formed by any one of the oxide films listed above, and the thickness thereof is suitably about 1000 to 10000 Pa.

그런다음, 제 1 웨이퍼(11)와 제 2 웨이퍼(20)를 본딩하기 전에 표면에 파티클을 제거하면서 표면 친수화 처리를 위하여 클리닝을 실시한다. 이때, 클리닝 공정은 SC-1 용액 또는 피라나(piranha) 세척액 또는 이들의 혼합 용액을 사용하여 진행될 수 있고, 또는 700 내지 1200℃, O2또는 N2분위기에서 30 내지 120분 동안 열처리하여 진행될 수 있다.Then, cleaning is performed for the surface hydrophilization treatment while removing particles on the surface before bonding the first wafer 11 and the second wafer 20. In this case, the cleaning process may be performed using an SC-1 solution or a piranha washing solution or a mixed solution thereof, or may be performed by heat treatment at 700 to 1200 ° C., O 2 or N 2 atmosphere for 30 to 120 minutes. have.

다음으로, 도 2d에 도시된 바와 같이, 제 1 웨이퍼(11)와 제 2 웨이퍼(20)를 제 1 및 제 2 산화막(15,21)이 맞닿도록 본딩한다. 본딩 공정은 7.5×10-1내지 7.5×10-4torr의 진공하에서 진행됨이 바람직하다. 이어, 두 웨이퍼(11,15)간의 접합 강도를 개선하기 위하여, 소정 시간동안 열처리 공정을 진행한다. 상기 열처리 공정은 700 내지 1200℃, O2또는 N2분위기에서 30 내지 120분 동안 진행된다.Next, as illustrated in FIG. 2D, the first wafer 11 and the second wafer 20 are bonded to abut the first and second oxide films 15 and 21. The bonding process is preferably carried out under a vacuum of 7.5 × 10 −1 to 7.5 × 10 −4 torr. Subsequently, in order to improve the bonding strength between the two wafers 11 and 15, a heat treatment process is performed for a predetermined time. The heat treatment process is performed for 30 to 120 minutes in 700 to 1200 ℃, O 2 or N 2 atmosphere.

그후, 제 1 웨이퍼(11)의 대부분, 즉, 제 1 웨이퍼(11)가 소정 두께만큼 남도록 후면 연마한다. 이때, 후면 연마시 연마척 웨이퍼의 회전 속도는 50 내지 400rpm 정도, 스핀들(spindle)의 회전 속도를 1000 내지 4000 rpm 정도로 하여, 후면 연마 속도가 10 내지 400㎛/min 정도가 되도록 한다.Thereafter, a large part of the first wafer 11, that is, the first wafer 11 is polished back such that the first wafer 11 remains by a predetermined thickness. At this time, the rotation speed of the polishing chuck wafer at the time of backside polishing is about 50 to 400rpm, and the rotational speed of the spindle is about 1000 to 4000rpm, so that the backside polishing speed is about 10 to 400µm / min.

그런다음, 도 2e에서와 같이, 상기 붕소 이온층(12)를 식각 정지층으로 하여, 잔류하는 제 1 웨이퍼(11)를 습식 식각 방식으로 제거한다. 잔류하는 제 1 웨이퍼(11)는 HNO3:HF:H2SO4:H3PO4가 0.5∼5:0.5∼2:0.5∼1:0.5∼3으로 혼합된 용액으로 습식식각하거나, NH4OH:H2O2:H2O를 1∼4:0∼0.5:5∼10의 혼합 용액으로 습식식각한다.Thereafter, as shown in FIG. 2E, the boron ion layer 12 is used as an etch stop layer, and the remaining first wafer 11 is removed by a wet etching method. The remaining first wafer 11 is wet-etched with a solution in which HNO 3 : HF: H 2 SO 4 : H 3 PO 4 is mixed at 0.5-5: 0.5-2: 0.5-1: 0.5-3, or NH 4 OH: H 2 O 2 : H 2 O is wet etched with a mixed solution of 1 to 4: 0 to 0.5: 5 to 10.

이어서, 도 2f에 도시된 바와 같이, 붕소 이온층(12)과 잔류하는 제 1 웨이퍼(11) 및 완충 단결정 실리콘층(13)을 단결정 실리콘층(14)를 정지층으로 하여 화학적 기계적 연마 방식으로 제거한다. 여기서, 상기 화학적 기계적 연마는 척 테이블의 회전 속도를 10 내지 30rpm으로 하고, 스핀들을 눌러주는 압력을 4 내지 8 psi 정도로 하고, 스핀들의 회전 속도는 20 내지 40 rpm으로 하여 진행된다.Subsequently, as shown in FIG. 2F, the boron ion layer 12, the remaining first wafer 11, and the buffer single crystal silicon layer 13 are removed by chemical mechanical polishing using the single crystal silicon layer 14 as a stop layer. do. Here, the chemical mechanical polishing is a rotational speed of the chuck table is 10 to 30rpm, the pressure for pressing the spindle is about 4 to 8psi, and the rotational speed of the spindle is 20 to 40rpm.

여기서, 상기 단결정 실리콘층(14)은 반도체 소자가 형성될 반도체층이 되어, SOI 반도체 기판이 완성된다.Here, the single crystal silicon layer 14 becomes a semiconductor layer on which a semiconductor device is to be formed, thereby completing an SOI semiconductor substrate.

이와같이 본 실시예에 따르면, 붕소 이온층을 식각 정지층으로 사용하였더라도, 붕소 이온층 상부에 2번에 걸쳐 단결정 실리콘층을 성장하고, 표면에 형성된 단결정 실리콘층을 반도체층으로 사용한다. 그렇게되면, 완충 단결정 실리콘층 상부에 형성되는 단결정 실리콘층은 붕소 이온이 잔류하지 않게 되므로써, 문턱 전압의 제어가 용이하다.As described above, according to this embodiment, even when the boron ion layer is used as an etch stop layer, the single crystal silicon layer is grown twice over the boron ion layer, and the single crystal silicon layer formed on the surface is used as the semiconductor layer. As a result, boron ions do not remain in the single crystal silicon layer formed on the buffer single crystal silicon layer, so that the threshold voltage can be easily controlled.

이하, 도 3a 내지 도 3 를 참조하여, 본 발명의 제 2 실시예를 설명하기로 한다. 본 제 2 실시예는 상기 제 1 실시예를 이용하여 디램 소자를 형성하는 방법이다.Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 3A to 3. The second embodiment is a method of forming a DRAM device by using the first embodiment.

먼저, 도 3a를 참조하여, 제 1 실리콘 웨이퍼(31)가 준비된다. 제 1 웨이퍼(31)상에 붕소 이온을 1014내지 1017dose/㎠의 이온을 10 내지 200KeV의 에너지로 주입하여, 제 1 웨이퍼(31) 내에 붕소 이온층(32)을 형성한다. 그 붕소 이온층(32)이 형성된 제 1 웨이퍼(31)상에 완충 단결정 실리콘층(33)을 약 100 내지 5000Å 두께로 성장시킨다. 이때, 완충 단결정 실리콘층(33)은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min 정도 흘려주면서 성장시킨다. 이어, 완충 단결정 실리콘층(13) 상에 단결정 실리콘층(14)을 형성한다. 여기서, 상기 단결정 실리콘층(34)은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min 정도 흘려주면서 약 100 내지 2000Å 두께로 성장한다.First, referring to FIG. 3A, a first silicon wafer 31 is prepared. Boron ions are implanted on the first wafer 31 at 10 14 to 10 17 doses / cm 2 of energy at an energy of 10 to 200 KeV to form the boron ion layer 32 in the first wafer 31. The buffer single crystal silicon layer 33 is grown to a thickness of about 100 to 5000 상 에 on the first wafer 31 on which the boron ion layer 32 is formed. In this case, the buffer single crystal silicon layer 33 is grown while flowing SiHCl 3 or SiH 2 Cl 2 solution by flowing 0.5 to 3 L / min and B 2 H 6 solution to about 0.1 to 5 L / min. Next, the single crystal silicon layer 14 is formed on the buffer single crystal silicon layer 13. Here, the single crystal silicon layer 34 is grown to a thickness of about 100 to 2000 microns while flowing SiHCl 3 or SiH 2 Cl 2 solution at 0.5 to 3 L / min and B 2 H 6 solution at about 0.1 to 5 L / min.

그 다음, 도 3b에 도시된 바와 같이, 공지의 포토리소그라피 공정 및 식각 공정을 통하여, 상기 완충 단결정 실리콘층(33)의 소정 부분이 노출되도록 저농도 단결정 실리콘층(23)을 소정 부분 패터닝하여, 트랜치 홈(도시되지 않음)을 형성한다. 여기서, 트랜치 홈은 소자 분리 예정 영역에 형성됨이 바람직하다.Next, as shown in FIG. 3B, through the known photolithography process and the etching process, the portion of the low concentration single crystal silicon layer 23 is patterned to expose the predetermined portion of the buffer single crystal silicon layer 33, and the trench is then trenched. A groove (not shown) is formed. Here, the trench grooves are preferably formed in the region where the device is to be separated.

그리고나서, 도 3c에 도시된 것과 같이, 트랜치 홈내에 절연막을 매립한다. 이하, 트랜치 홈내에 매립된 절연막을 트랜치 절연막(35)이라 한다. 그 다음, 트랜치 절연막(35) 및 단결정 실리콘층(34) 상에 매몰 절연막용 제 1 산화막(36)을 화학기상증착법으로 1000 내지 10000Å 두께 정도로 증착한다. 여기서, 제 1 산화막(25)으로는 BPSG막, HDP 산화막, PE-TEOS 산화막, SOG 산화막 중 어느 하나가 이용될 수 있다. 그후, 단결정 실리콘층(34)의 소정 부분, 바람직하게는 캐패시터 전극이 형성될 영역이 노출되도록, 제 1 산화막(36)의 소정 부분을 식각하여, 홀(도시되지 않음)을 형성한다. 그후에, 노출된 단결정 실리콘층(34)과 콘택되도록 홀내에 캐패시터 전극(37)을 공지의 방법으로 형성한다. 그 다음, 캐패시터 전극(37) 및 제 1 산화막(36) 상부에 매몰 절연막용 제 2 산화막(38)을 형성한다. 이때, 제 2 산화막(38)은 상기 제 1 산화막(36)과 동일 방식으로 형성되며, BPSG막, HDP 산화막, PE-TEOS 산화막, SOG 산화막 중 어느 하나로 형성된다.Then, as shown in Fig. 3C, an insulating film is embedded in the trench groove. Hereinafter, the insulating film embedded in the trench groove is called the trench insulating film 35. Next, the first oxide film 36 for the buried insulating film is deposited on the trench insulating film 35 and the single crystal silicon layer 34 by a chemical vapor deposition method with a thickness of about 1000 to 10000 GPa. Here, any one of the BPSG film, the HDP oxide film, the PE-TEOS oxide film, and the SOG oxide film may be used as the first oxide film 25. Thereafter, a predetermined portion of the first oxide film 36 is etched to form a hole (not shown) so that a predetermined portion of the single crystal silicon layer 34, preferably a region where the capacitor electrode is to be formed, is exposed. Thereafter, the capacitor electrode 37 is formed in the hole by a known method so as to be in contact with the exposed single crystal silicon layer 34. Next, a second oxide film 38 for the buried insulation film is formed over the capacitor electrode 37 and the first oxide film 36. In this case, the second oxide film 38 is formed in the same manner as the first oxide film 36 and is formed of any one of a BPSG film, an HDP oxide film, a PE-TEOS oxide film, and an SOG oxide film.

한편, 도 3d에 도시된 바와 같이, 제 1 웨이퍼(31)와 합착될 제 2 웨이퍼(40)가 준비된다. 그후, 제 2 웨이퍼(40) 상부에 매몰 절연막용 제 3 산화막(41)을 형성한다. 이때, 제 3 산화막(41) 역시, 제 1 및 제 2 산화막(36,38)과 동일한 방식으로 형성되고, 상기에서 열거된 산화막 중 어느 하나가 이용될 수 있다.Meanwhile, as shown in FIG. 3D, a second wafer 40 to be bonded to the first wafer 31 is prepared. Thereafter, a third oxide film 41 for buried insulating film is formed on the second wafer 40. At this time, the third oxide film 41 is also formed in the same manner as the first and second oxide films 36 and 38, and any one of the oxide films listed above may be used.

그 다음, 도 3f에서와 같이, 제 1 웨이퍼(31)의 제 2 산화막(38)과 제 2 웨이퍼(40)의 제 3 산화막(41)이 맞닿도록 본딩한다. 이때, 제 1 웨이퍼(31)와 제 2 웨이퍼(40)를 본딩하기 전에 표면에 파티클을 제거하면서 표면 친수화 처리를 위하여 클리닝을 실시한다. 이때, 클리닝 공정은 SC-1 용액 또는 피라나(piranha) 세척액 또는 이들의 혼합 용액을 사용하여 진행될 수 있고, 또는 700 내지 1200℃, O2또는 N2분위기에서 30 내지 120분 동안 열처리하여 진행될 수 있다. 여기서, 상기 본딩공정은 7.5×10-1내지 7.5×10-4torr의 진공하에서 진행됨이 바람직하다. 이어, 두 웨이퍼(31,40)간의 접합 강도를 개선하기 위하여, 소정 시간동안 열처리 공정을 진행한다. 상기 열처리 공정은 700 내지 1200℃, O2또는 N2분위기에서 30 내지 120분 동안 진행된다. 제 1 웨이퍼(11)의 대부분을, 예를들어 제 1 웨이퍼(31)가 소정 두께만큼 남도록 후면 연마한다. 이때, 후면 연마시 연마척 웨이퍼의 회전 속도는 50 내지 400rpm 정도, 스핀들(spindle)의 회전 속도를 1000 내지 4000 rpm 정도로 하여, 후면 연마 속도가 10 내지 400㎛/min 정도가 되도록 한다.Next, as shown in FIG. 3F, the second oxide film 38 of the first wafer 31 and the third oxide film 41 of the second wafer 40 are bonded to each other. At this time, before bonding the first wafer 31 and the second wafer 40, cleaning is performed for the surface hydrophilization treatment while removing particles on the surface. In this case, the cleaning process may be performed using an SC-1 solution or a piranha washing solution or a mixed solution thereof, or may be performed by heat treatment at 700 to 1200 ° C., O 2 or N 2 atmosphere for 30 to 120 minutes. have. Here, the bonding process is preferably carried out under a vacuum of 7.5 × 10 -1 to 7.5 × 10 -4 torr. Subsequently, in order to improve the bonding strength between the two wafers 31 and 40, a heat treatment process is performed for a predetermined time. The heat treatment process is performed for 30 to 120 minutes in 700 to 1200 ℃, O 2 or N 2 atmosphere. Most of the first wafer 11 is, for example, polished back such that the first wafer 31 remains by a predetermined thickness. At this time, the rotation speed of the polishing chuck wafer at the time of backside polishing is about 50 to 400rpm, and the rotational speed of the spindle is about 1000 to 4000rpm, so that the backside polishing speed is about 10 to 400µm / min.

그런다음, 도 3f에 도시된 바와 같이, 잔류하는 제 1 웨이퍼(31)를 습식 식각 방식으로 제거한다. 잔류하는 제 1 웨이퍼(31)는 HNO3: HF : H2SO4: H3PO4가 0.5∼5 :0.5∼2 :0.5∼1 :0.5∼3으로 혼합된 용액으로 습식식각되거나, 또는 NH4OH:H2O2:H2O를 1∼4:0∼0.5:5∼10의 혼합 용액으로 습식식각된다.Then, as shown in FIG. 3F, the remaining first wafer 31 is removed by a wet etching method. The remaining first wafer 31 is wet-etched with a solution in which HNO 3 : HF: H 2 SO 4 : H 3 PO 4 is mixed at 0.5-5: 0.5-2: 0.5-1: 0.5-3, or NH 4 OH: H 2 O 2 : H 2 O is wet etched with a mixed solution of 1 to 4: 0 to 0.5: 5 to 10.

이어서, 도 3g에 도시된 바와 같이, 단결정 실리콘층(34)을 식각 정지층으로 하여, 붕소 이온층(32), 잔류하는 제 1 웨이퍼(31) 및 완충형 단결정 실리콘층(33)을 화학적 기계적 연마 방식으로 제거한다. 여기서, 상기 화학적 기계적 연마는 척 테이블의 회전 속도를 10 내지 30rpm으로 하고, 스핀들을 눌러주는 압력을 4 내지 8 psi 정도로 하고, 스핀들의 회전 속도는 20 내지 40 rpm으로 하여 진행한다.Subsequently, as shown in FIG. 3G, the boron ion layer 32, the remaining first wafer 31, and the buffer type single crystal silicon layer 33 are chemically mechanically polished using the single crystal silicon layer 34 as an etch stop layer. Remove it in such a way. In the chemical mechanical polishing, the rotation speed of the chuck table is 10 to 30 rpm, the pressure for pressing the spindle is about 4 to 8 psi, and the rotation speed of the spindle is 20 to 40 rpm.

이상에서 자세히 설명된 바와 같이, 본 발명에 의하면, 붕소 이온층을 식각 정지층으로 이용하면서, 붕소 이온층 상부의 웨이퍼층을 반도체층으로 이용하지 않고 웨이퍼상에 성장된 단결정 실리콘층을 반도체층으로 이용한다. 이에따라, 붕소 이온이 유입되는 것이 방지되어, 붕소 이온의 영향울 줄일 수 있어, 문턱 전압의 제어가 용이하다.As described in detail above, according to the present invention, while using the boron ion layer as an etch stop layer, the single crystal silicon layer grown on the wafer is used as the semiconductor layer without using the wafer layer on the boron ion layer as the semiconductor layer. As a result, the inflow of boron ions is prevented, and the influence of the boron ions can be reduced, so that the threshold voltage can be easily controlled.

Claims (20)

제 1 및 제 2 웨이퍼를 준비하는 단계;Preparing first and second wafers; 제 1 웨이퍼 내의 소정 깊이에 붕소 이온층을 형성하는 단계;Forming a boron ion layer at a predetermined depth in the first wafer; 상기 붕소 이온층 상부에 완충 단결정 실리콘층을 성장시키는 단계;Growing a buffer single crystal silicon layer on the boron ion layer; 상기 완충 단결정 실리콘층 상에 단결정 실리콘층을 성장시키는 단계;Growing a single crystal silicon layer on the buffer single crystal silicon layer; 상기 제 1 웨이퍼의 단결정 실리콘층과 제 2 웨이퍼 상부에 매몰 절연막용 산화막을 각각 형성하는 단계;Forming an oxide film for a buried insulation film on the single crystal silicon layer and the second wafer, respectively, of the first wafer; 상기 제 1 웨이퍼와 제 2 웨이퍼를 상기 매몰 절연용 산화막이 맞닿도록 본딩하는 단계;Bonding the first wafer and the second wafer to abut the oxide film for buried insulation; 상기 제 1 웨이퍼를 상기 붕소 이온층을 식각 정지층으로 하여 제거하는 단계; 및Removing the first wafer using the boron ion layer as an etch stop layer; And 상기 단결정 실리콘층을 식각 정지층으로 하여 붕소 이온층과 잔류하는 제 1 웨이퍼 및 완충 단결정 실리콘층을 제거하는 단계를 포함하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.Removing the boron ion layer, the remaining first wafer, and the buffered single crystal silicon layer by using the single crystal silicon layer as an etch stop layer. 제 1 항에 있어서, 상기 단결정 실리콘층을 형성하는 단계와 제 1 웨이퍼상에 매몰 절연막용 산화막을 형성하는 단계사이에, 상기 단결정 실리콘층과 콘택되도록 캐패시터 전극을 형성하는 단계를 더 포함하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.2. The method of claim 1, further comprising forming a capacitor electrode in contact with the single crystal silicon layer between forming the single crystal silicon layer and forming an oxide film for a buried insulating film on the first wafer. A method of manufacturing an SOI semiconductor substrate. 제 1 항 또는 제 2 항에 있어서, 상기 붕소 이온층은 붕소 이온을 1014내지 1017dose/㎠의 이온을 10 내지 200KeV의 에너지로 주입하여 형성하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1 or 2, wherein the boron ion layer is formed by implanting boron ions with 10 14 to 10 17 doses / cm 2 of ions at an energy of 10 to 200 KeV. 제 1 항 또는 제 2 항에 있어서, 상기 완충 단결정 실리콘층은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min을 흘려주면서 증착하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1 or 2, wherein the buffer single crystal silicon layer is characterized in that the SiHCl 3 or SiH 2 Cl 2 solution is deposited at a flow rate of 0.5 to 3L / min, B 2 H 6 solution at a flow rate of 0.1 to 5L / min A method for producing an SOI semiconductor substrate. 제 3 항에 있어서, 상기 완충 단결정 실리콘층은 약 100 내지 5000Å 두께로 성장되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.4. The method of claim 3 wherein the buffer single crystal silicon layer is grown to about 100 to 5000 microns thick. 제 1 항 또는 제 2 항에 있어서, 상기 단결정 실리콘층은 SiHCl3또는 SiH2Cl2용액을 0.5 내지 3ℓ/min, B2H6용액을 0.1 내지 5ℓ/min 정도 흘려주면서 성장시키는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1 or 2, wherein the single crystal silicon layer is characterized in that the SiHCl 3 or SiH 2 Cl 2 solution is grown by flowing 0.5 to 3L / min, B 2 H 6 solution by flowing about 0.1 to 5L / min Method of manufacturing a SOI semiconductor substrate. 제 6 항에 있어서, 상기 단결정 실리콘층은 100 내지 2000Å 두께로 형성되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.7. The method of claim 6, wherein the single crystal silicon layer is formed to a thickness of 100 to 2000 microns. 제 1 항 또는 제 2 항에 있어서, 상기 매몰 절연막용 산화막은 BPSG막, HDP 산화막, PE-TEOS 산화막, SOG 산화막 중 선택되는 어느 하나의 막으로 형성되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of manufacturing an SOI semiconductor substrate according to claim 1 or 2, wherein the buried insulating oxide film is formed of any one selected from BPSG film, HDP oxide film, PE-TEOS oxide film and SOG oxide film. 제 8 항에 있어서, 상기 산화막은 화학 기상 증착 방식으로 약 1000 내지 10000Å 두께로 형성되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 8, wherein the oxide film is formed to a thickness of about 1000 to 10000 kV by chemical vapor deposition. 제 1 항 또는 제 2 항에 있어서, 상기 제 1 웨이퍼와 제 2 웨이퍼를 본딩하기 전에 표면에 파티클을 제거하면서 표면 친수화 처리를 위하여 클리닝 단계를 추가로 실시하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.3. The fabrication of an SOI semiconductor substrate according to claim 1 or 2, further comprising a cleaning step for a surface hydrophilization treatment while removing particles on the surface before bonding the first and second wafers. Way. 제 10 항에 있어서, 상기 클리닝 공정은 SC-1 용액 또는 피라나(piranha) 세척액 또는 이들의 혼합 용액을 사용하여 진행되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 10, wherein the cleaning process is performed using an SC-1 solution, a piranha washing solution, or a mixed solution thereof. 제 10 항에 있어서, 상기 클리닝 공정은 700 내지 1200℃, O2또는 N2분위기에서 30 내지 120분 동안 열처리하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 10, wherein the cleaning process is performed at 700 to 1200 ° C., O 2 or N 2 , for 30 to 120 minutes. 제 1 항 또는 제 2 항에 있어서, 상기 본딩단계는 7.5×10-1내지 7.5×10-4torr의 진공하에서 본딩되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1, wherein the bonding step is bonded under a vacuum of 7.5 × 10 −1 to 7.5 × 10 −4 torr. 제 1 항 또는 제 2 항에 있어서, 상기 웨이퍼들을 본딩하는 단계와, 상기 제 1 웨이퍼를 연마하는 단계 사이에 접합 강도를 개선하기 위하여 700 내지 1200℃에서, O2또는 N2분위기로 30 내지 120분 동안 진행하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method according to claim 1 or 2, wherein the bonding strength between the bonding of the wafers and the polishing of the first wafer is improved to 30 to 120 in an O 2 or N 2 atmosphere at 700 to 1200 ° C. A process for producing an SOI semiconductor substrate, characterized in that it proceeds for minutes. 제 1 항 또는 제 2 항에 있어서, 상기 제 1 웨이퍼를 완충 단결정 실리콘층을 식각 정지층으로 하여 제거하는 단계는, 제 1 웨이퍼를 소정 두께만큼 남도록 연마하는 단계와, 잔류하는 제 1 웨이퍼를 습식식각하는 단계로 포함하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1, wherein the removing of the first wafer using the buffer single crystal silicon layer as an etch stop layer comprises polishing the first wafer to a predetermined thickness and wetting the remaining first wafer. A method of manufacturing an SOI semiconductor substrate comprising the step of etching. 제 15 항에 있어서, 상기 제 1 웨이퍼를 소정 두께만큼 연마하는 단계는,연마척 웨이퍼의 회전 속도를 50 내지 400rpm 정도, 스핀들의 회전 속도를 1000 내지 4000 rpm 정도로 하여, 후면 연마 속도가 10 내지 400㎛/min 정도가 되도록 하여, 웨이퍼가 소정 두께만큼 남도록 연마하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The polishing method of claim 15, wherein the polishing of the first wafer by a predetermined thickness comprises rotating the polishing chuck wafer at about 50 to 400 rpm and rotating the spindle at about 1000 to 4000 rpm. A method of manufacturing an SOI semiconductor substrate, wherein the wafer is polished so as to be about µm / min so as to remain by a predetermined thickness. 제 15 항에 있어서, 상기 잔류하는 제 1 웨이퍼는 HNO3:HF:H2SO4:H3PO4가 0.5∼5:0.5∼2:0.5∼1:0.5∼3으로 혼합된 용액으로 습식식각하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 15, wherein the remaining first wafer is wet-etched with a solution in which HNO 3 : HF: H 2 SO 4 : H 3 PO 4 is mixed at 0.5-5: 0.5-2: 0.5-1: 0.5-3. SOI semiconductor substrate manufacturing method characterized in that. 제 15 항에 있어서, 상기 잔류하는 제 1 웨이퍼는 NH4OH:H2O2:H2O를 1∼4:0∼0.5:5∼10의 혼합 용액으로 습식식각하는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The SOI semiconductor according to claim 15, wherein the remaining first wafer is wet-etched with NH 4 OH: H 2 O 2 : H 2 O with a mixed solution of 1-4: 0-0.5-0.5: 5-10. Method of manufacturing a substrate. 제 1 항에 있어서, 상기 붕소 이온층과 잔류하는 제 1 웨이퍼 및 완충 단결정 실리콘층은 단결정 실리콘층을 식각 정지층으로 화학적 기계적 연마 방식으로 제거되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.The method of claim 1, wherein the boron ion layer, the remaining first wafer, and the buffer single crystal silicon layer are removed by chemical mechanical polishing using the single crystal silicon layer as an etch stop layer. 제 19 항에 있어서, 상기 고농도 단결정 실리콘층은 연마척 테이블의 회전 속도를 10 내지 30rpm으로 하고, 스핀들을 눌러주는 압력을 4 내지 8 psi 정도로 하고, 스핀들의 회전 속도는 20 내지 40 rpm으로 하여 제거되는 것을 특징으로 하는 SOI 반도체 기판의 제조방법.20. The method of claim 19, wherein the high concentration single crystal silicon layer is removed at a rotational speed of the polishing chuck table at 10 to 30 rpm, a pressure for pressing the spindle at about 4 to 8 psi, and a rotational speed of the spindle at 20 to 40 rpm. SOI semiconductor substrate manufacturing method characterized in that.
KR1019990012827A 1999-04-12 1999-04-12 Method for manufacturing SOI semiconductor substrate KR100291519B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990012827A KR100291519B1 (en) 1999-04-12 1999-04-12 Method for manufacturing SOI semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990012827A KR100291519B1 (en) 1999-04-12 1999-04-12 Method for manufacturing SOI semiconductor substrate

Publications (2)

Publication Number Publication Date
KR20000066010A true KR20000066010A (en) 2000-11-15
KR100291519B1 KR100291519B1 (en) 2001-05-15

Family

ID=19579528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990012827A KR100291519B1 (en) 1999-04-12 1999-04-12 Method for manufacturing SOI semiconductor substrate

Country Status (1)

Country Link
KR (1) KR100291519B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114332B2 (en) * 2016-03-07 2021-09-07 Globalwafers Co., Ltd. Semiconductor on insulator structure comprising a plasma nitride layer and method of manufacture thereof
US11848227B2 (en) * 2016-03-07 2023-12-19 Globalwafers Co., Ltd. Method of manufacturing a semiconductor on insulator structure by a pressurized bond treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114332B2 (en) * 2016-03-07 2021-09-07 Globalwafers Co., Ltd. Semiconductor on insulator structure comprising a plasma nitride layer and method of manufacture thereof
US11848227B2 (en) * 2016-03-07 2023-12-19 Globalwafers Co., Ltd. Method of manufacturing a semiconductor on insulator structure by a pressurized bond treatment

Also Published As

Publication number Publication date
KR100291519B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US6242320B1 (en) Method for fabricating SOI wafer
KR20000003975A (en) Method for manufacturing bonding-type soi wafer having a field oxide
US6211039B1 (en) Silicon-on-insulator islands and method for their formation
KR20010070458A (en) Semiconductor substrate, Semiconductor device, and Processes of production of same
KR100252751B1 (en) Semiconductor element manufacturing method
EP0701286B1 (en) Silicon on insulating substrate and manufacturing method for same
JPH03129765A (en) Semiconductor device and manufacture thereof
KR100318467B1 (en) A method of fabricating bonding type SOI wafer
KR20080038535A (en) Method of manufacturing a stack type semiconductor device
KR100291519B1 (en) Method for manufacturing SOI semiconductor substrate
KR100291520B1 (en) Method for manufacturing SOI semiconductor substrate
KR100312981B1 (en) A method of fabricating bonding type SOI wafer
KR100291515B1 (en) Method for manufacturing silicon on insulator wafer
KR100505404B1 (en) Method of manufacturing SOI wafer
JP2004096044A (en) Substrate and manufacturing method thereof
KR100298203B1 (en) Silicon on Insulator Substrate Manufacturing Method
KR100295917B1 (en) Shallow trench isolation manufacturing method
KR100608344B1 (en) Method for fabricating soi wafer
KR100291195B1 (en) SOHI Substrate Manufacturing Method
KR100324938B1 (en) Method for fabricating pbsoi wafer using a epitaxy lateral overgrowth process
KR100286772B1 (en) Method for manufacturing silicon on insulator wafer
KR100668808B1 (en) Method for fabricating soi wafer
KR100492695B1 (en) Manufacturing method for semiconductor device
CN117116847A (en) Method for preparing semiconductor structure and semiconductor structure
KR20000040424A (en) Method of manufacturing silicon-on-insulator wafer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110222

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee