KR20000063330A - The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water - Google Patents

The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water Download PDF

Info

Publication number
KR20000063330A
KR20000063330A KR1020000036033A KR20000036033A KR20000063330A KR 20000063330 A KR20000063330 A KR 20000063330A KR 1020000036033 A KR1020000036033 A KR 1020000036033A KR 20000036033 A KR20000036033 A KR 20000036033A KR 20000063330 A KR20000063330 A KR 20000063330A
Authority
KR
South Korea
Prior art keywords
anaerobic
tank
aerobic
anoxic
wastewater
Prior art date
Application number
KR1020000036033A
Other languages
Korean (ko)
Inventor
지종기
지영호
Original Assignee
지영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지영호 filed Critical 지영호
Priority to KR1020000036033A priority Critical patent/KR20000063330A/en
Publication of KR20000063330A publication Critical patent/KR20000063330A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Abstract

PURPOSE: A four combination using aerobic, anaerobic and anoxic tank is provided, which is characterized in that nitrogen, phosphorous are removed efficiently. CONSTITUTION: In case of low concentrated wastewater, ODA2 process that is consisted of aerobic/deaerobic/anaerobic/anoxic reactor in order is adapted for wastewater treatment, and in case of high concentrated wastewater, AODA2 process that is consisted of anaerobic/aerobic/deaerobic/anaerobic/anoxic reactor is adapted. In addition, in case of wastewater with high organic content, AODA2O process that is consisted of anaerobic/aerobic/deaerobic/anaerobic/anoxic/aerobic reactor is used, in case of wastewater with low organic content, ODA2O process that is consisted of aerobic/deaerobic/anaerobic/anoxic/aerobic reactor is adapted.

Description

폐수내의 효과적인 탈질과 탈인을 위한 호기, 탈기, 혐기와 무산소조의 순차 결합{The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water}Sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water}

고농도의 분뇨, 쓰레기 매립장 침출수, 축산폐수에는 질산성 질소와 인산성 인이 다량 포함되어 있으므로 폐수처리 시 탈질과 탈인 효율을 높이는 문제는 국내외적으로 관심의 초점이 되고 있다. 왜냐하면 질소와 인이 수중에 많으면 민물에서는 녹조가 발생되어 저수지와 호소에 부영양화를 일으켜서 민물고기와 같은 수중 생태계를 위협하게 되며 농업용수, 공업용수, 상수도용수 생산에 막대한 지장을 초래하게 된다. 뿐만 아니라 염분이 많은 바닷물에서는 적조를 생성하게 되므로 연안 양식 어업에 엄청난 피해를 끼치게 되기 때문이다. 따라서 이들 폐수를 생물학적으로 처리할 때 탈질과 탈인의 효율을 높이는 문제는 매우 중요하다. 그러나 현재 사용되고 있는 혐기조, 무산소조와 호기조로 순차 결합된 기존의 A2O 공정으로 이들 폐수를 처리하고 있으나, 다음 반응에서 보는 바와 같이 암모니움이온()에서 질산이온(NO3 -)으로의 산화는 호기조에서 일어나서 혐기조와 무산소조에서 질산이온이 질소와 산소로 환원되어 분해된다.Since high concentrations of manure, landfill leachate, and livestock wastewater contain large amounts of nitrate nitrogen and phosphorus phosphate, the problem of increasing the denitrification and dephosphorization efficiency during wastewater treatment is a focus of attention both at home and abroad. Because of the high nitrogen and phosphorus in the water, algae are generated in fresh water, causing eutrophication in reservoirs and lakes, threatening aquatic ecosystems such as freshwater fish, and causing enormous disruptions in the production of agricultural, industrial and tap water. In addition, salty seawater will create red tide, which will cause enormous damage to coastal fisheries. Therefore, the problem of increasing the efficiency of denitrification and dephosphorization in biological treatment of these wastewaters is very important. However, these wastewaters are treated by the existing A 2 O process that is sequentially combined into the anaerobic, anaerobic and aerobic tanks currently used, but as shown in the following reaction, the ammonium ion ( ) Oxidation from nitric acid to nitric acid (NO 3 ) occurs in an aerobic tank where nitrate ions are reduced to nitrogen and oxygen in anaerobic and anaerobic tanks.

----------- 식(1) ----------- Formula (1)

---------------------------------- 식(2) Equation (2)

식(1)과 (2)는 각각 호기조에서 일어나는 아질산화와 질산화 반응이다.Equations (1) and (2) are nitrous and nitrification reactions in aerobic tanks, respectively.

------------ 식(3) ------------ Formula (3)

이 반응의 첫째 단계에서 1 몰의 산소가 방출되고, 둘째 단계에서 3/2 몰의 산소가 방출되며, 마지막 단계에서 1/2 몰의 산소가 방출되어, 전체적으로 3 몰의 산소가 방출된다. 그러므로 식 (3)의 반응은 2 몰의 질산이온이 분해하여 3 몰의 산소가 생성되는 반응이므로 이 반응은 혐기조와 무산조에서 일어나는 반응이다. 따라서 현재의 A2O 공정은 효과적인 탈질 반응을 이루기 위해서는 식(1)과 (2)에 나타낸 바와 같이, 일단 암모니움이온이 호기조에서 질산이온으로 산화된 후에 혐기조와 무산소조에서 질소와 산소로 환원되어 분해되어야 하므로, 앞에서 언급한 폐수의 농도가 묽을 경우에는 역 A2O 공정인 OA2공법으로 바뀌어야 한다. 따라서 현재의 A2O 공정은 효과적인 탈질 반응을 이루기 위하여, 폐수의 농도가 묽을 경우에는 역 A2O 공정인 OA2공법으로 바뀌어야 한다. 이와 같은 내용은 본 발명자가 출원번호 10-2000-0022095로 발명한 바 있으나 혐기조 전단에 탈기조를 설치하지 않아서 혐기조의 혐기성 세균이 사멸되는 단점이 있으므로 그 내용을 다음과 같이 개선하여 출원한다. OA2공법은 호기조가 혐기조에 선행 배치되므로 호기조의 폐수중의 DO농도가 2 - 3ppm이 되므로 호기조의 폐수가 그대로 혐기조에 유입되면 혐기성 세균이 사멸하게 된다. 이와 같은 현상을 방지하기 위하여 호기조와 혐기조 사이에 탈기조(deaerobic vessel)를 설치하여 폐수중의 DO농도가 0.2 - 0.3ppm으로 낮추어야 한다. 즉 호기조/혐기조/무산소조 공정인 OA2공법은 호기조/탈기조/혐기조/무산소조 공정인 ODA2공법으로 바뀌어야 한다. 그리고 폐수의 농도가 고농도일 경우에는 고농도의 유기물이 선행 분해되어야 하므로, ODA2공법에 혐기조를 선행시킨 AODA2공법으로 바꾸어야 한다. 그리고 인은 호기조에서 흡수되고 혐기조나 무산소조에서 방출되므로 폐수중에 용존되어 있는 암모니아성 질소와 인산성 인을 동시 효과적으로 제거하기 위해서는 폐수의 농도가 묽을 경우에는 ODA2공법 후단에 호기조를 추가시킨 ODA2O 공법을 사용하여야 하고, 폐수의 농도가 높을 경우에는 AODA2공법 후단에 호기조를 연결한 AODA2O 공법이 가장 적합한 공법이 된다.In the first stage of this reaction 1 mole of oxygen is released, in the second stage 3/2 moles of oxygen are released and in the final stage 1/2 mole of oxygen is released, resulting in 3 moles of oxygen in total. Therefore, the reaction of equation (3) is a reaction in which 2 moles of nitrate ions are decomposed to generate 3 moles of oxygen, so this reaction occurs in anaerobic and aerobic tanks. Therefore, in order to achieve an effective denitrification, the current A 2 O process, as shown in Equations (1) and (2), is once reduced to nitrogen and oxygen in anaerobic and anaerobic tanks after ammonium ions are oxidized to nitrate in an aerobic tank. If the concentration of wastewater mentioned earlier is dilute, it must be converted to the OA 2 process, which is a reverse A 2 O process. Therefore, in order to achieve effective denitrification, the current A 2 O process should be changed to OA 2 process, which is a reverse A 2 O process when the concentration of waste water is dilute. Although the present inventors have invented the application number 10-2000-0022095, there is a disadvantage that the anaerobic bacteria of the anaerobic tank are killed by not installing a degassing tank at the front of the anaerobic tank, so that the contents are improved and applied as follows. In the OA 2 method, the aerobic tank is placed before the anaerobic tank, so the DO concentration in the aerobic tank wastewater is 2-3 ppm, so that the anaerobic bacteria are killed when the aerobic tank wastewater flows into the anaerobic tank. In order to prevent this phenomenon, a deaerobic vessel should be installed between the aerobic and anaerobic tanks to reduce the DO concentration in the wastewater to 0.2-0.3 ppm. In other words, the OA 2 process, which is an aerobic, anaerobic, and anaerobic process, should be changed to the ODA 2 process, which is an aerobic, degassing, anaerobic, and anaerobic process. And when the concentration of wastewater is high, high concentrations of organic matter must be decomposed beforehand, so it must be changed to the AODA 2 method, which precedes the ODA 2 method with anaerobic tank. And-in is absorbed and released from the anaerobic or anoxic tank in the aerobic tank, if the order to remove the acid property and the ammonium nitrogen that is dissolved in the waste water in the same time effectively the concentration of the waste dilute include ODA was added to the aerobic tank to the rear end ODA 2 Method 2 It is used for O method, and if the concentration of the waste water, the method AODA 2 O connecting the aerobic tank to the rear end AODA 2 method is the most suitable method.

그러나 종래의 A2O 공정은 암모니움이온을 질산이온으로 산화시키는 호기조가 혐기조/무산소조에 선행되지 않아서 질산성 질소의 효과적인 제거가 이론상 불가능하므로 암모니아성 질소 정화효율이 크게 떨어지는 문제점이 있다.However, in the conventional A 2 O process, the aerobic tank for oxidizing ammonium ions to nitrate ions is not preceded by the anaerobic tank / anoxic tank, so that effective removal of nitrate nitrogen is theoretically impossible, and thus, ammonia nitrogen purification efficiency is greatly reduced.

따라서 본 발명은 종래의 혐기조/무산소조/호기조로 구성된 소위 A2O 공정의 암모니아성 질소 제거효율을 크게 개선하기 위하여 폐수의 농도가 낮을 경우에는 호기조/탈기조/혐기조/무산소조로 구성된 ODA2공법을 이용하고, 폐수의 농도가 높을 경우에는 혐기조/호기조/탈기조/혐기조/무산소조(AODA2) 공법을 이용하여 암모니아성 질소를 효과적으로 제거하는 기술적 과제를 해결하였다. 뿐만 아니라 폐수중에 용존되어 있는 암모니아성 질소와 인산성 인을 동시에 높은 효율로 제거하기 위하여 폐수중의 유기물의 농도가 묽을 경우에는 호기조/탈기조/혐기조/무산소조/호기조(ODA2O) 공법을 사용하여야 하고, 유기물의 농도가 진할 경우에는 혐기조/호기조/탈기조/혐기조/무산소조/호기조(AODA2O) 공법을 이용하여야 하는 기술적 과제를 확립하였으며, 이와 같은 발명이 이루고자 하는 기술적 과제의 해결의 이론적 근거는 앞에서 언급한 발명이 속하는 기술분야 및 그 분야의 종래 기술 부분에서 상세히 설명하였다.Therefore, the present invention uses the ODA 2 process consisting of an aerobic tank / degassing tank / anaerobic tank / anoxic tank when the concentration of wastewater is low in order to greatly improve the ammonia nitrogen removal efficiency of the so-called A 2 O process composed of conventional anaerobic tank / anaerobic tank / aerobic tank. When the concentration of wastewater is high, an anaerobic tank / aerobic tank / degassing tank / anaerobic tank / anoxic tank (AODA 2 ) method has been used to solve the technical problem of effectively removing ammonia nitrogen. In addition, in order to remove the ammonia nitrogen and phosphorus phosphorus dissolved in the waste water with high efficiency at the same time, when the concentration of organic matter in the waste water is dilute, an aerobic tank, degassing tank, anaerobic tank, anaerobic tank and aerobic tank (ODA 2 O) method When the concentration of organic matter is high, the technical problem of using anaerobic tank, aerobic tank, degassing tank, anaerobic tank, anaerobic tank, and aerobic tank (AODA 2 O) method was established. The theoretical basis has been described in detail in the technical field to which the aforementioned invention belongs, and in the prior art portion of the field.

도 1 : 본 발명의 생물학적 호기조/탈기조/혐기조/무산소조(ODA2) 순차 폐수처리 평면도.1: Biological aerobic tank / degassing tank / anaerobic tank / anaerobic tank (ODA 2 ) sequential wastewater treatment plan of the present invention.

도 2 : 본 발명의 생물학적 혐기조/호기조/탈기조/혐기조/무산소조(AODA2) 순차 폐수처리 평면도.Figure 2: biological anaerobic tank / aerobic tank / degassing tank / anaerobic tank / anaerobic tank (AODA 2 ) sequential wastewater treatment plan of the present invention.

도 3 : 본 발명의 생물학적 호기조/탈기조/혐기조/무산소/호기조(ODA2O) 순차 폐수처리 평면도.3: biological aerobic tank / degassing tank / anaerobic tank / anaerobic / aerobic tank (ODA 2 O) sequential wastewater treatment plan of the present invention.

도 4 : 본 발명의 생물학적 혐기조/호기조/탈기조/혐기조/무산소/호기조 (AODA2O) 순차 폐수 처리 평면도.Figure 4: Biological anaerobic tank / aerobic tank / degassing tank / anaerobic tank / anaerobic / aerobic tank (AODA 2 O) sequential wastewater treatment plan of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

(1)(17)(35)(53) - 폐수유입로(1) (17) (35) (53)-Wastewater Inlet

(2)(18)(36)(54) - 최초침전지(2) (18) (36) (54)-First settler

(3)(19)(37)(55) - 최초침전슬러지(3) (19) (37) (55)-First settling sludge

(4)(21)(38)(42)(57)(61) - 호기조(4) (21) (38) (42) (57) (61)-Aerobic tank

(5)(22)(39)(58) - 탈기조(5) (22) (39) (58)-Degassers

(6)(20)(23)(40)(56)(59) - 혐기조(6) (20) (23) (40) (56) (59)-anaerobic tank

(7)(24)(41)(60) - 무산소조(7) (24) (41) (60)-Anaerobic tank

(8)(25)(43)(62) - 최종침전지(8) (25) (43) (62)-Final Settler

(9)(26)(44)(63) - 방류수(9) (26) (44) (63)-Effluents

(10)(27)(45)(64) - 최종침전슬러지(10) (27) (45) (64)-final sedimentation sludge

(11)(28)(46)(65) - 잉여슬러지(11) (28) (46) (65)-surplus sludge

(12)(29)(47)(66) - 반송슬러지관(12) (29) (47) (66)-conveying sludge pipe

(13)(14)(15)(16)(30)(31)(32)(33)(34)(48)(49)(50)(51)(52)(67)(68)(69) (70)(71)(72) - 혼합액순환로13, 14, 15, 16, 30, 31, 32, 33, 34, 48, 49, 50, 51, 52, 67, 68, 69 ) (70) (71) (72)-Mixed Fluid Circulation

이하 본 발명의 바람직한 실시 예를 첨부한 도면에 따라 상세히 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 생물학적 호기조/탈기조/혐기조/무산소조(ODA2) 순차 폐수처리 평면도로서 미세 스크린을 거치면서 폐수 내에 포함된 비교적 큰 물질들을 제거한 폐수가 유입로(1)을 통하여 최초침전지(2)에서 충분한 시간 동안 중력에 의한 침전을 진행시킨다. 이때 침전되는 최초침전슬러지(3)은 별도 처리한다. 이렇게 1차 침전을 거친 폐수는 호기조(4)로 유입시켜 반응식(1)과 (2)와 같이 암모니움이온을 질산이온으로 산화시키게 된다. 이렇게 처리한 호기조(4)의 처리수는 혼합액순환로(13)를 통과하여 탈기조(5)로 유입된다. 여기서 탈기조건 하에서 처리된 처리수는 혼합액순환로(14)을 통하여 혐기조(6)로 유입시킨다. 이때 혐기조(6)와 무산소조(7)에서는 식(3)의 반응과 같이 질산이온이 질소와 산소로 환원되어 분해된다. 무산소조(7)의 처리수는 최종침전지(8)로 이송시켜 응집 처리하거나 필터를 사용하여 슬러지를 분리 처리한다. 이때 최종침전슬러지(10)의 일부는 슬러지 반송관(12)을 통하여 호기조(4)로 반송시켜 활성오니의 부족한 먹이를 보충하고 나머지 잉여슬러지(11)은 벨트프레스로 짜서 케이크로 처리한다.FIG. 1 is a plan view of a biological aerobic / degassing tank / anaerobic tank / anoxic tank (ODA 2 ) sequential wastewater treatment plan. Allow gravity to proceed with precipitation. At this time, the first settling sludge (3) to be settled separately. The wastewater after the first precipitation is introduced into the aerobic tank (4) to oxidize the ammonium ions to nitrate ions as shown in the reaction formula (1) and (2). The treated water of the aerobic tank 4 thus treated passes through the mixed liquid circulation path 13 and flows into the degassing tank 5. Here, the treated water treated under the degassing condition is introduced into the anaerobic tank 6 through the mixed liquid circulation passage 14. At this time, in the anaerobic tank 6 and the anoxic tank 7, the nitrate ions are reduced to nitrogen and oxygen and decomposed as in the reaction of the formula (3). The treated water of the anoxic tank 7 is transferred to the final settler 8 to coagulate or to separate the sludge using a filter. At this time, a part of the final sedimentation sludge 10 is returned to the aerobic tank 4 through the sludge conveying tube 12 to supplement the insufficient feed of activated sludge, and the remaining excess sludge 11 is squeezed with a belt press to be treated as a cake.

도 2는 생물학적 혐기조/호기조/탈기조/혐기조/무산소조(AODA2) 순차 폐수처리 평면도로서 유입로(17) 최초침전지(18) 최초침전슬러지(19)의 기능은 도 1의 (1) (2) (3)의 기능과 같다. 그리고 혐기조(20)은 폐수중에 유기물의 농도가 높을 경우 유기물을 혐기 조건하에서 소화 처리한 후 혼합액순환로(30)을 통하여 호기조(21)로 이송시킨다. 이렇게 하면 호기조(21)의 부하를 줄여주게 된다. 이와 같은 목적으로 도 2는 도 1의 앞단에 혐기조(20)을 추가시켰다. 그리고 혼합액순환로(32)과 (33)은 각각 도 1의 (14)와 (15)의 기능과 동일하다. 다음 혐기조(23)와 무산소조(24)의 역할은 도 1의 (6)와 (7)과 같다. 또한 (25) (26) (27) (28)과 (29)의 기능은 도 1의 (8) (9) (10) (11)과 (12)의 기능과 같다.FIG. 2 is a plan view of a biological anaerobic tank / aerobic tank / degassing tank / anaerobic tank / anoxic tank (AODA 2 ) sequential wastewater treatment. The function of the first settling sludge (19) of the inlet (17) and the first settling sludge (19) is shown in FIG. ) Same as the function in (3). When the concentration of organic matter in the waste water is high, the anaerobic tank 20 digests the organic matter under anaerobic conditions and then transfers it to the aerobic tank 21 through the mixed liquid circulation path 30. This reduces the load on the exhalation tank 21. 2 added an anaerobic tank 20 to the front of FIG. 1 for this purpose. In addition, the mixed liquid circulation paths 32 and 33 have the same functions as those of Figs. 14 and 15, respectively. Next, the role of the anaerobic tank 23 and the anaerobic tank 24 is as shown in (6) and (7) of FIG. In addition, the function of (25) (26) (27) (28) and (29) is the same as the function of (8) (9) (10) (11) and (12) of FIG.

도 3은 생물학적 호기조/탈기조/혐기조/무산소/호기조(ODA2O) 순차 폐수처리 평면도로서 (35) (36) (37)의 기능은 도 1의 (1) (2) (3)의 기능과 같다. 일반적으로 폐수 중의 유기물의 농도 낮을 경우나 물리화학적 전처리로 유기물의 농도를 크게 낮출 경우에는 혐기조(40)와 무산소조(41)의 전단에 탈기조(39)를 설치하고 탈기조(39) 전단에 호기조(38)를 설치하여 반응식(1)과 (2)에 제시한 바와 같이 암모니아성 질소를 질산성질소로 산화시키는 것이 암모니아성 질소를 효과적으로 제거하는 방법이다. 이 때 인산성 인을 동시에 제거효율을 높이기 위하여 무산소조(41) 후단에 호기조를 설치하여야 한다. 나머지 (49) (50)와 (51)의 기능은 도 1의 (14)와 (15)의 기능과 동일하거나 유사하다. 그리고 (43) (44) (45) (46)과 (47)의 역할은 도 1의 (8) (9) (10) (11)과 (12)의 기능과 동일하다.Figure 3 is a biological aerobic tank / degassing tank / anaerobic tank / anaerobic / aerobic tank (ODA 2 O) sequential wastewater treatment plan (35) (36) (37) function of Figure 1 (1) (2) (3) Same as In general, when the concentration of organic matter in the waste water is low or when the concentration of organic matter is greatly reduced by physicochemical pretreatment, a degassing tank 39 is installed at the front of the anaerobic tank 40 and the anoxic tank 41 and the aerobic tank at the front of the degassing tank 39. The provision of (38) to oxidize ammonia nitrogen to nitrate nitrogen as shown in schemes (1) and (2) effectively removes ammonia nitrogen. At this time, an aerobic tank should be installed at the rear end of the anaerobic tank 41 in order to increase the efficiency of removing phosphoric acid phosphorus simultaneously. The functions of the remaining (49) 50 and 51 are the same as or similar to the functions of (14) and (15) of FIG. And the roles of (43) (44) (45) 46 and 47 are the same as the functions of (8) (9) (10) (11) and (12) of FIG.

도 4는 생물학적 혐기조/호기조/탈기조/혐기조/무산소/호기조(AODA2O) 순차 폐수처리 평면도로서 (53) (54)와 (55)은 각각 도 1의 (1) (2)와 (3)의 기능과 동일하다. 일반적으로 폐수중에 유기물의 농도가 높을 경우에 도 3의 호기조(38) 맨 앞단에 혐기조(56)을 부착시켜 유기물을 혐기성으로 분해시켜 다음 단계의 호기조(57)의 부하를 줄여야한다. 이 때 혐기조(59)의 전단에 탈기조(58)을 설치하여 혐기조의 혐기성균의 사멸을 방지하여야 한다. (67)은 도 2의 (30)과 동일하고 나머지 (60)에서 (72)까지는 도 3의 (41)에서부터 (52)까지와 그 기능이 일치한다. 도 4와 같은 생물학적 순차 폐수처리는 폐수중에 유기물의 농도가 높을 경우 암모니아성 질소와 인산성 인의 생물학적 처리에 가장 효과적인 방법이다.4 is a plan view of a biological anaerobic tank / aerobic tank / degassing tank / anaerobic tank / oxygen / aerobic tank (AODA 2 O) sequential wastewater treatment (53) (54) and (55), respectively, (1) (2) and (3) of FIG. Is the same as). In general, when the concentration of organic matter in the waste water is high, the anaerobic tank 56 is attached to the front end of the aerobic tank 38 of FIG. 3 to decompose organic matter anaerobic to reduce the load of the aerobic tank 57 in the next step. At this time, a degassing tank 58 should be installed at the front end of the anaerobic tank 59 to prevent the killing of anaerobic bacteria in the anaerobic tank. Reference numeral 67 is the same as 30 in FIG. 2, and the functions 60 and 72 correspond to those in FIGS. 3 to 52 in FIG. 3. Sequential biological wastewater treatment as shown in Figure 4 is the most effective method for biological treatment of ammonia nitrogen and phosphate phosphorus when the concentration of organic matter in the waste water.

일반적으로 생물학적으로 폐수처리가 매우 어려운 분뇨, 쓰레기 매립장 침출수와 축산폐수와 같은 고농도의 암모니아성 질소와 인산성 인을 포함하고 있는 폐수에서 질소와 인을 높은 효율로 제거하는 방법과 폐기물에 포함된 유기물의 농도에 따라 질소 단독 또는 질소와 인을 동시에 제거하는 방법을 개발한 효과를 얻었다. 이와 같은 발명의 효과를 구체적으로 언급하면 다음과 같다.Highly efficient removal of nitrogen and phosphorus from wastewater containing high concentrations of ammonia nitrogen and phosphate phosphorus, such as manure, landfill leachate and livestock waste, which are generally biologically difficult to treat, and organic matter contained in the waste. The effect of developing nitrogen alone or nitrogen and phosphorus at the same time according to the concentration of was obtained. Referring specifically to the effects of the invention as follows.

현재 유기물의 농도가 매우 높은 고농도 분뇨, 쓰레기 매립장 침출수, 축산폐수 등의 암모니아성 질소(NH3-N)와 인산성 인(PO4-P)을 생물학적 처리로 제거하기 위해, 먼저 혐기조에서 고농도 유기물을 소화시키고 순차적으로 무산소조, 호기조를 설치하는 소위 A2O 공정으로 이들 폐수를 처리하고 있으나, 암모니움이온()이 질산이온(NO3 -)으로 산화는 호기조에서 일어나서 혐기조와 무산소조에서 이 질산이온이 질소와 산소로 환원되어 분해된다. 따라서 현재의 혐기조/무산소조/ 호기조(A2O) 공정은 효과적인 탈질 반응을 이루기 위하여 앞에서 언급한 폐수의 농도가 묽을 경우에는 역 A2O 공정에 혐기조 앞단에 탈기조를 추가시킨 호기조/탈기조/혐기조/무산소조(ODA2) 공법으로 바뀌어야 한다. 그리고 폐수의 농도가 고농도일 경우에는 ODA2공법에 혐기조를 선행시킨 혐기조/호기조/탈기조/혐기조/무산소조(AODA2) 공법으로 바꾸어야 한다. 그리고 인은 호기조에서 흡수되고 혐기조나 무산소조에서 방출되므로 폐수중에 용존되어 있는 암모니아성 질소와 인산성 인을 동시 효과적으로 제거하기 위해서는 폐수의 농도가 묽을 경우에는 호기조/탈기조/혐기조/무산소조(ODA2) 공법 후단에 호기조를 추가시킨 호기조/탈기조/혐기조/무산소조/호기조(ODA2O) 공법을 사용하여야 하고, 폐수의 농도가 높을 경우에는 AODA2공법 후단에 호기조를 연결한 혐기조/호기조/탈기조/혐기조/무산소조/호기조(AODA2O) 공법이 가장 적합한 공법이 된다고 하는 발명의 효과를 얻었다.In order to biologically remove ammonia nitrogen (NH 3 -N) and phosphate phosphorus (PO 4 -P) such as high concentrations of manure, landfill leachate, and livestock wastewater, which have very high concentrations of organic matter, To treat these wastewaters by the so-called A 2 O process of digesting and sequentially installing anaerobic tanks and aerobic tanks. ) Oxidation to nitric ions (NO 3 ) takes place in an aerobic tank where the nitrate ions are reduced to nitrogen and oxygen in the anaerobic and anaerobic tanks. Therefore, the current anaerobic / aerobic tank / aerobic tank (A 2 O) process is an aerobic / degassed tank in which the deaeration tank is added to the reverse A 2 O process in front of the anaerobic tank when the concentration of the wastewater mentioned above is dilute to achieve an effective denitrification reaction. / Anaerobic tank / anaerobic tank (ODA 2 ) method should be changed. If the concentration of wastewater is high, the anaerobic tank / aerobic tank / degassing tank / anaerobic tank / anoxic tank (AODA 2 ) method should be replaced with the anaerobic tank prior to the ODA 2 method. Since phosphorus is absorbed in an aerobic tank and released in an anaerobic or anoxic tank, it is necessary to remove ammonia nitrogen and phosphorus phosphorus dissolved in the waste water at the same time when the concentration of the waste water is dilute when the aerobic tank / degassing tank / anaerobic tank / anoxic tank (ODA 2 ) The aerobic tank / degassing tank / anaerobic tank / anaerobic tank / aerobic tank (ODA 2 O) method with the addition of an aerobic tank at the end of the process should be used, and if the concentration of waste water is high, the anaerobic tank / aerobic tank / deaeration with the aerobic tank connected to the latter part of AODA 2 process The effect of the invention that the basal / anaerobic / anaerobic / aerobic (AODA 2 O) method is the most suitable method has been obtained.

Claims (4)

폐수의 농도가 낮고 폐수내의 암모니아성 질소를 효과적으로 제거하는 호기조/탈기조/혐기조/무산소조 (ODA2) 공법으로 폐수를 처리하는 방법.A method of treating wastewater with an aerobic / degassing / anaerobic / oxygen tank (ODA 2 ) method which has a low concentration of waste water and effectively removes ammonia nitrogen from the waste water. 폐수의 농도가 높고 폐수내의 암모니아성 질소를 효과적으로 제거하는 혐기조/호기조/탈기조/혐기조/무산소조(AODA2) 공법으로 폐수를 처리하는 방법.A method of treating wastewater by an anaerobic / aerobic / degassing / anaerobic / anoxic tank (AODA 2 ) method which has a high concentration of wastewater and effectively removes ammonia nitrogen from the wastewater. 폐수의 농도가 낮고 폐수내의 암모니아성 질소와 인산성 인을 동시에 효과적으로 제거하는 호기조/탈기조/혐기조/무산소조/호기조(ODA2O) 공법으로 폐수를 처리하는 방법.A method of treating wastewater with an aerobic / degassing / anaerobic / anoxic / aerobic (ODA 2 O) process that has a low concentration of waste water and effectively removes ammonia nitrogen and phosphorus phosphorus in the waste water. 폐수의 농도가 높고 폐수내의 암모니아성 질소와 인산성 인을 동시에 효과적으로 제거하는 혐기조/호기조/탈기조/혐기조/무산소조/호기조(AODA2O) 공법으로 폐수를 처리하는 방법.A method of treating wastewater with an anaerobic / aerobic / degassing / anaerobic / aerobic / aerobic (AODA 2 O) process, which has a high concentration of wastewater and effectively removes ammonia nitrogen and phosphorus phosphorus in the wastewater.
KR1020000036033A 2000-06-28 2000-06-28 The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water KR20000063330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000036033A KR20000063330A (en) 2000-06-28 2000-06-28 The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000036033A KR20000063330A (en) 2000-06-28 2000-06-28 The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020000018435U Division KR200211906Y1 (en) 2000-06-28 2000-06-28 The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water

Publications (1)

Publication Number Publication Date
KR20000063330A true KR20000063330A (en) 2000-11-06

Family

ID=19674476

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000036033A KR20000063330A (en) 2000-06-28 2000-06-28 The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water

Country Status (1)

Country Link
KR (1) KR20000063330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044773A (en) * 2001-03-23 2001-06-05 권형기 A method for removing nitrogen and phosphorus from waste and sewage water
CN113998848A (en) * 2021-12-13 2022-02-01 大连重工环保工程有限公司 Ammonia distillation, gas water seal, rainwater and sludge filtrate mixed wastewater treatment system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044773A (en) * 2001-03-23 2001-06-05 권형기 A method for removing nitrogen and phosphorus from waste and sewage water
CN113998848A (en) * 2021-12-13 2022-02-01 大连重工环保工程有限公司 Ammonia distillation, gas water seal, rainwater and sludge filtrate mixed wastewater treatment system and method
CN113998848B (en) * 2021-12-13 2023-07-14 大连重工环保工程有限公司 Ammonia distillation, gas water seal, rainwater and sludge filtrate mixed wastewater treatment system and method

Similar Documents

Publication Publication Date Title
CN101381185B (en) Denitrification processing method of coking wastewater and processing arrangement
CN101434445A (en) Processing system and operation method for phosphor-containing organic wastewater
CN209957618U (en) Medicine comprehensive wastewater treatment system
KR200202152Y1 (en) The sequencing combination of anaerobic, oxic and anoxic vessels for effective denitrification and dephosphorus in waste water
KR100419827B1 (en) Biological, pysical and chemical treatment method of waste water from livestock
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
CN105712564A (en) Equipment for processing waste water through glyphosate production
CN101549921A (en) Method for treating high-concentration phosphorus-contained wastewater
CN210711151U (en) Device of high difficult waste water is handled to fragrant MBR of combining of iron carbon
CN112551677A (en) Novel Fenton oxidation method industrial wastewater treatment process
JPS6254075B2 (en)
KR100322947B1 (en) Method for removing nitrogen in waste water
KR200211906Y1 (en) The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water
KR20000063330A (en) The sequencing combination of oxic, deaerobic, anaerobic and anoxic vessels for effective denitrification and dephosphorus in waste water
CN214004362U (en) Quick purification treatment system of waste water
KR100375413B1 (en) Removal Methods of Nitrogen and phosphorus in wastewater using external carbon source
KR100640940B1 (en) Continual system for processing waste water
CN110117135B (en) Garbage leachate treatment method
KR100513567B1 (en) Wastewater Purification Apparatus
CN112919728A (en) Blue algae mud pressure filtrate treatment method
KR100462578B1 (en) The purification method of an organic waste water with high density
CN111547954A (en) Coal chemical wastewater treatment system
KR100478010B1 (en) A waste water disposal plant
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application