KR20000063167A - A process for the purification of factory wastes of pigments containing rich nitrogen element - Google Patents

A process for the purification of factory wastes of pigments containing rich nitrogen element Download PDF

Info

Publication number
KR20000063167A
KR20000063167A KR1020000017551A KR20000017551A KR20000063167A KR 20000063167 A KR20000063167 A KR 20000063167A KR 1020000017551 A KR1020000017551 A KR 1020000017551A KR 20000017551 A KR20000017551 A KR 20000017551A KR 20000063167 A KR20000063167 A KR 20000063167A
Authority
KR
South Korea
Prior art keywords
treatment step
wastewater
nitrogen
treatment
chlorine gas
Prior art date
Application number
KR1020000017551A
Other languages
Korean (ko)
Other versions
KR100317415B1 (en
Inventor
이승호
오종권
이종호
Original Assignee
이종민
주식회사 한남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종민, 주식회사 한남 filed Critical 이종민
Priority to KR1020000017551A priority Critical patent/KR100317415B1/en
Publication of KR20000063167A publication Critical patent/KR20000063167A/en
Application granted granted Critical
Publication of KR100317415B1 publication Critical patent/KR100317415B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: A treatment system for pigment wastewater is provided, which is characterized in that the system treats efficiently wastewater containing large quantities of nitrogen by using chlorine gas. CONSTITUTION: A treatment system for pigment wastewater is composed of four steps such as follows: (i) a first treatment step neutralizing pigment wastewater containing large quantities of nitrogen by using acid and alkali and removing sludge by using flocculation and compressed-air flotation; (ii) a second treatment step settling Cu ion by injecting settling agents and coagulants; (iii) a third treatment step treating the wastewater in an aerobic reactor by using activated sludge; and (iv) a forth treatment step withdrawing nitrogen gas by adding chlorine gas and neutralizing and oxidizing finally organic matter.

Description

질소 성분을 다량 함유한 안료 폐수를 효율적으로 정화시키는 방법{A PROCESS FOR THE PURIFICATION OF FACTORY WASTES OF PIGMENTS CONTAINING RICH NITROGEN ELEMENT}A method for efficiently purifying pigment wastewater containing a large amount of nitrogen {A PROCESS FOR THE PURIFICATION OF FACTORY WASTES OF PIGMENTS CONTAINING RICH NITROGEN ELEMENT}

본발명은 질소 성분을 다량 함유한 안료 폐수를 효율적으로 정화시키는 방법, 특히 염소 가스를 이용하여 폐수 중 질소 성분을 효율적으로 제거하는 방법에 관한 것이다.The present invention relates to a method for efficiently purifying pigment wastewater containing a large amount of nitrogen, particularly a method for efficiently removing nitrogen in wastewater using chlorine gas.

최근 환경 문제의 대두로 안료 폐수의 처리 규정은 더욱 엄격해졌고, 폐수의 처리 비용이 총생산 원가의 30 - 40%를 차지할 정도이므로 폐수 처리 문제는 안료 생산에 있어 중요한 비중을 차지한다.In recent years, due to environmental problems, the treatment regulations for pigment wastewater have become more strict, and wastewater treatment problems play an important role in pigment production because the treatment cost of wastewater accounts for 30-40% of the total production cost.

안료 폐수를 처리하는 기존의 공정은 폐수를 산알칼리 처리하고 응집시켜 물리적 전처리를 행한 후 각종 유기 및 무기 응집제로 2차 화학 처리를 하고, 활성오니와 함께 폭기시켜 생물학적 처리를 하는 단계를 포함하는 것이 일반적이다.Conventional processes for treating pigment wastewater include acid alkali treatment and flocculation of the wastewater, followed by physical pretreatment, secondary chemical treatment with various organic and inorganic flocculants, and aeration with activated sludge for biological treatment. It is common.

그러나, 암모니아, 암모늄 등의 질소 성분을 다량 함유하는 안료 폐수의 처리를 위해 기존의 활성 오니법을 이용하면 질산화물이 환경 법규의 허용 기준치 이상이 되고, 이를 기준치 이하로 제거하기 위해서는 활성오니 공정을 반복 수행하거나 활성오니 공정용 대규모 시설에서 장시간 운행해야하기 때문에 폐수 처리 비용이 매우 커지는 문제점이 있었다.However, if the existing activated sludge method is used for the treatment of pigment wastewater containing a large amount of nitrogen components such as ammonia and ammonium, the nitric oxide becomes more than the allowable standard of environmental regulations, and the activated sludge process is repeated to remove it below the standard. Wastewater treatment costs are very high because they have to run for a long time in a large-scale facility for performing or activated sludge process.

본발명은 상기한 문제를 해결하기 위한 것으로서, 1차적인 활성오니처리 단계에 연이어서 질소 가스 처리 단계를 수행하여 질소 성분을 다량 함유한 안료 폐수를 저비용으로 정화시키고, 또한 정화 효율을 활성오니처리법과 대등하게 하거나 또는 더욱 높이는 폐수 정화 방법을 제공한다.The present invention has been made to solve the above-mentioned problems, and the nitrogen sludge treatment step is performed after the first step of the active sludge treatment step to purify the pigment wastewater containing a large amount of nitrogen at low cost, and the purification efficiency of the activated sludge treatment method. Provide a waste water purification method that is equivalent to or even higher.

도1은 본발명에 따른 폐수 정화 공정의 흐름도이다.1 is a flow chart of a wastewater purification process according to the present invention.

본발명은 질소 성분을 다량 함유한 안료 폐수를 효율적으로 정화시키는 방법에 관한 것으로서 (i) 안료 폐수를 산 및 알칼리로 처리하고 응집 및 가압부상시켜 슬러지를 제거하는 1차 처리 단계; (ii) 구리 이온을 침전시키기 위한 침전제 및 응집시키기 위한 응집제를 주입하고 침전 및 응집시켜 1가 구리이온(Cu+)을 제거시키는 2차 처리 단계; (iii) 미생물 폭기조에서 활성오니처리를 행하는 3차 처리 단계; 및 (iv) 염소 가스를 주입하여 질소를 탈기시키고 최종적으로 유기물을 산화시킨 후 중화시키는 4차 처리단계로 구성된다.The present invention relates to a method for efficiently purifying a pigment wastewater containing a large amount of nitrogen, comprising: (i) a first treatment step of treating the pigment wastewater with an acid and an alkali, flocculating and pressure-lifting to remove sludge; (ii) a secondary treatment step of injecting, precipitating and flocculating a precipitant for precipitating copper ions and a flocculant to remove monovalent copper ions (Cu + ); (iii) a third treatment step of performing activated sludge treatment in a microbial aeration tank; And (iv) injecting chlorine gas to degas the nitrogen and finally oxidize and neutralize the organics.

본발명에 따른 폐수 정화 공정은 도 1을 참조하면 보다 명확히 이해된다.The wastewater purification process according to the present invention is more clearly understood with reference to FIG. 1.

1차 처리 단계는 폐수 원수를 산 및 알칼리로 중화하고 무기 및 유기 응집제를 주입하여 응집시킨 후 가압부상시켜 슬러지를 형성시키고 이를 제거함으로써 2차 화학처리에 대한 부하를 감소시기 위한 단계이다. 중화용 산으로는 황산이 주로 사용되고, 알칼리로는 수산화 나트륨이 주로 사용된다. 산 및 알칼리를 이용하여 폐수의 pH는 폐수 처리의 적정 pH인 7.5 - 8.5 정도로 중화된다.The primary treatment step is to reduce the load on the secondary chemical treatment by neutralizing the wastewater with acid and alkali, injecting and coagulating inorganic and organic flocculants, and then flocculating to form sludge and removing it. Sulfuric acid is mainly used as a neutralizing acid, and sodium hydroxide is mainly used as an alkali. Using acids and alkalis, the pH of the wastewater is neutralized to 7.5-8.5, the proper pH for wastewater treatment.

1차 처리 이후 COD(화학적 산소 요구량)는 60 - 70%, BOD(생물학적 산소 요구량)는 5-20% 정도 감소되고, Cu+는 80 - 95%, SS(부유물질)는 90 - 95% 정도 제거된다.After primary treatment, COD (chemical oxygen demand) is reduced by 60-70%, BOD (biological oxygen demand) is reduced by 5-20%, Cu + is 80-95%, SS (suspendable) 90-95% Removed.

2차 처리는 1차 전처리가 끝난 폐수의 COD를 감소시키면서 3차 처리 단계인 생물학적 처리에 악영향을 미치는 Cu+ 농도를 감소시키기 위한 단계이다.Secondary treatment is a step to reduce the Cu + concentration which adversely affects the third treatment step biological treatment while reducing the COD of the first pretreated wastewater.

폐수 중의 구리 이온은 일단 침전제와 반응하여 침전되고, 응집제에 의해 응집된다.The copper ions in the wastewater once react with the precipitant to be precipitated and aggregated by the coagulant.

Cu+이온을 침전시키기 위한 침전제로는 바람직하게는 황화나트륨(Na2S)이 사용되고, 응집제로는 바람직하게 황산 제이철(Fe2(SO4)3), 염화제이철(FeCl3), 아크릴 아마이드계 폴리머가 사용된다.Sodium sulfide (Na 2 S) is preferably used as a precipitant for precipitating Cu + ions, and ferric sulfate (Fe 2 (SO 4 ) 3 ), ferric chloride (FeCl 3 ), and acrylamide type are preferably used as the coagulant. Polymers are used.

황화나트륨은 통상 1분당 70ppm의 속도로 주입시킨다.Sodium sulfide is usually injected at a rate of 70 ppm per minute.

바람직한 실시예에서, 황화나트륨(Na2S)이 540 - 580 ppm, 황산제이철 (Fe2(SO4)3)이 450 - 550 ppm, 아크릴 아마이드계 폴리머가 900 - 1100 ppm의 농도로 사용된다.In a preferred embodiment, sodium sulfide (Na 2 S) is used at a concentration of 540-580 ppm, ferric sulfate (Fe 2 (SO 4 ) 3 ) at 450-550 ppm and acrylamide-based polymer at a concentration of 900-1100 ppm.

2차 처리 후 Cu+의 95% 이상이 제거되고, COD는 75 - 80%, BOD는 21 - 25%, SS는 98%이상 제거된다.After secondary treatment, at least 95% of Cu + is removed, at least 75-80% at COD, 21-25% at BOD, and at least 98% for SS.

3차 처리 단계는 생물학적 처리 단계, 즉 활성오니 처리단계로서, 구체적인 수행 방법은 널리 공지되어 있다. 2차 처리된 폐수는 미생물폭기조에서 폭기시키기 전에 먼저 희석수로 희석시키는 것이 바람직한데 폐수 : 희석수 = 1 : 2-3이 바람직하다. 공지된 방법으로 미생물 폭기조 내에서 폭기시킨 후 2차 침전물을 분리한다.The tertiary treatment step is a biological treatment step, ie an activated sludge treatment step, the specific method of performing is well known. The secondary treated wastewater is preferably diluted with dilution water before aeration in the microbial aeration tank. The secondary precipitate is separated after aeration in a microbial aeration tank by known methods.

원폐수에 다량의 질소 성분이 포함되어 있는 경우 3차 처리 이후에도 BOD 및 COD가 환경 법규 기준치 이상이 된다. 활성오니법만을 이용하여 폐수를 환경 법규 기준치 이하로 정화하려면 활성오니공정을 수회 반복하거나 다수 개의 대형 수조를 설치하기 위해 방대한 설치공간과 설치비 및 막대한 운전비용을 투자해야 하는 문제점이 있다.If the wastewater contains a large amount of nitrogen, the BOD and COD will be above environmental standards even after tertiary treatment. In order to purify wastewater below the environmental legislative standard using only the activated sludge method, there is a problem of investing vast installation space, installation cost and enormous operating cost in order to repeat the activated sludge process several times or install a large number of large tanks.

본발명에 따르면 기존의 활성오니 공정을 1차적으로 수행한 후 연이어 염소 가스를 주입하여 질소를 탈기시키고 최종적으로 유기물을 산화시킨 후 중화시키는 4차 처리단계가 수행된다.According to the present invention, after performing the existing activated sludge process primarily, a fourth treatment step is performed in which chlorine gas is subsequently injected to degas nitrogen and finally oxidize and neutralize organic matter.

처리시키는 폐수 중의 암모늄성 질소(NH4-N), 또는 암모니아성 질소(NH3-N) 성분은 염소 가스와 반응하여 질소 가스가 발생하게 되고, 유기물은 염소에 의해 산화된다.The ammonium nitrogen (NH 4 -N) or ammonia nitrogen (NH 3 -N) component in the wastewater to be treated reacts with chlorine gas to generate nitrogen gas, and the organic matter is oxidized by chlorine.

이를 반응식으로 표시하면 다음과 같다.This is expressed as a reaction scheme as follows.

Cl2+ H20 ↔HOCl + HClCl 2 + H 2 0 ↔HOCl + HCl

2NH3+ 3HOCl ↔N2+ 3H20 +3HCl2NH 3 + 3HOCl ↔N 2 + 3H 2 0 + 3HCl

염소 가스는 5kg/시간의 속도로 170 - 190 ppm 의 농도가 될 때까지 주입시키고, 7 - 9 시간동안 체류시킨다.Chlorine gas is injected at a rate of 5 kg / hour to a concentration of 170-190 ppm and held for 7-9 hours.

질소 처리 후, 중화 공정은 바람직하게는 33%의 수산화나트륨 용액을 사용하고 pH가 4.6 내지 8.5로 자동 조절되도록 한 후 방류시킨다.After nitrogen treatment, the neutralization process is preferably discharged using 33% sodium hydroxide solution and allowing the pH to be automatically adjusted to 4.6 to 8.5.

본발명은 다음의 실시예에 의해 상세히 설명되는 바, 실시예는 단지 예시적인 것일 뿐 본발명의 사상이 이에 제한되는 것은 아니다.The present invention is described in detail by the following examples, which are merely exemplary and the spirit of the present invention is not limited thereto.

실시예 1Example 1

폐수를 집수조에서 2.5일 체류시킨 후 중화반응조로 이송시키고 중화하고 응집시킨 후 가압부상조로 이송시켜 가압부상하여 슬러지를 분리시켰다. Cu+제거반응조로 이송시킨 후, Na2S 560 ppm, Fe2(SO4)3500 ppm, 아크릴 아마이드계 폴리머가 1000 ppm 이 되도록 Na2S, Fe2(SO4)3및 아크릴 아마이드계 폴리머를 주입하여 1시간동안 체류시키고, 1차 침전조로 이송시킨후 9시간동안 침전시켜 1차 침전물을 분리시켰다. 희석조로 이송시킨 후, 폐수 : 희석수 = 1 : 2가 되도록 희석시켜 1시간동안 체류시키고 미생물 폭기조로 이송시켜 1.6일간 체류시키면서 폭기시키고, 2차 침전조로 이송시켜 6시간동안 체류시켜 2차 침전물을 분리시켰다. 염소가스 투입조로 이송시킨 후 염소가스를 5kg/시간의 속도로 농도가 185 ppm이 될 때까지 염소가스를 주입하여 8시간 체류시킨 후 중화조로 이송시켜 수산화나트륨으로 중화시킨 후 방류하였다.After the wastewater stayed in the collecting tank for 2.5 days, the wastewater was transferred to a neutralization tank, neutralized and coagulated, and then transferred to a pressure flotation tank to pressurize and separate sludge. Then transferred to Cu + to remove the reaction vessel, Na 2 S 560 ppm, Fe 2 (SO 4) 3 500 ppm, acrylamide-based polymer is such that a 1000 ppm Na 2 S, Fe 2 (SO 4) 3 , and an acrylamide-based polymer Was injected for 1 hour, transferred to the primary precipitation bath, and precipitated for 9 hours to separate the primary precipitate. After transfer to the dilution tank, waste water: dilution water = 1: 2: dilute to 1 hour, stay for 1 hour, transfer to the microbial aeration tank, aeration for 1.6 days, transfer to the secondary settling tank and stay for 6 hours to maintain the secondary precipitate Separated. After transferring to the chlorine gas input tank, the chlorine gas was injected at a rate of 5 kg / hour until the concentration reached 185 ppm, and the chlorine gas was kept for 8 hours, transferred to a neutralization tank, neutralized with sodium hydroxide, and discharged.

각 단계에서의 COD, BOD, Cu+, SS 수치를 측정할 결과는 표 1과 같다.Table 1 shows the results of measuring the COD, BOD, Cu + , and SS values at each step.

표 1Table 1

CODCOD BODBOD Cu+ Cu + SSSS 농도 ppmConcentration ppm 감소율%% Reduction 농도 ppmConcentration ppm 감소율 %% Reduction 농도 ppmConcentration ppm 감소율 %% Reduction 농도 ppmConcentration ppm 감소율 %% Reduction 원폐수Wastewater 15001500 20002000 13001300 10001000 1차 처리Primary treatment 350350 7676 20002000 00 5050 9696 2020 9595 2차 처리Secondary processing 258258 8181 20002000 00 33 98.598.5 1010 9898 3차 처리Tertiary treatment 250250 8383 3030 98.598.5 <1<1 99.799.7 55 9999 4차 처리4th process 8080 94.694.6 2020 9999 <1<1 99.799.7 55 9999

상기 표에서 알 수 있는 바와 같이, 3차 처리 후에도 각 수치가 환경 허용 기준치(COD 130ppm, BOD 120ppm,Cu+3ppm, SS 130ppm) 이상이었으나, 4차 처리후 각 수치가 기준치 이하로 감소되었다.As can be seen from the above table, even after the third treatment, each value was above the environmental limit value (COD 130ppm, BOD 120ppm, Cu + 3ppm, SS 130ppm), but after the fourth treatment each value was reduced to below the reference value.

따라서, 본발명에 따를 경우 질소 성분이 다량 함유된 안료 폐수를 효율적으로 정화시킬 수 있다.Therefore, according to the present invention, it is possible to efficiently purify the pigment wastewater containing a large amount of nitrogen components.

Claims (4)

(i) 질소 성분을 다량 함유한 안료 폐수를 산 및 알칼리로 처리하고 응집 및 가압부상시켜 슬러지를 제거하는 1차 처리 단계;(i) a first treatment step of treating the pigment wastewater containing a large amount of nitrogen with an acid and an alkali, flocculating and flotation to remove sludge; (ii) 구리 이온을 침전시키기 위한 침전제 및 응집시키기 위한 응집제를 주입하고 침전 및 응집시켜 1가 구리이온(Cu+)을 제거시키는 2차 처리 단계;(ii) a secondary treatment step of injecting, precipitating and flocculating a precipitant for precipitating copper ions and a flocculant to remove monovalent copper ions (Cu + ); (iii) 미생물 폭기조에서 활성오니처리를 행하는 3차 처리 단계; 및(iii) a third treatment step of performing activated sludge treatment in a microbial aeration tank; And (iv) 염소 가스를 주입하여 질소를 탈기시키고 최종적으로 유기물을 산화시킨 후 중화시키고 방류하는 4차 처리단계(iv) a fourth treatment step of degassing nitrogen by injecting chlorine gas and finally oxidizing the organics, neutralizing and discharging 로 구성된, 질소 성분을 다량 함유한 안료 폐수를 효율적으로 정화시키는 방법.A method for efficiently purifying a pigment wastewater containing a large amount of nitrogen components. 제 1항에 있어서, 염소 가스를 5kg/시간의 속도로 주입시키는 방법.The method of claim 1 wherein chlorine gas is injected at a rate of 5 kg / hour. 제 1항에 있어서, 염소 가스를 170 - 190 ppm 농도가 될 때까지 주입시키는 방법.The method of claim 1 wherein the chlorine gas is injected until the concentration is 170-190 ppm. 제 1항에 있어서, 염소 가스를 7 - 9 시간동안 체류시키는 방법.The method of claim 1 wherein the chlorine gas is retained for 7-9 hours.
KR1020000017551A 2000-04-04 2000-04-04 A process for the purification of factory wastes of pigments containing rich nitrogen element KR100317415B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000017551A KR100317415B1 (en) 2000-04-04 2000-04-04 A process for the purification of factory wastes of pigments containing rich nitrogen element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000017551A KR100317415B1 (en) 2000-04-04 2000-04-04 A process for the purification of factory wastes of pigments containing rich nitrogen element

Publications (2)

Publication Number Publication Date
KR20000063167A true KR20000063167A (en) 2000-11-06
KR100317415B1 KR100317415B1 (en) 2001-12-24

Family

ID=19661638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000017551A KR100317415B1 (en) 2000-04-04 2000-04-04 A process for the purification of factory wastes of pigments containing rich nitrogen element

Country Status (1)

Country Link
KR (1) KR100317415B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416476B1 (en) * 2003-08-12 2004-01-31 주식회사 한남코퍼레이션 A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416476B1 (en) * 2003-08-12 2004-01-31 주식회사 한남코퍼레이션 A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine

Also Published As

Publication number Publication date
KR100317415B1 (en) 2001-12-24

Similar Documents

Publication Publication Date Title
CN107857426B (en) Comprehensive treatment method for phosphorus-containing wastewater
CN104961304A (en) High-concentration fluorine chemical wastewater treatment technology
CN109437480B (en) Viscose fiber wastewater treatment process
CN110642418A (en) Method for treating high organic wastewater generated in PCB production by Fenton process
CN112794555A (en) Novel method for treating wastewater by reinforced coagulation
CN213060470U (en) Sulfuric acid process titanium dioxide effluent treatment plant
CN111995181B (en) Treatment method of photovoltaic industrial wastewater
CN112551744A (en) Method for treating wastewater by utilizing acidic coagulated Fenton oxidation
CN109368870B (en) Method for treating RO concentrated water of printing and dyeing wastewater by Fenton technology
KR100317415B1 (en) A process for the purification of factory wastes of pigments containing rich nitrogen element
CN217780902U (en) High salt effluent disposal system
CN111138040A (en) Landfill leachate treatment method
CN113461222B (en) Industrial wastewater enhanced oxidation treatment method
CN112010503B (en) Treatment process of liquid cyclohexanone peroxide production wastewater
CN115196828A (en) Stainless steel pickling waste water denitrification processing system
CN104860455A (en) Methylene dithiocyanate wastewater treatment method
CN114516689A (en) Calcium carbide method polyvinyl chloride mercury-containing wastewater treatment and recycling method and application device thereof
CN209872601U (en) Coking desulfurization waste liquid treatment system
CN115140862A (en) Method for pretreating electroplating wastewater by adopting ozone and Fenton process in cooperation
CN113816561A (en) Treatment method of quaternary ammonium salt production wastewater
CN113526778A (en) Treatment process of high-concentration industrial wastewater
CN111170506A (en) Fenton oxidation treatment method for wastewater
KR19990027070A (en) Biological denitrification of wastewater and simultaneous treatment of high concentration hydrofluoric acid, lead and nitric acid
KR20030008074A (en) Photo-oxideatic treatment of waster discharged from FGD
CN215924703U (en) Hazardous waste landfill leachate evaporation treatment system

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
G15R Request for early opening
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121113

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181017

Year of fee payment: 18