KR20000061432A - Sp-peg-헤모글로빈 결합체 - Google Patents

Sp-peg-헤모글로빈 결합체 Download PDF

Info

Publication number
KR20000061432A
KR20000061432A KR1019990010469A KR19990010469A KR20000061432A KR 20000061432 A KR20000061432 A KR 20000061432A KR 1019990010469 A KR1019990010469 A KR 1019990010469A KR 19990010469 A KR19990010469 A KR 19990010469A KR 20000061432 A KR20000061432 A KR 20000061432A
Authority
KR
South Korea
Prior art keywords
peg
hemoglobin
minutes
animals
administration
Prior art date
Application number
KR1019990010469A
Other languages
English (en)
Other versions
KR100316154B1 (ko
Inventor
노광
신필수
Original Assignee
노광
선바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노광, 선바이오 주식회사 filed Critical 노광
Priority to KR1019990010469A priority Critical patent/KR100316154B1/ko
Publication of KR20000061432A publication Critical patent/KR20000061432A/ko
Application granted granted Critical
Publication of KR100316154B1 publication Critical patent/KR100316154B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 산소운반체로서의 안전성과 효능을 가져 의학적 용도로 사용할 수 있게 된 다음 화학식 1의 신규한 SP-PEG-헤모글로빈 결합체를 제공하는 것이다.
[화학식 1]

Description

SP-PEG-헤모글로빈 결합체{SP-PEG-hemoglobin}
본 발명은 신규한 PEG-헤모글로빈 결합체에 관한 것으로, 보다 상세하게는 산소운반체로서의 안전성과 효능을 가져 의학적 용도로 사용할 수 있게 된 다음 화학식 1의 SP-PEG-헤모글로빈 결합체에 관한 것이다.
활성화된 폴리에틸렌 글리콜(polyethylene glycol, 이하 'PEG'라 함) 또는 PEG유도체는 단백질, 효소, 기타 생물학적 제제의 표면에 부착되어 의약품 등으로 사용되기도 한다. PEG가 부착됨으로서 생기는 변화는 부착된 PEG 양만큼의 분자량이 증가하고 표면에 PEG가 덮힘으로 인하여 항균-항체 반응을 감소시키게 된다. 이와 같은 이유로서 체내 잔존시간이 증가하고 항원성 발현이 감소하는 등의 장점을 지니게 된다. 같은 원리로 PEG와 헤모글로빈이 결합된 PEG-헤모글로빈은 헤모글로빈 자체의 산소운반 역할을 이용한 산소 운반체로 사용될 수 있으며 응용분야로서는 인공혈액, 뇌졸중치료제, 트로마수혈 등이 있을 수 있다. 헤모글로빈 분자는 분자량이 약 65,000이므로 분자 그 자체로서는 체내 잔존 반감시간이 4~6시간 정도에 지나지 않아 그에 수반되는 독성이 야기될 우려가 있다. 반면에 PEG가 부착된 PEG-헤모글로빈은 체내 잔존 반감시간이 20~40시간 정도로 증가하고 또한 항원성 발현을 감소시키는 역할을 하기도 한다.
PEG-헤모글로빈의 제조방법에 관한 종래의 기술로서는 다음 두종류를 들 수 있다.
미국특허 4,670,417호에 기재된 PEG-헤모글로빈은 폴리에틸렌숙시니미딜 숙시네이트(SS-PEG)와 헤모글로빈을 반응시킨 것으로서 다음의 화학식 2의 PEG-헤모글로빈을 형성한다.
그리고 미국특허 5,234,940호에 기재된 PEG-헤모글로빈은 폴리에틸렌글리콜 숙시니미딜 카보네이트(SC-PEG)와 헤모글로빈을 반응시킨 것으로서 다음의 화학식 3의 PEG-헤모글로빈을 형성한다.
이외에도 PEG를 헤모글로빈에 부착시키는 여러 방법이 연구되어 왔으며, 각기 다른 종류의 PEG유도체를 사용함으로써 PEG와 헤모글로빈 사이에 형성되는 공유결합의 형태가 다르게 된다.
본 발명은 신규한 PEG-헤모글로빈 결합체를 제공하기 위한 것으로, 상기 화학식 1의 SP-PEG-헤모글로빈 결합체를 제공한다.
(화학식 1)
상기 물질은 폴리에틸렌 글리콜 숙시니미딜 프로피오네이트와 헤모글로빈을 함께 반응시켜 얻을 수 있으며, 상기 폴리에틸렌 글리콜 숙시니미딜 프로피오네이트는 폴리에틸렌 글리콜을 에틸 아크릴레이트와 N-하이드록시 숙시니미드와 함께 반응시켜 얻을 수 있다.
그리고, 상기 폴리에틸렌 글리콜 숙시니미딜 숙시네이트는 분자량이 100-200,000Dalton인 것이 바람직하다.
상기 구조의 SP-PEG-헤모글로빈 결합체는 새로운 형태의 PEG-헤모글로빈으로서 의학적 용도인 산소운반체로 이용될 수 있는 것이다.
이하, 본 발명의 구성 및 작용을 다음 실시예를 통하여 상세하게 설명한다.
실시예 1. SP-PEG의 제조
메톡시-PEG(methoxy-PEG) 100g(M.W. 5,000, 0.2mol)과 소디움 에톡사이드(sodium ethoxide) 1.36g(leq)를 250mL 원형 플라스크에 넣고 오일 바스에서 80℃까지 열을 가하여 완전히 녹였다. 이때 사용되는 PEG의 분자량은 100 내지 200,000 사이의 다양한 종류가 사용될 수 있다. 위의 반응 혼합물에 에틸아크릴레이트(ethyl acrylate) 21.28mL(0.2mol)를 천천히 첨가하여 약 15시간동안 100~110℃로 가열, 교반하였다. 반응 혼합물에 증류수를 가하여 녹이고 디에틸에테르(diethylether)로 세척한 후 디클로로메탄(dichloromethane) 600, 500mL로 추출하였다. 추출된 유기층은 마스네슘 설페이트(magnesium sulfate)로 건조시키고 브라인(brine)으로 2회 세척한 다음, 감압 증류하여 유기용매를 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 감압 여과하여 고체를 얻었다. 여과하여 얻은 침전물을 에틸아세테이트 200mL로 재결정하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2회 세척하여, 진공 감압하에 12시간 동안 건조하여 백색 분말 형태의 m-PEG 에틸 프로피오네이트 화합물 93g을 얻었다.
이 과정은 다음 반응식 1로 표현될 수 있다.
상기 m-PEG 에틸 프로피오네이트 93g을 1N 수산화나트륨 수용액 300mL에 녹여 상온에서 17시간 동안 교반하였다. 반응 혼합물은 2N 염산수용액으로 반응 수용액의 pH 2로 산성화시키고 염화나트륨 30g을 첨가한 다음, 디클로로메탄(1000, 800, 600mL)으로 추출하였다. 추출된 유기층은 마그네슘 설페이트로 건조하고 브라인으로 2회 세척한 다음, 유기 용매를 감압 증류하여 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고 디에틸에테르로 2회 세척하여, 진공 감압하에 12시간 동안 건조하여 백색 분말 형태의 m-PEG 프로피오닉산 화합물을 얻었다.
그 과정을 다음 반응식 2로 나타내었다.
상기 m-PEG 프로피오닉산 86.5g을 디클로로메탄 250mL에 녹여 0~5℃ 조건하에서 교반하였다. 이 혼합물에 N-하이드록시 석시니미드(NHS) 3.9g(2당량)을 첨가한 다음, 디사이클로헥실카르보디이미드(dicyclohexylcarbodiimide) 7.0g(2당량)을 디클로로메탄 50mL에 녹여 0~5℃ 조건하에서 천천히 첨가하였다. 반응 혼합물을 상온에서 약 15시간 동안 교반하였다. 반응 혼합물을 감압 여과하여 부산물인 디사이클로헥실우레아(dicyclohexylurea)를 제거하고 감압 증류하여 유기용매를 제거하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2회 세척하여 진공 감압하에 12시간 동안 건조하여 백색 분말 형태의 m-PEG 석시니미딜 프로피오네이트 화합물을 얻었다.
이 과정을 다음 반응식 3에 나타내었다.
실시예 2. SP-PEG-헤모글로빈의 제조
포유류 동물의 피를 채취하여 적혈구 만을 분리시키고, 다시 적혈구에서 헤모글로빈을 분리 정제한 다음 헤모글로빈을 0.15M 염화나트륨, 0.01M Na-포스페이트 pH 8.0의 수용액에 용해시키고 다음 상기 실시예 1에서 얻어진 SP-PEG를 헤모글로빈:SP-PEG=1:20의 당량비율로 첨가하였다. 반응은 교반을 활발히 하면서 실온에서 진행시키며 pH를 8.0으로 유지하였다. 반응은 1~2시간내에 완결되며 그 후에는 미반응된 PEG를 제거하기 위하여 한외여과법(ultrafiltration) 또는 다이아필터레이션(diafiltration)을 실시하였다.
이 과정을 다음 반응식 4에 나타내었다.
실시예 3. SP-PEG-헤모글로빈의 성분
1)순도(purity)
SP-PEG-헤모글로빈의 순도는 HPLC, IEF(isoelectrofocusing), SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)로 확인하였다.
사이즈 익스클루젼(size exclusion) HLPC는 280nm에서 분자량이 100,000-130,000되는 물질의 체류시간(retention time)대에서 단일피크를 보였다. 헤모글로빈 이외의 거대분자나 그외의 불순물이 존재하지 않음을 확인하였다. IEF는 SP-PEG-헤모글로빈의 pI(isoelectric point)가 소헤모글로빈의 pI(6.8)와 동일내었다. 이는 화학적 변형(chemical modification)이 헤모글로빈의 pI에는 영향을 미치지 않았음을 나타내는 것이다. SDS-PAGE는 헤모글로빈의 붕괴로 유래된 3개의 서로 다른 밴드(band)를 보이고 있고 이는 외래 단백질이 없음을 증명하는 것이다.
2)인지질 및 기타 플라즈마 불순물의 제거(phospholipid and impurities removal)
PEI 칼럼을 통해 인지질이 제거된 헤모글로빈은 사이즈 익스클루젼 HLPC를 통해 헤모글로빈 용액에 남아 있는 인지질이 없음을 확인하였다.
3)엔도톡신 함량(endotoxin level)
Kinetic Turbidimetric Assay of LAL(Endosafe)를 사용하여 엔도톡신의 함량을 정량분석하였다. 그 결과 0.03-0.5EU/ml인 것으로 나타났고, 래빗 파이로전 테스트(rabbit pyrogen test)도 통과하여 사용하기에 안전한 것으로 판명되었다.
4)철원자의 함량(free iron concentration)
철원자는 헤모글로빈이 산화되면서 방출되는 것으로 독성을 나타내는 것으로 알려져 있다. 따라서 최종산물인 SP-PEG-헤모글로빈에 철원자가 가능한 적게 포함되도록 하는 것이 바람직한데, 분석 결과 철이온의 양은 경미했고 독성을 고려할 필요가 없는 수준이었다.
5)팽압(oncotic pressure)과 점도(viscosity)
팽압(oncotic pressure 또는 colloid osmotic pressure라고 함)은 온코미터(Oncometer)로 측정한다. 37℃에서 액체의 점도는 우베홀드 캘리브레이티드 비스코미터(Ubbeholde calibrated viscometer, Fisher Scientific사)를 이용하여 측정한다. 팽압은 22-23mmHg였고, 점도는 3.9-4.1cp이었다.
6)전해질(electrolytes)과 pH
생리식염수와 유사한 110mM NaCl, 5mM Na-phosphate로 구성되어 있고 pH 7.2-7.6정도 이었다.
7)p50
SP-PEG-헤모글로빈의 산소에 대한 친화력을 측정하기 위하여 p50을 측정하였다. p50은 9.6-11.1mmHg였고, 힐계수(Hill coefficient)는 1.5였다. 이는 pO220mmHg에서 SP-PEG-헤모글로빈의 70%가 산소와 결합되어 있었고, 혈액의 경우는 25%가 산소와 결합되어 있다는 것을 의미한다. 즉 산소분압이 낮은 상태에서 효율적으로 산소를 전달할 수 있는 능력을 가지고 있음을 의미한다고 할 수있다. 따라서 SP-PEG-헤모글로빈을 장기보존액으로 사용할 경우 산소부족으로 인한 허혈증(ischemia)를 예방할 수 있고, 산소부족으로 인한 물질대사중단으로 세포가 죽는 것을 방지할 수 있음을 의미한다.
SP-PEG-헤모글로빈의 구성성분은 다음 표 1과 같다.
구성성분
SP-PEG-헤모글로빈 농도(g/dl) 5 - 6
헤모글로빈 농도 2.5 - 3
옥시헤모글로빈(%) 80.0 - 90.0
메테모글로빈(Methemoglobin,%) 0 - 15
카르복시헤모글로빈(%) 4 - 6
p50(mmHg) 9.6 - 11.1
힐 계수(Hill coefficient) 1.5
점도(cp) 3.9 - 4.1
팽압(mmHg) 22 - 23
삼투압(Osmolarity, mOsm) 310 - 320
인지질과 기타 불순물 포착되지 않음
엔도톡신(EU/ml) 0.05 - 0.5
Free Iron(mg/dl) 1.1 - 2.21
스테릴리티(Sterility) 패스
저장 안정성(Storage Stability) 실온에서 24시간-20℃에서 2년
실시예 4. SP-PEG-헤모글로빈의 안전성을 확인하기 위한 전이상독성시험
1)랫트(rat)를 사용한 단회 투여 독성시험
랫트에 SP-PEG-헤모글로빈을 단회투여했을 때 나타나는 독성효과를 알아보기 위해 이 실험을 실시하였다. SP-PEG-헤모글로빈을 하기 표 2에 기재된 바와 같이 T1, T2, T3의 세균으로 분류하여 정맥투여하였으며 음성 대조군은 링거액을 주사하였다.
시험군 암수 동물수 투여속도(ml/kg/hr) 투여량
(ml/kg) (mg/kg)
음성대조군 수컷 5 25 50 0
암컷 5 25 50 0
T1 수컷 5 25 12.5 875
암컷 5 25 12.5 875
T2 수컷 5 25 25 1750
암컷 5 25 25 1750
T3 수컷 5 25 50 3500
암컷 5 25 50 3500
일반증상 및 사망동물의 유무관찰은 투여후 1시간에서 6시간까지는 매시간, 투여 익일부터 7일까지는 매일 1회이상씩 관찰하였다. 체중측정은 투여개시전과 투여후 1,3 및 7일에 측정하였다. 모든 생존동물은 CO2가스 안락사시킨 후, 개복하여 육안적으로 모든 내부장기를 관찰하였다.
암수 모두 음성대조군 및 시험물질 투여군에서 시험기간을 통하여 사망동물은 관찰되지 않았다. 따라서 본 시험물질의 LD50값은 암수동물 모두 50ml/kg이상이라고 판단되었다. 음성대조군 및 시험물질 투여군에서 어떠한 이상소견도 관찰되지 않았다. 체중변화는 암수의 모든 시험군에서 시험기간 동안 음성대조군에 비해 어떠한 이상도 관찰되지 않았다. 다만 투여후 1일째에 암수의 음성대조군을 포함한 모든 투여군에서 체중증가억제 또는 감소가 시험물질 투여와 관계없이 관찰되었다. 부검소견에서도 암수의 모든 시험군에서 시험물질 투여와 관련된 어떠한 변화도 관찰되지 않았다. 다만 암컷의 음성대조군의 일례와 25mg/kg 투여군의 일례에서 신장의 신우확장(dilation of renal pelvis)이 관찰되었다.
따라서 암수 랫트에 대한 SP-PEG-헤모글로빈의 정맥내 단회투여결과, 사망동물의 유무, 일반증상 및 체중변화 및 부검소견에 어떠한 이상도 관찰되지 않았으므로 시험물질의 정맥내 연속투여에 의한 LD50값은 암수 모두 50ml/kg(SP-PEG-헤모글로빈양으로 3500mg/kg)을 상회할 것으로 판단되었다.
2)개를 이용한 단회 투여 독성시험
개(beagle dog)에 SP-PEG-헤모글로빈을 단회투여했을 때 나타나는 독성효과를 알아보기 위해 이 실험을 실시하였다. SP-PEG-헤모글로빈을 T1, T2, T3의 세군으로 나누고, 음성 대조군은 링거액을 주사받았다.
시험군 암수 동물수 투여속도(ml/kg/hr) 투여량
(ml/kg) (mg/kg)
음성대조군 수컷 2 25 25 0
암컷 2 25 25 0
T1 수컷 2 25 6.25 875
암컷 2 25 6.25 875
T2 수컷 2 25 12.5 1750
암컷 2 25 12.5 1750
T3 수컷 2 25 25 3500
암컷 2 25 25 3500
일반증상 및 사망동물의 유무관찰은 투여후 1시간에서 6시간까지는 매시간, 투여익일부터 7일까지는 매일 1회이상씩 관찰하였다. 체중측정은 투여개시전과 투여후 1, 3 및 7, 14일에 측정하였다. 모든 생존동물은 펜토바비탈 소디움(pentabarbital sodium)으로 안락사시킨 후, 개복하여 육안으로 내부장기를 관찰하였다.
암수 모두 음성대조군 및 시험물질 투여군에서 시험기간을 통하여 사망동물은 관찰되지 않았다. 음성대조군 및 시험물질 투여군에서 어떠한 이상소견도 관찰되지 않았다. 체중변화는 암수의 모든 시험군에서 시험기간동안 음성대조군에 비해 어떠한 이상도 관찰되지 않았다.
따라서 SP-PEG-헤모글로빈의 LD50이 50ml/kg 또는 3500mg/kg을 상회할 것으로 판단되었다.
실시예 5. SP-PEG-헤모글로빈의 약리시험
1)일반행동에 미치는 영향
동물은 암수컷 ICR mice(체중 20-25g)을 각 군당 4마리씩 사용하였다. 실험방법은 변형된 어윈(Irwin)방법을 사용하였고, 시험물질을 정맥투여후 0, 0.25, 0.5, 1, 2 및 4시간에 실험용 관찰 케이지를 이용하여 일반행동관찰을 하였다.
SP-PEG-헤모글로빈을 정맥투여한 후 5시간까지 동물에 나타난 일반행동은 매체 대조동물과 비교하여 아무런 이상증상이 관찰되지 않았고 시험결과는 다음 표 4와 같았다.
약명 투약량 루트 동물수 이상증세 발현 동물수
0분 15분 30분 60분 120분 240분
부형약(Vehicle) 20ml/kg i.v. 8 0 0 0 0 0 0
SP-PEG-헤모글로빈 5ml/kg i.v. 8 0 0 0 0 0 0
10ml/kg i.v. 8 0 0 0 0 0 0
20ml/kg i.v. 8 0 0 0 0 0 0
디아제팜(Diazepam) 6mg/kg i.p. 8 0 7 7 5 2 0
2)자발운동에 미치는 영향
동물은 수컷 ICR mice(체중 20-25g)를 각 군당 8마리씩 사용하였다. 시험물질을 정맥투여하고 30분후에 동물을 플라스틱 사육상자에 방치한 후 모틸리티 미터(PAS, San Diego)을 이용하여 5분간 동물이 움직인 운동량을 0, 15, 30, 60, 120 및 240분에 측정하였다. 자발운동량을 측정한 결과는 매체대조동물군과 비교하여 볼 때 어떠한 영향도 관찰되지 않았다.
3)로타로드(Rotarod) 시험
동물은 수컷 ICR mice를 각 군당 8마리씩 사용하였다. 사용방법은 던훔(Dunhum), 미야(Miya) 등에 의해 개발된 로카로드법을 이용하여 실시하였다. 실험전날 동물은 로타로드(16rpm)에서 3분간 훈련시킨후, 3분 동안 로타로드에서 떨어지지 않았던 동물만 시험에 사용하였다. 동물에 시험물질을 정맥투여한 후 0, 15, 30, 60, 120 및 240분에 1분 동안에 로타로드(16rpm)에 떨어진 동물의 숫자를 측정하였다. 시험결과 매체대조동물군과 비교하여 아무런 영향도 관찰되지 않았다.
4)헥소바비탈(Hexobarbital) 수면시간에 미치는 영향
동물을 수컷 ICR mice를 각 군당 8마리씩 사용하였다. 동물에 시험물질을 정맥투여한 후 30분에 헥소바비탈·나트륨(70mg/kg)을 복강투여한 후 동물의 라이팅 리플렉스(righting reflex) 소실후부터 깨어나기까지의 시간을 측정하였다.
아래의 표 5와 같이 매체대조동물군과 비교하여 아무런 영향도 관찰되지 않았다.
약명 투약량 루트 동물수 수면시간 편차(%)
부형약 20ml/kg i.v. 8 49.8±5.0 100
SP-PEG-헤모글로빈 5ml/kg i.v. 8 57.6±8.8 116
10ml/kg i.v. 8 56.1±10.5 113
20ml/kg i.v. 8 60.3±12.9 121
클로로프로마진(Chloropromazine) 6mg/kg i.p. 8 189.4±43.1 380
5)정상체온에 미치는 영향
동물은 ICR 수컷 mice를 각 군당 8마리씩 사용하였다. 시험물질을 동물에 정맥투여하고 0, 15, 30, 60, 120 및 240분에 체온을 측정하였다.
다음 표 6에 그 결과를 나타내었다. 시험물질 투여직후부터 240분까지 동물의 체온을 측정한 결과 10, 20ml/kg투여군에서 투여후 10분에 유의성있는 증가가 나타났고 20ml/kg투여군에서는 240분에서도 약간의 유의한 증가를 나타냈다.
약명 투약량(ml/kg) 루트 동물수 이상증세 발현 동물수
0분 15분 30분 60분 120분 240분
부형약(Vehicle) 20 i.v. 8 36.6±0.50 37.5±0.3 37.3±0.2 37.3±0.3 37.0±0.3 36.6±0.4
SP-PEG-헤모글로빈 5 i.v. 8 36.8±0.4 36.9±0.5 37.1±0.4 37.2±0.5 37.4±0.3 36.9±0.3
10 i.v. 8 37.0±0.5 36.9±0.5 37.1±0.4 37.3±0.4 37.6±0.5 37.0±0.4
20 i.v. 8 36.8±0.3 37.3±0.4 37.3±0.4 37.3±0.4 37.2±0.2 37.1±0.4
6)진통작용 : 아세트산으로 유발한 뤼딩(writhing) 반응의 억제
시험물질을 동물에 정맥투여하고 30분 후에 아세트산(1%)를 0.1ml/10g으로 복강투여하고 10분 후부터 5분간 동물이 전신을 쭉 뻗는 동작인 뤼딩의 숫자를 측정한 결과, 대조시험군과 비교하여 아무런 영향도 미치지 않았다. 그 결과를 다음 표 7에 나타내었다.
약명 투약량 루트 동물수 뤼드의 수(wriths, No)
부형약 20ml/kg i.v. 8 13.5±3.4
SP-PEG-헤모글로빈 5ml/kg i.v. 8 14.3±3.5
10ml/kg i.v. 8 15.0±3.4
20ml/kg i.v. 8 14.9±3.8
케토프로펜(ketoprofen) 10mg/kg i.p. 8 6.1±3.6
7)진통작용 : 가열판으로 유발한 리킹(licking) 반응
시험물질을 동물에 정맥투여하고 30분후에 동물을 가열판(57℃)에 올려놓은 후 동물이 앞발을 핥는 동작을 시작한 시간을 측정한 결과, 아무런 영향도 미치지 않았다. 그 결과를 다음 표 8에 나타내었다.
약명 투약량 루트 동물수 리킹타임(sec)
부형약 20ml/kg i.v. 8 4.2±0.6
SP-PEG-헤모글로빈 5ml/kg i.v. 8 4.2±1.0
10ml/kg i.v. 8 4.5±1.4
20ml/kg i.v. 8 4.4±0.8
코데인(codeine) 100mg/kg i.p. 8 13.2±6.1
8)항경련작용 : 펜틸렌테트라졸 유발 경련에 대한 영향
시험물질을 동물에 정맥투여하고 30분후에 펜틸렌테트라졸(100mg/kg)을 복강투여한 후 동물에 나타난 간대성 경련에 미치는 영향을 측정한 결과, 항경련작용이 없음을 알 수 있었다. 그 결과를 다음 표 9에 나타내었다.
약명 투약량 루트 경련(No) TE 타임(sec) 프로텍션(%)
부형약 20ml/kg i.v. 8/8 57.6±8.8 0
SP-PEG-헤모글로빈 5ml/kg i.v. 8/8 59.9±21.1 0
10ml/kg i.v. 8/8 61.5±20.8 0
20ml/kg i.v. 8/8 67.6±42.1 0
코데인(Codeine) 100mg/kg i.p. 0/8 - 100
9)항경련작용 : 스트리키닌(strychnine) 유발 경련에 미치는 영향
시험물질을 동물에 정맥투여하고 30분후에 스트리키닌(2mg/kg)을 복강투여한 후 동물에 나타난 강직성 경련에 미치는 영향을 측정한 결과, 항경련작용이 없음을 알 수 있었다. 다음 표 10에 그 결과를 나타내었다.
약명 투약량 루트 경련(No) TE 타임(sec) 프로텍션(%)
부형약 20ml/kg i.v. 8/8 164.5±39.5 0
SP-PEG-헤모글로빈 5ml/kg i.v. 8/8 148.0±30.6 0
10ml/kg i.v. 8/8 169.9±27.1 0
20ml/kg i.v. 8/8 170.4±27.1 0
디아제팜 10mg/kg i.p. 4/8 286.8±32.8 50
10)항경련작용 : 전기쇼크 유발 경련에 미치는 영향
시험물질을 동물에 정맥투여하고 30분 후에 동물의 두 귀속에 전기쇼크(60mA, 0.3sec)을 적용한 후 동물에 나타난 경련에 미치는 영향을 측정한 결과 항경련 작용이 없음을 알 수 있었다. 다음 표 11에 그 결과를 나타내었다.
약명 투약량 루트 경련(No) 프로텍션(%)
부형약 20ml/kg i.v. 8/8 0
SP-PEG-헤모글로빈 5ml/kg i.v. 8/8 0
10ml/kg i.v. 8/8 0
20ml/kg i.v. 8/8 0
디아제팜 20mg/kg i.p. 8/8 0
11)심장순환계에 미치는 영향 : 비마취 흰쥐의 혈압 및 심박수에 대한 영향
체중 350-450g인 SD계 흰쥐를 티오펜탈(thiopental)(50mg/kg, i.p)으로 마취시킨 다음 대퇴동맥과 대퇴정맥에 각각 캐뉼러를 삽입하고 캐뉼러의 다른쪽 끝은 피하를 따라 목뒤로 뽑아낸 후 고정하였고 수술후 동물을 하룻밤 동안 안정시킨 다음 다음날 대퇴동맥에 삽입한 캐쎄타(catheter)를 압력변환기(pressure transducer) 및 피지오그래프(physiograph)에 연결해 혈압 및 심박수를 데이터 어퀴지션 시스템(data acquisition system, Biopak, Model MP100)을 이용하여 측정하였다. 약 1시간 혈압이 안정된 것을 확인한 후 시험물질을 정맥투여하고 일정시간 간격으로 투여 후 6시간까지의 혈압 및 심박수를 측정하여 약물투여 전의 혈압 및 심박수의 변화율로 나타내었다. 매체 대조 동물군과의 비교에서 유의성있는 영향이 관찰되지 않았다. 다음 표 12와 표 13에 그 결과를 나타내었다.
평균 혈압의 변화율
시간(분) 부형약 5ml/kg 10ml/kg 20ml/kg
평균(%) S.E.M. 평균(%) S.E.M. 평균(%) S.E.M. 평균(%) S.E.M.
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 2.13 2.89 -4.48 3.76 7.76 4.76 1.26 2.06
20 1.96 3.61 0.88 2.77 9.05 6.57 -0.05 3.95
30 3.45 5.24 1.09 3.34 14.04 4.62 4.44 4.71
60 -5.02 2.29 -1.96 2.68 12.49 4.76 6.41 2.01
90 -4.44 3.76 -3.69 1.54 10.05 5.50 4.95 4.73
120 -4.34 3.72 -5.51 2.46 6.72 5.37 8.81 2.48
240 -5.93 5.54 -8.55 2.97 7.44 4.76 -2.66 3.15
360 -2.67 6.95 -7.93 1.84 7.95 5.08 -3.72 3.38
베이스라인(mmHg) 88.0 4.80 103.1 3.9 90.3 6.9 101.3 3.5
심박수의 변화율
시간(분) 부형약 5ml/kg 10ml/kg 20ml/kg
평균(%) S.E.M. 평균(%) S.E.M. 평균(%) S.E.M. 평균(%) S.E.M.
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.65 3.85 0.16 3.80 -0.82 3.11 3.39 1.50
20 1.30 3.46 -5.64 3.99 0.48 2.75 -0.46 1.73
30 0.85 5.89 1.80 7.02 0.01 1.97 -0.02 2.62
60 2.97 3.55 -3.34 2.43 3.45 1.66 0.74 1.48
90 4.10 3.78 -6.68 4.61 5.25 2.74 1.99 2.28
120 2.66 3.24 1.86 2.84 4.46 2.43 2.96 1.85
240 2.97 5.11 0.31 3.11 2.64 2.67 6.11 1.67
360 3.53 2.68 -1.30 3.99 -2.34 4.08 1.08 2.52
베이스라인(mmHg) 294.9 6.53 294.9 15.73 275.8 14.29 269.8 13.84
12)호흡에 미치는 영향
동물은 하틀리(Hartley) 계통 기니아 피그(guinea pig, 340-350g)를 각 군당 5마리씩 사용하였다. 동물에 시험물질을 정맥투여한 후 호흡 측정용 사육상자에 방치하고 플레티스모미터(plethysmometer)에 연결하여 시험물질이 동물의 호흡률(respiration rate) 및 호흡체적(tidal volume)에 미치는 영향을 시험물질 투여후 0, 15, 30, 60, 120분에 측정하였다. 매체대조동물군과 비교하여 본 결과 호흡에 아무런 영향도 미치지 않았다. 그 결과를 다음 표 14와 표 15에 나타내었다.
약명 투약량(ml/kg) 호흡률(rate/분)
0분 15분 30분 60분 120분
부형약 20 105.2±5.9 117.0±16.9 102.3±16.6 103.9±8.9 98.8±9.4
SP-PEG-헤모글로빈 5 102.7±4.2 99.6±5.5 98.9±3.3 101.8±4.5 96.3±1.6
10 106.7±7.3 114.4±11.1 107.0±4.8 111.8±8.0 102.5±4.6
20 109.3±9.1 112.2±11.4 99.2±6.2 99.1±4.9 96.8±6.6
약명 투약량(ml/kg) 호흡체적(ml)
0분 15분 30분 60분 120분
부형약 20 2.9±0.2 2.5±0.2 2.9±0.4 2.8±0.4 2.9±0.2
SP-PEG-헤모글로빈 5 2.4±0.7 2.1±0.3 2.6±0.6 2.2±0.4 2.2±0.3
10 2.5±0.5 2.1±0.5 2.0±0.2 2.5±0.3 2.2±0.2
20 2.8±0.7 2.1±0.5 2.4±0.2 2.3±0.6 2.4±0.4
13)적출장기에 미치는 영향
적출회장 표본은 기니아 피그 후두부를 강타하여 기절시키고 경동맥을 절단하여 실혈시킨 후 소장을 노출하고 맹장과 소장 접합부에서 10-15cm되는 곳으로부터 30cm가량의 소장을 절단해 내어 차가운 포스페이트 버퍼액(pH7.4)에 담그고 주사기를 이용하여 장내부의 내용물을 씻어낸 후 에이치.피 르내그(H.P Rnag)의 방법에 따라 론지튜디날 머슬-미엔테릭 플렉서스 프레파라트(longitudinal muscle-myenteric plexus preparation)을 제조하였다. 적출회장을 2-2.5cm길이로 절단해 95% O2-5% CO2혼합가스로 포화시킨 크렙스-헨스라이트 바이카보네이트(Krebs-Henseleit bicarbonate) 용액이 담긴 장기조(organ bath)에 현수하고 등장(isotonic) 수축을 측정하였다. 적출표본을 안정화 시킨후 시험물질인 SP-PEG-헤모글로빈(10-7, 10-6, 10-5M)에 대한 직접적인 작용 및 시험물질의 5분간 전처치가 아세틸콜린(5×10-7M), 히스타민(2×10-6M) 및 염화바륨(2×10-3M)의 수축작용에 미치는 효과를 측정하였다. 이때 나타나는 수축력의 변화는 각 수축제의 약물투여전의 수축력에 대한 백분율로 나타내었다.
기니아 피그 적출회장의 론지튜디날 머슬-미엔테릭 플렉서스 프레파라트에 대해 시험물질인 SP-PEG-헤모글로빈은 어떠한 유의성있는 직접적인 수축, 이완작용을 나타내지 않았으며 시료를 5분간 전처치하였을 때 아세틸콜린, 히스타민, 염화바륨에 의해 유발된 수축에 대하여도 아무런 영향을 주지 않았다. 그 결과를 다음 표 16에 나타내었다.
약명 log[M] 수축 응답(Contractile Responses, %)
전치치없음 아세티콜린 히스타민 염화바륨
평균(S.E.M.) 평균(S.E.M.) 평균(S.E.M.) 평균(S.E.M.)
부형약 0 0.00(0.0) 146.5(6.1) 148.3(7.8) 124.8(6.0)
SP-PEG-헤모글로빈 5 0.00(0.0) 152.3(3.8) 138.6(10.1) 133.9(5.8)
10 0.00(0.0) 156.4(3.8) 129.1(7.7) 134.2(2.9)
20 0.00(0.0) 161.5(5.1) 132.9(7.7) 131.5(7.3)
N 8 8 8 8
14)장 수송에 미치는 작용
시험물질을 동물에 정맥투여하고 30분후에 5%의 활성 탄소를 10%의 아라비아검으로 현탁시킨 용액을 0.1ml 경구 투여하였다. 그 후 30분에 장관을 적출하여 유문부로부터 탄소의 이동거리 및 전체 소장길이를 측정하고 백분율을 계산하였다.
시험물질을 정맥투여한 후, 시험물질에 의한 탄소 수송능을 측정한 결과, 본 시험물질은 매체대조동물군과 비교하여 볼 때 아무런 영향도 주지 않았다.
15)위액분비에 미치는 영향
사료와 물은 자유섭취시켰으며, 시험개시 24시간 전에 절식시키고 물은 10시간 전에 절수시켰다. 절식된 동물은 에테르로 마취시킨 후 샤이(Shay) 등의 방법에 의하여 유문부를 결절하고 즉시 미정맥으로 시험물질을 투여한 다음 5시간 동안 방치시켜 위액을 채취하였다. 채취된 위액은 3000rpm 에서 10분간 원심분리 시킨 후 위액량, pH, 총산도를 측정하였을 때, 대조군과 비교하여 아무런 영향도 주지않았다. 그 결과를 다음 표 17에 나타내었다.
약명 투약량 루트 동물수 체적(ml) pH 총산도(μEq)
부형약 20ml/kg i.v. 5 11.9±1.9 1.44±0.24 108.6±111.7
SP-PEG-헤모글로빈 5ml/kg i.v. 5 10.7±0.7 1.10±0.07 893.1±87.8
10ml/kg i.v. 5 10.5±1.1 1.24±0.17 929.2±145.0
20ml/kg i.v. 5 12.5±1.1 1.12±0.04 1209.2±136.6
아트로핀 1mg/kg i.p. 5 5.8±1.2 1.20±0.00 587.9±149.2
16)소변량 및 전해질에 미치는 영향
하룻밤 절식시킨 동물의 몸무게의 2.5%에 해당하여 생리식염수를 1차 투여하고 2시간 후에 몸무게의 2.5%에 해당하는 양의 증류수를 경구투여하며 동시에 시험물질을 정맥투여하였다. 그 후 마이스(mice)용 신진대사 측정용 상자(metabolism cage)에 넣어 5시간까지의 소변을 모아 pH, 체적, K+, Na+, Cl-를 측정한 결과 본 시험물질은 매체대조 동물군과 비교하여 아무런 영향도 관찰되지 않았다. 그 결과를 다음 표 18에 나타내었다.
약명 투약량 루트 pH 소변량(ml) Na+(mmol/L) Cl-(mmol/L) K+(mmol/L)
부형약 20ml/kg i.v. 7.0±0.0 2.8±0.3 80.7±3.2 105.38.1 44.3±9.6
SP-PEG-헤모글로빈 5ml/kg i.v. 7.0±0.0 2.3±0.5 54.7±10.1 71.03.6 37.0±13.1
10ml/kg i.v. 7.0±0.0 2.7±0.3 64.7±28.1 84.032.2 28.0±2.6
20ml/kg i.v. 7.0±0.0 3.9±1.2 55.3±31.1 88.312.7 30.3±10.2
퓨로세미드(Furosemide) 1mg/kg i.p. 7.0±0.0 6.0±1.8 133.0±4.0 161.722.2 30.3±6.5
따라서 SP-PEG-헤모글로빈은 투여후에 일시적으로 체온증가를 유발시키는 작용외에는 중추신경계, 심장순환계, 자율신경계 및 기타 장기에 아무런 영향도 미치지 않는 물질로 판단되었다.
실시예 6. SP-PEG-헤모글로빈의 란겐도르프(Langendorff) 심장적출시험
체중 250-300g의 SD계통의 랫트를 소디움 펜토바비탈(sodium pentobarbital)(50mg/kg, i.p.)로 마취시킨 후 랫트에 헤파린(1000U/kg, i.v.)을 투여하고 그로버(Grover) 등의 방법에 따라 심장을 적출하였다. 즉, 기관에 캐뉼라(PE 240)을 삽입하여 로덴트 벤틸레이터(rodent ventilator)를 이용해 인공 호흡시키며 인 비보(in vivo) 상태에서 대동맥 캐뉼라를 통한 역행성 관류(생리액, modified Krebs-Henseleit bicarbonate buffer: mM : 112 염화나트륨, 5 염화칼륨, 1.2 황산마그네슘, 1 인산수소칼륨, 25 탄산수소나트륨, 1.25 염화칼슘, 11.5 글루코스, 2.0 피루베이트)하에 란겐도르프 용기에 재빨리 매달고 심장에 붙어있는 불필요한 조직을 제거하였다. 에탄올과 증류수 혼합액(1:1 vol/vol)으로 채운 고무풍선을 매달은 금속 캐뉼라를 폐정맥을 통해 좌심실에 삽입시키고 풍선에 전달되는 좌심실압을 등적(isovolumetric)조건으로 측정하기 위해 압력변환기에 연결하였다. 이디피(EDP, end diastolic pressure)는 10mmHg로 유지하고 고트리에브(Gottlieb) 밸브를 이용해 정압관류(75mmHg)를 하여 10-15분 이내 안정화시켜 LVDP가 70-120mmHg범위안에서 유지되는 심장만을 사용하였다. 심장을 란겐도르프 장치에 고정하는 순간부터 실험 전과정동안 생리액이 담긴 챔버에 심장이 충분히 잠기게 하여 온도가 37℃로 철저히 유지되도록 하였다. 본 실험에서는 심장기능을 평가하는 파라미터로서 수축기말 좌심실압(LVP, left ventricular peak systolic pressure), 이완기말 좌심실압(LVEDP, left ventricular end diastolic pressure), LVDP(left ventricular developing pressure), DP(double product)를 관상혈관 기능을 평가하는 파라미터로 관상혈류량(CF, coronary flow)과 그 밖에 심박동수(HR, heart rate) 등을 측정하였다. DP는 심장과는 달리 카디악 아웃풋을 측정할 수 없는 란게도르프 심장에서 간접적으로 심장의 기능을 알아보는 중요한 파라미터로서 와츠(Watts)의 방법에 따라 HR에 LVDP를 곱하여 계산하였다. 여기서 LVDP는 LVP에서 LVEDP를 감하여 산출하였다. 총 관상혈류량은 대동맥의(aortic) 캐뉼라 위에 고정된 코로나리 플로우 프로브(coronary flow probe, 직경 1.0mm)를 거쳐 플로우미터로 측정하였다.
커티스(Curtis)와 히어셔크(Hearserk)가 제안한 일정한 관류압이 유지된 란게도르프 실험기를 모델로하여 적출한 심장을 란게도르프 실험기에 걸고 적절한 압력(65mmHg, 80cm H20)으로 생리액(크렙스-한스라이트 용액)을 관류(perfusion) 시켜주면 심장의 대동맥 밸브는 닫히게 되고 좌우심실은 빈 상태가 유지된다. 한편 관류는 대동맥 좌우측의 관상동맥 심문(心門, ostium)을 통하여 심장의 관상동맥으로 흘러 들어가게 되며 다시 관상 시누스(coronary sinus) 및 관상정맥을 거쳐서 개방된 우심방을 통하여(폐동맥, vena cava) 흘러나와 떨어지게 된다.
따라서 심장은 그 자동성에 의해 정상적인 박동이 유지된다. 이 상태에서 좌심실압, 심박동수, 관상혈류량을 측정하였다. 펜토바비탈(pentobarbital) 30mg/kg으로 마취시킨 후 5000 USP-unit/kg의 헤파린을 투여하고 기도를 유지한 상태에서 가슴을 절개하여 심장을 재빨리 적출해 내었다. 적출해 낸 심장을 란게도르프 장치(Havard Apparatus)에 매달고 크렙스-헨스라이트 용액을 위를 향한 대동맥(ascending aorta)를 통하여 리트로그레이드(retrograde)로 관류시키면서 50% 에탄올을 가득 채운 고무풍선을 좌심실에 넣어 좌심실의 EDP를 10mmHg로 고정한 다음 약 30분 동안 안정화시켰다. SP-PEG-헤모글로빈을 10-7, 10-6, 10-5순으로 주입시켜 약물의 반응을 검색하였다. 리트로그레이드 관류는 80cmH20의 압력을 유지하며 KHB용액은 미리 95% O2-5% CO2로 포화시켜 사용하였다.
시험물질인 SP-PEG-헤모글로빈을 10-7, 10-6, 10-5M의 농도로 적출된 심장에 처치한 후 수축기말 좌심실압(LVP), 이완기말 좌심실압(LVEDP), LVDP, DP, 관상혈류량, 심박동수를 측정한 결과 본 시험물질은 심장기능 및 관상혈관 기능에 부정적 영향을 미치지 않았다.
상술한 바와 같이 본 발명의 신규한 SP-PEG-헤모글로빈은 산소운반체로서의 안정성과 효능을 가짐을 알 수 있어 의학적 용도로 사용될 수 있다.

Claims (4)

  1. 다음 화학식 1의 SP-PEG-헤모글로빈 결합체.
    [화학식 1]
  2. 제 1 항에 있어서, 상기 물질은 폴리에틸렌 글리콜 숙시니미딜 프로피오네이트와 헤모글로빈을 함께 반응시켜 얻은 것임을 특징으로 하는 SP-PEG-헤모글로빈 결합체.
  3. 제 2 항에 있어서, 상기 폴리에틸렌 글리콜 숙시니미딜 프로피오네이트는 폴리에틸렌 글리콜을 에틸 아크릴레이트와 N-하이드록시 숙시니미드와 함께 반응시켜 얻은 것임을 특징으로 하는 SP-PEG-헤모글로빈 결합체.
  4. 제 2 항에 있어서, 상기 폴리에틸렌 글리콜 숙시니미딜 숙시네이트는 분자량이 100-200,000Dalton인 것을 특징으로 하는 SP-PEG-헤모글로빈 결합체.
KR1019990010469A 1999-03-26 1999-03-26 폴리에틸렌글리콜-헤모글로빈 결합체 KR100316154B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990010469A KR100316154B1 (ko) 1999-03-26 1999-03-26 폴리에틸렌글리콜-헤모글로빈 결합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990010469A KR100316154B1 (ko) 1999-03-26 1999-03-26 폴리에틸렌글리콜-헤모글로빈 결합체

Publications (2)

Publication Number Publication Date
KR20000061432A true KR20000061432A (ko) 2000-10-16
KR100316154B1 KR100316154B1 (ko) 2001-12-12

Family

ID=19577843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010469A KR100316154B1 (ko) 1999-03-26 1999-03-26 폴리에틸렌글리콜-헤모글로빈 결합체

Country Status (1)

Country Link
KR (1) KR100316154B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042563A3 (en) * 2003-10-22 2005-08-25 Akzo Nobel Nv Process for incrasing protein pegylation reaction yields by diafiltration ultrafiltration
US10821158B2 (en) 2013-03-15 2020-11-03 William Schindler Polyalkylene oxide valerate hemoglobin conjugates
WO2021261712A1 (en) * 2020-06-26 2021-12-30 Sunbio, Inc. Hemoglobin derivative co-conjugated with fatty acid-linked peg and alkoxy peg as a blood substitute

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550206B1 (ko) * 2002-03-18 2006-02-08 한국과학기술원 상피세포성장인자와 폴리에틸렌글리콜의 접합체 및 이의제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023084B2 (ja) * 1979-07-11 1985-06-05 味の素株式会社 代用血液
JPS6153223A (ja) * 1984-08-22 1986-03-17 Ajinomoto Co Inc ヘモグロビン−ポリアルキレングリコ−ル結合体の製造方法
US5234903A (en) * 1989-11-22 1993-08-10 Enzon, Inc. Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute
US5414135A (en) * 1991-12-30 1995-05-09 Sterling Winthrop Inc. Vinyl sulfone coupling of polyoxyalkylenes to proteins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042563A3 (en) * 2003-10-22 2005-08-25 Akzo Nobel Nv Process for incrasing protein pegylation reaction yields by diafiltration ultrafiltration
US10821158B2 (en) 2013-03-15 2020-11-03 William Schindler Polyalkylene oxide valerate hemoglobin conjugates
WO2021261712A1 (en) * 2020-06-26 2021-12-30 Sunbio, Inc. Hemoglobin derivative co-conjugated with fatty acid-linked peg and alkoxy peg as a blood substitute
US20210401949A1 (en) * 2020-06-26 2021-12-30 Sunbio, Inc. Hemoglobin Derivative Co-conjugated with Fatty Acid-linked PEG and Alkoxy PEG as a Blood Substitute

Also Published As

Publication number Publication date
KR100316154B1 (ko) 2001-12-12

Similar Documents

Publication Publication Date Title
Raventos The action of Fluothane—a new volatile anaesthetic
US7888332B2 (en) Hydrazide-containing CFTR inhibitor compounds and uses thereof
Frankel et al. Glutamine enhancement of structure and function in transplanted small intestine in the rat
JPS6263514A (ja) 組織に酸素を与えるための装置
US5082831A (en) Total body washout solution and method of use
US20100204332A1 (en) Method for treating a disease or condition responsive to opening of c1c-2 channel
WO1998019996A1 (en) Nitric oxide donor compounds and pharmaceutical compositions for pulmonary hypertension and other indications
JP2003535132A (ja) うっ血性心不全治療用プロスタグランジン化合物
CA1246449A (en) Drug kit or drug composition for ischaemic damage
Letts et al. Effects of intra-coronary administration of leukotriene D4 in the anaesthetized dog
KR20000061432A (ko) Sp-peg-헤모글로빈 결합체
CN105283181A (zh) 多官能氮氧衍生物的前药及其用途
US7442383B2 (en) Use of xenon for the control of neurological deficits associated with cardiopulmonary bypass
WO2001015525A1 (fr) Conservateurs pour organes
Oldhafer et al. Liver transplantation in pigs: a model for studying reperfusion injury
Gristwood et al. Pharmacological studies with SK&F 94120, a novel positive inotropic agent with vasodilator activity
WO2002011741A1 (en) Cardioplegic solution
Herrtage et al. Surgical correction of the tetralogy of Fallot in a dog
CN104840479A (zh) Nadph在制备治疗心脏疾病药物中的应用
RU2815501C1 (ru) Раствор для предтрансплантационной подготовки донорских легких
KANEKO et al. A simple, working heart and lung transplant model for assessing preservation methods in the rabbit
US20230321196A1 (en) Medicine for Preventing or Treating Symptom or Disorder in Subject Affected by Viral Infection
KR20110094321A (ko) 수식형 수퍼옥사이드 디스뮤타아제 함유 흡입제
Lohse et al. Dissolution, solubility and protein composition OP human pancreatic stones
Cooper Haemodynamic studies during short-term preservation of the autoperfusing heart-lung preparation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141117

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171116

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 18

EXPY Expiration of term