KR20000044037A - Method and apparatus for reducing noise in electronic film development - Google Patents

Method and apparatus for reducing noise in electronic film development Download PDF

Info

Publication number
KR20000044037A
KR20000044037A KR1019990702001A KR19997002001A KR20000044037A KR 20000044037 A KR20000044037 A KR 20000044037A KR 1019990702001 A KR1019990702001 A KR 1019990702001A KR 19997002001 A KR19997002001 A KR 19997002001A KR 20000044037 A KR20000044037 A KR 20000044037A
Authority
KR
South Korea
Prior art keywords
substrate
scan
development
solution
emulsion
Prior art date
Application number
KR1019990702001A
Other languages
Korean (ko)
Other versions
KR100317824B1 (en
Inventor
에드가 발버트디
Original Assignee
마크 어달
어플라이드 사이언스 픽션, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마크 어달, 어플라이드 사이언스 픽션, 인코포레이티드 filed Critical 마크 어달
Publication of KR20000044037A publication Critical patent/KR20000044037A/en
Application granted granted Critical
Publication of KR100317824B1 publication Critical patent/KR100317824B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/38Circuits or arrangements for blanking or otherwise eliminating unwanted parts of pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00249Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a photographic apparatus, e.g. a photographic printer or a projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/0402Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
    • H04N2201/0404Scanning transparent media, e.g. photographic film
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/0402Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
    • H04N2201/0416Performing a pre-scan

Abstract

PURPOSE: A method and an apparatus for electronic film development is provided to reduce noise substantially getting a developing or undeveloping image and to reduce a coherency speckle substantially in a developing image. CONSTITUTION: In electronic film development, a film is scanned multiple times by light during development. In a scan image, a coherency speckle noise getting worse for rear reflection image and contaminating a front reflection and transmitted image is caused. Any attempt to remove speckle effect by differencing an image made with the pre-expanded emulsion(308) from the expanded emulsion(320) can make the speckle effect worse by overlaying two different speckle pattern. A method and apparatus for electronic film development reduces the amount of coherency speckle detected by electronic film development by scanning substrate bearing a latent image and differencing that scan from the resultant post-development scan after the emulsion has expanded to its final thickness but before development has begun.

Description

전자필름 현상에서 노이즈를 감소시키기 위한 방법 및 장치{METHOD AND APPARATUS FOR REDUCING NOISE IN ELECTRONIC FILM DEVELOPMENT}METHOD AND APPARATUS FOR REDUCING NOISE IN ELECTRONIC FILM DEVELOPMENT}

디지털 현상으로서 공지된 전자필름 현상은, 본 발명자에게 부여된 미국 특허 제5,519,510호에 개시된 바에 따라, 현상공정 동안 칼라필름을 디지털화하는 방법이다. 아날로그 화상의 디지털 데이터로의 변환이나 스캐닝은 화상의 사본을 저장, 조작, 전송, 디스플레이, 복사하는 것을 포함하는 다양한 사용을 위해 광범위하게 사용되고 있다.Electronic film development, known as digital development, is a method of digitizing color films during the development process, as disclosed in US Pat. No. 5,519,510 to the inventors. Conversion or scanning of analog images into digital data is widely used for a variety of uses, including storing, manipulating, transmitting, displaying, and copying copies of images.

사진화상을 디지털 화상으로 변환시키기 위해, 필름 화상프레임이 필름 스캐닝 스테이션을 거쳐 전송되어, 전형적으로 광적분 공동 또는 적분기에 의해 발생되는 균일한 확산 조명의 선형광선으로 각 스캔라인을 따라 조명된다. 화상프레임의 조명된 스캔라인을 거쳐 전송된 광은 렌즈 시스템에 의해 CCD 배치 화상 감지기상에 집중되는 바, 각 화상 픽셀을 위한 3원색 광 강도신호를 발생한다. 그 다음, 이러한 광 강도신호는 디지털화되어 저장된다. 오늘날, 필름의 전자현상을 가능하게 하는 필름 스캐너는 다양한 형태를 갖추고 있으며, 특히 디지털화기에 기초한 선형조명 및 선형 CCD배치를 디지털화하는 필름 화상프레임의 공통 측면은 미국 특허 제5,155,596호에 보다 상세히 기재되어 있다.To convert the photographic image into a digital image, a film image frame is sent through a film scanning station and is illuminated along each scanline with linear light of uniform diffuse illumination typically generated by a light integrating cavity or integrator. The light transmitted through the illuminated scanline of the image frame is concentrated by the lens system onto the CCD batch image sensor, generating a three primary color light intensity signal for each image pixel. This light intensity signal is then digitized and stored. Today, film scanners that enable electronic phenomena of film come in a variety of forms, and in particular the common aspects of film image frames that digitize linear illumination and linear CCD placement based on digitizers are described in more detail in US Pat. No. 5,155,596. have.

전자필름 현상에 있어서, 현상필름은 자외선을 사용하는 소정 시간주기에서 흐리게 되지 않도록 스캔되어, 소정의 안티헬레이션층을 통한 광의 침투가 증가된다. 몇몇 입사광은 유백색의 현상되지 않은, 할로겐화은을 함유한 필름상에서 에멀션으로부터 반사된다. 현상되지 않은 할로겐 에멀션은 한정된 깊이를 갖는바, 이 한정된 깊이에 걸쳐 광원으로부터의 광자가 산란되고, 반사된다. 오늘날, 일반적으로 전자필름 현상에서 사용되는 이 깊이는 적외선 광의 간섭성 길이의 범위 내이다. 간섭성 반점에 기인하여, 스캔된 화상내에서 노이즈를 일으키는 것은 이러한 한정된 반사깊이이다. 스캔된 화상내의 노이즈는 그레인(grain) 모양으로 왜곡된 화상을 포착하게 된다.In electronic film development, the developing film is scanned so as not to be blurred in a predetermined time period using ultraviolet rays, so that penetration of light through the predetermined anti-helization layer is increased. Some incident light is reflected from the emulsion on a milky white undeveloped silver halide containing film. Undeveloped halogen emulsions have a finite depth, over which photons from a light source are scattered and reflected. Today, this depth, commonly used in electronic film development, is in the range of the coherent length of infrared light. Due to the coherent spots, it is this limited reflection depth that causes noise in the scanned image. Noise in the scanned image captures images that are distorted into grain shapes.

적외선 광의 보다 긴 파장 때문에, 파장 및 고정 대역폭을 위한 나누워지는 단편 대역폭 모두가 가시광선에서 일반적으로 측정되는 것 보다 긴 간섭성 길이에 기여한다. 부가적으로, 유백색 활로겐화은 층의 폭은 전자필름 현상에서 매우 얇은 바, 간섭성의 반점을 발생시키는데 필요로 되는 간섭성 길이를 감소시킨다.Because of the longer wavelength of infrared light, both the wavelength and the divided fractional bandwidth for a fixed bandwidth contribute to a longer coherence length than is usually measured in visible light. In addition, the width of the milky silver halide layer is very thin in electronic film development, reducing the coherence length needed to produce coherent spots.

더욱이, 필름의 후방면을 통해 보여진 화상이 희미하므로, 희미한 화상이 증폭됨에 따라 소정의 간섭성 반점이 증폭되어, 화상이 왜곡되게 된다. 광이 필름의 상부나 바닥으로부터 반사되거나, 필름을 통해 전달되는지의 여부에 관계 없이, 이러한 문제는 필름의 스캔에 있어서 명백하다. 그러나, 안티헬레이션층에 의해 반사된 증가된 광에 기인하여, 후반사 스캔에서 이것은 현저하게 된다. 이러한 중대한 문제점에 대해 언급된 종래 기술의 방법은 없었다. 일반적으로 필름처리 동안, 필름 기판에 걸친 건조 에멀션층은 수조에 넣어지는 바, 이것은 에멀션의 확장을 야기시킨다. 전자필름 처리동안, 에멀션을 침투하는 광자는 에멀션 내에 매달린 입자를 때리고, 재출현되어 광센서에 의해 등록된다. 에멀션이 확장됨에 따라, 입자를 반사하는 광자 사이의 거리가 비례하여 변화된다. 광자의 배출통로 사이의 결과적인 거리차이가 1/4파장이면, 반점은 흑색에서 백색으로 또는 백색에서 흑색으로 변화될 수 있다. 따라서, 에멀션이 제1확장위치에 있는 동안 화상을 구별함으로써 반점 효과를 제거하려는 소정의 시도가 행해지고, 연속되는 제2확장위치가 2개의 다른 반점 패턴을 겹침으로써 반점 효과를 실질적으로 저하시킬 수 있다. 이러한 원인에 의해서, 전자필름 현상을 실시하는데 있어서 간섭성 반점은 중요한 문제가 되고 있다.Moreover, since the image seen through the rear surface of the film is faint, as the faint image is amplified, certain coherent spots are amplified and the image is distorted. Regardless of whether light is reflected from the top or bottom of the film or transmitted through the film, this problem is evident in the scan of the film. However, due to the increased light reflected by the antihelal layer, this becomes significant in the back reflection scan. There is no prior art method mentioned for this significant problem. Generally during film processing, the dry emulsion layer across the film substrate is placed in a water bath, which causes the emulsion to expand. During electronic film processing, photons penetrating the emulsion hit particles suspended in the emulsion, re-emerge and are registered by the light sensor. As the emulsion expands, the distance between photons reflecting the particles changes proportionally. If the resulting distance difference between the photon emission paths is a quarter wavelength, the spots can change from black to white or from white to black. Therefore, a predetermined attempt is made to remove the spot effect by distinguishing the image while the emulsion is in the first extension position, and the successive second extension position can substantially reduce the spot effect by overlapping two different spot patterns. . For these reasons, coherent spots have become an important problem in carrying out the electronic film development.

인간의 눈에 간섭성 반점을 보이기 위해서는, 광이 진행하는 통로길이는 광원의 간섭성 길이 만이 될 수 있다. 간섭성 길이를 넘어서는, 반점은 광속으로 반짝거리고, 관찰자에게는 연속적인 것이로 보여지게 된다. 간섭성 광원인 레이저광의 그레인 모양이거나 반점이 있는 특정한 외관은 간섭성의 결과인 간섭효과에 기인한다. 레이저광 하에서, 방안의 모든 것은 반점이 있게되고, 광이나 대상 또는 관찰자가 움직임에 따라 이 반점은 반짝거리게 보인다.In order to show coherent spots in the human eye, the path length through which light travels may be only the coherent length of the light source. Beyond the coherence length, the spots flash at the speed of light and appear to the observer as continuous. The grainy or speckled appearance of laser light as a coherent light source is due to the interference effect that is the result of coherence. Under laser light, everything in the room becomes spotty, and the spots look shiny as the light, object or observer moves.

보통의 광하에서도, 매우 짧은 통로차이 및 매우 좁은 광각도를 포함할 때, 예컨대 태양광 방향으로 백지를 볼때, 때때로 반점이 보여진다. 비간섭성광을 위해서는, 간섭성 길이는 퍼센트 대역폭에 의해 나누워진 파장에 속한다. 통상, 이것은 광의 소수 파장이 되기 때문에, 간섭성 반짝임은 비간섭성광이 일반적인 실제 세상에서는 일반적으로 보이지 않는다.Even under normal light conditions, spots are sometimes seen when they include very short passage differences and very narrow wide angles, such as when viewing white paper in the solar direction. For incoherent light, the coherent length belongs to the wavelength divided by the percent bandwidth. Typically, since this is a fractional wavelength of light, coherent glitter is generally not seen in the real world where non-coherent light is common.

따라서, 본 발명의 목적은 현상되거나 비현상된 화상를 포착하는 데 있어서, 노이즈를 현저하게 감소시키는 전자필름 현상의 방법을 제공하는 것이다.It is therefore an object of the present invention to provide a method of electronic film development that significantly reduces noise in capturing developed or undeveloped images.

본 발명의 다른 목적은 현상된 화상에서 간섭성의 반점을 현저하게 감소시키거나 완전히 제거하는 전자필름 현상의 방법을 제공하는 것이다.Another object of the present invention is to provide a method of electronic film development which significantly reduces or completely eliminates spots of coherence in a developed image.

본 발명의 또 다른 목적은 에멀션 확장에 의해 바뀌는 전자필름 현상동안, 간섭성 반점에 의해 야기되는 노이즈를 제거하는 것이다.It is another object of the present invention to remove noise caused by coherent spots during electronic film development, which is altered by emulsion expansion.

본 발명은 필름의 전자현상에 관한 것으로, 특히 전자필름 현상에서 노이즈를 감소시키기 위한 방법 및 장치에 관한 것이다.The present invention relates to electron phenomena of films, and more particularly to methods and apparatus for reducing noise in electronic film development.

도 1은 본 발명의 방법이 적용될 수 있는 광에 노출된 필름층 구조의 단면도,1 is a cross-sectional view of a film layer structure exposed to light to which the method of the present invention can be applied;

도 2는 필름층 구조에서 간섭성 반점을 도시한 단면도,2 is a cross-sectional view showing coherent spots in the film layer structure,

도 3a는 에멀션 확장 전에 전자필름 현상이 진행되는 필름층의 단면도,3A is a cross-sectional view of a film layer in which an electronic film development is performed before emulsion expansion;

도 3b는 에멀션 확장 후에 전자필름 현상이 진행되는 필름층의 단면도,3B is a cross-sectional view of the film layer in which the electronic film development proceeds after the emulsion expansion;

도 4는 중성 및 알칼리용액의 적용에 있어서, 시간과 에멀션 확장의 관계를 나타낸 그래프,Figure 4 is a graph showing the relationship between time and emulsion expansion in the application of neutral and alkaline solutions,

도 5는 현상 및 에멀션 현상의 적용과 시간의 관계를 나타낸 그래프이다.5 is a graph showing the relationship between the development and the application of the emulsion phenomenon and time.

본 발명에 따르면, 상기 및 다른 목적과 장점은 간섭성 반점 및 다른 단점이 감소되어 상업적인 가시화상이 되게하는 전자필름 현상방법 및 장치에 의해 달성된다. 잠재화상을 내재하는 기판의 전자필름 현상에서 노이즈를 감소시키기 위한 방법 및 장치는, 기판을 소정 정도로 확장시키기 위해 기판에 제1용액을 적용하고, 이 기판이 상기 소정 정도로 확장되도록 허용하며, 제1스캔을 발생하도록 상기 확장된 기판을 스캔하며, 상기 기판의 현상을 유도하고, 제2스캔을 발생하기 위해 현상 후에 상기 기판을 스캔하며, 상기 제1스캔 및 제2스캔 정보로부터 감소된 노이즈로 화상을 발생시키는 것을 포함한다.According to the present invention, the above and other objects and advantages are achieved by an electronic film developing method and apparatus, in which coherent spots and other disadvantages are reduced to become commercially visible images. A method and apparatus for reducing noise in an electronic film phenomenon of a substrate incorporating a latent image includes applying a first solution to the substrate to extend the substrate to a predetermined degree, allowing the substrate to expand to the predetermined degree, and Scan the extended substrate to generate a scan, induce development of the substrate, scan the substrate after development to generate a second scan, and image with reduced noise from the first scan and second scan information It includes generating.

이하, 본 발명을 첨부된 예시도면을 참조로 상세히 기술한다. 도면에 있어서, 본 발명은 적어도 3개의 다른 층을 갖는 통상의 칼라필름과 관련되어 나타내 진다. 도 1은 적색과 녹색 및 청색 각각에 민감한 필름(101)의 3개의 층 각각이 광에 노출될 때, 어떻게 보여지는 지를 나타낸 도면이다. 현상동안, 현상되는 필름이 상부로부터 보여질때, 상부층은 확실히 보여지는 반면, 하부층은 상부층의 불투명도에 의해 대체로 보이지 않게된다. 현상동안 후방면으로부터 보여질때, 흑색층이 보여지는 반면, 다른 층은 대부분 보여지지 않는다. 끝으로, 필름을 거쳐 전송된 광에 의해 보여질 때는, 3개의 층 모두를 침투하는 광의 부분은 3층 모두에 의해 변조되므로, 모든 3개의 층의 시계를 포함한다. 특히, 필름(101) 전방(102)의 광원(100)이 필름(101)의 다양한 층을 거쳐 광(104)을 전송시킴에 따라, 필름(101)의 전방(102)으로부터의 관찰자(105)는, 우선 필름(101)의 후방(113)으로부터 궁극적으로 관찰자(112)에 의해 보여지는 모든 층을 거쳐 전송되는 임의의 광(110)을 갖는, 청색 감응층(108)으로부터 반사된 광(106)을 보게된다. 필름(101) 후방(113)에서의 광원(114)이 층을 거쳐 광(115)을 전송할 때, 관찰자(116)는 적색감응층(120)으로부터 반사된 광(118)을 우선 보게된다. 또한, 관찰자(116)는 간섭성 반점을 포함하는 안티헬레이션층(124)으로부터의 반사(122)를 감지한다. 이 간섭성 반점이 본 발명이 감소시키는 화상 관련 노이즈가 된다. 부가광선(122)이 안티헬레이션층(124)에 의해 반사되기 때문에, 간섭성 반점은 후방 반사 화상에 대해 나쁜 영향을 주고, 간섭성 반점은 또한 전방 반사 및 전송된 화상을 오염시킨다. 따라서, 간섭성 반점의 소멸이 관찰자(105와 112 및 116)에 의해 보여진 3개의 화상 모두를 향상시키게 된다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the invention is shown in connection with a conventional color film having at least three different layers. FIG. 1 shows how each of the three layers of film 101 sensitive to each of red, green and blue are seen when exposed to light. During development, when the film to be developed is seen from the top, the top layer is clearly seen while the bottom layer is largely invisible by the opacity of the top layer. When viewed from the back side during development, the black layer is seen, while the other layers are mostly invisible. Finally, when viewed by the light transmitted through the film, the portion of light that penetrates all three layers is modulated by all three layers, thus including all three layers of field of view. In particular, as light source 100 in front of film 101 transmits light 104 through various layers of film 101, observer 105 from front 102 of film 101. Is first reflected light 106 from blue sensitive layer 108, with any light 110 transmitted from rear 113 of film 101 and ultimately through all layers seen by observer 112. ). When the light source 114 behind the film 101 113 transmits the light 115 through the layer, the observer 116 first sees the light 118 reflected from the red sensitive layer 120. The observer 116 also senses the reflection 122 from the anti-helization layer 124 that includes coherent spots. This coherent spot becomes image-related noise that the present invention reduces. Since the additional light 122 is reflected by the anti-helization layer 124, coherent spots have a bad effect on the back reflected image, and the coherent spots also contaminate the front reflected and transmitted image. Thus, the disappearance of coherent spots enhances all three images seen by observers 105, 112, and 116.

도 2는 본 발명의 배경에 있어서, 보다 상세히 간섭성 반점 현상을 도시한다. 전형적인 광원(202)이 2개의 광자를 통로(204,206)를 따라 방사한다. 이러한 광자는 기판(210)상에 증착된 활로겐화은과 같은 에멀션인 유백색 확산기(208)내로 침투된다. 불투명도의 정도에 따라, 광자는 입자와 부딪혀 반사되기 전까지 확산기(208) 내의 임의의 거리를 침투하게 된다. 통로(204)를 따라 진행하는 광의 광자는 입자(212)를 때리고, 통로(214)를 따라 재출현된다. 통로(206)를 따른 광자는 입자(216)을 때리고 통로(218)을 따라 재출현된다. 도시된 경우에 있어서, 통로(214와 218)는 관찰자(220)에 다시 모이게 된다.Figure 2 illustrates the coherent spot phenomenon in more detail in the background of the present invention. Typical light source 202 emits two photons along passages 204 and 206. These photons penetrate into the milky diffuser 208, an emulsion such as silver halide deposited on the substrate 210. Depending on the degree of opacity, the photons will penetrate any distance within diffuser 208 until they hit the particle and reflect. Photons of light traveling along passage 204 hit particles 212 and re-emerge along passage 214. Photons along passage 206 hit particles 216 and re-emerge along passage 218. In the case shown, the passages 214 and 218 reassemble at the observer 220.

광원(202)이 레이저와 같은 간섭성 광의 원천일 때, 통로(204, 206)를 따라 방사된 광자는 광의 파면을 따라 상호 동조되도록 간섭된다. 관찰자(220)에 의해 감지될 때, 2개의 입자(212, 216)가 1점에서 겹쳐지는 것으로 보이도록 간주되면, 2개의 광자는 다른 각도로부터 출현하는 파도와 같이 관찰자 위치(220)에서 상호 간섭될 수 있다. 특히, 2개의 횡단통로(204-214와, 206-218)의 전체 길이가 광원(202)에 의해 방사된 간섭광의 파장의 정수배에 의해 상호 구별되면, 광자는 건설적으로 관찰자 위치(220)에서 간섭된다. 따라서, 전기장 벡터가 2배의 전기장 및 4배의 전력을 발생시키도록 더해진다. 한편, 통로길이가 광원파장의 반 정수배에 의해 구별되면, 2개의 광자는 파괴적으로 간섭되는 바, 전기장 벡터가 상쇄되고 관찰자(220)에서 광이 발생되지 않는 것을 의미한다. 광원 파장에 비해 큰 필름 표면영역에 걸친 이러한 현상의 효과는 2개의 간섭성의 광자가 단일 광자의 2배의 평균전력을 평균적으로 발생되는 것이다. 그러나, 화상입자(212, 216)에 대응하는 관찰자(220)에 의해 감지된 점은, 반사된 광에서의 간섭의 정도에 의존하여 매우 밝거나 완전히 검게 나타내질 수 있다. 이러한 효과는 간섭성의 반점으로 알려져 있고, 이러한 간섭성의 반점은 전자필름 현상의 현재 방법에서 노이즈를 나타나게 한다.When light source 202 is a source of coherent light, such as a laser, photons emitted along passages 204 and 206 interfere with each other to be synchronized with each other along the wavefront of the light. When perceived by the observer 220, if the two particles 212, 216 are considered to appear to overlap at one point, the two photons interfere with each other at the observer location 220 as waves appearing from different angles. Can be. In particular, if the total lengths of the two transverse passages 204-214 and 206-218 are distinguished from each other by an integer multiple of the wavelength of the interfering light emitted by the light source 202, the photons constructively interfere at the observer position 220. do. Thus, the electric field vector is added to generate twice the electric field and four times the power. On the other hand, if the path length is distinguished by the half-integer multiple of the light source wavelength, the two photons are destructively interfered, meaning that the electric field vector is canceled and no light is generated in the observer 220. The effect of this phenomenon over a large film surface area relative to the light source wavelength is that two coherent photons generate an average of twice the average power of a single photon. However, the point detected by the observer 220 corresponding to the image particles 212, 216 may be very bright or completely black depending on the degree of interference in the reflected light. This effect is known as a coherent spot, which causes noise to appear in current methods of electronic film development.

이제, 전자필름 현상에 특히 관련된 반점 문제의 기술을 위해 도 3a 및 도 3b를 참조한다. 일반적인 필름처리동안, 필름(300)상의 건조 에멀션층(308)이 에멀션(308)을 확장시키는 수조에 넣어진다. 도 3a에 언급된 바와 같이, 광원(302)은 2개의 광자를 통로(304,306)를 따라 방사한다. 이 광자는 건조 에멀션(308) 내로 침투된다. 통로(304)를 따라 진행하는 광자가 에멀션(308)내에 위치된 입자(312)를 때리고, 통로(314)를 따라 재출현하는 것이 보여진다. 비슷하게, 통로(306)를 따른 광자가 에멀션(308) 내에서 입자(316)를 때리고, 통로(318)을 따라 재출현된다. 도시된 경우에 있어서, 통로(314, 318)는 관측자(321)에 다시 모여진다. 도 3b는 수조에 들어간 후, 확장된 에멀션(320)을 나타낸다. 도 3a에서와 같이, 광원(302)이 2개의 광자를 통로(305,307)을 따라 방사한다. 광자는 확장된 에멀션(320)을 침투한다. 통로(305)를 따른 광자가 입자(312)를 때리고 통로(322)를 따라 재출현되며, 통로(307)을 따른 광자가 입자(316)을 때리고 통로(324)를 따라 재출현하는 것이 보여진다. 통로(322,324)는 관찰자(321)상에 다시 모인다. 또한, 에멀션(320)의 확장 때문에, 입자(321,316)를 반사하는 광자 사이의 거리가 에멀션(320)의 확장에 비례하여 확장된다. 이것은 에멀션(308) 내에서의 제1프로톤(proton)의 전체 통로(304-314)와 제2프로톤에 의해 진행된 전체 통로(306-318) 사이의 통로길이의 차이를 확장된 에멀션(320)내에서의 통로(305-322, 307-324) 사이의 보다 큰 차이로 증가시키는 원인이 된다. 입자(312,316) 사이의 거리 차이가 1/4파장이면(전형적으로, 적외선 광을 사용하는 응용에서 1/4000mm 보다 작다), 반점은 흑색으로부터 백색으로 또는 백색으로부터 흑색으로 완전히 변화될 수 있다. 따라서, 확장된 에멀션(320)으로 제조된 화상으로부터 확장되지 않은 에멀션(308)으로 제조된 화상을 구별함으로써 반점 효과를 제거하려는 소정의 시도가, 실질적으로 2개의 다른 반점 패턴을 겹침에 의해 반점 효과를 저하시킬 수 있다.Reference is now made to FIGS. 3A and 3B for description of spot problems particularly relevant to electronic film development. During normal film processing, a dry emulsion layer 308 on the film 300 is placed in a bath to expand the emulsion 308. As mentioned in FIG. 3A, the light source 302 emits two photons along the passages 304, 306. This photon penetrates into the dry emulsion 308. Photons traveling along passage 304 hit the particles 312 located in emulsion 308 and reappear along passage 314. Similarly, photons along passage 306 hit particles 316 in emulsion 308 and reemerge along passage 318. In the case shown, the passages 314 and 318 gather again at the observer 321. 3B shows the expanded emulsion 320 after entering the bath. As in FIG. 3A, light source 302 emits two photons along passages 305 and 307. Photons penetrate the expanded emulsion 320. Photons along passage 305 hit particles 312 and re-emerge along passage 322, and photons along passage 307 hit particles 316 and re-emerge along passage 324. . Passages 322 and 324 gather again on observer 321. In addition, because of the expansion of the emulsion 320, the distance between photons reflecting the particles 321, 316 expands in proportion to the expansion of the emulsion 320. This results in a difference in passage length between the entire passage 304-314 of the first proton and the entire passage 306-318 carried by the second proton in the emulsion 308 in the expanded emulsion 320. This causes a larger difference between the passages 305-322 and 307-324 in Es. If the difference in distance between the particles 312 and 316 is 1/4 wavelength (typically less than 1/4000 mm in applications using infrared light), the spots may change completely from black to white or from white to black. Thus, any attempt to remove the spot effect by distinguishing an image made with an unexpanded emulsion 308 from an image made with an extended emulsion 320 may result in a spot effect by substantially overlapping two different spot patterns. Can be lowered.

에멀션이 그 최종 두께로 확장된 후이나 그 현상이 시작되기 전에, 잠재화상이 내재된 기판을 스캐닝하고, 그 스캔을 결과적인 포스트 현상 스캔으로부터 구별함으로써, 본 발명은 전자필름 현상에 의해 감지된 간섭성 반점의 양을 감소시킨다.After the emulsion extends to its final thickness or before its development begins, by scanning the substrate in which the latent image is embedded and distinguishing the scan from the resulting post development scan, the present invention provides for interference detected by an electronic film phenomenon. Reduce the amount of sex spots;

우선, 에멀션의 완전한 확장을 시작하기 위해 용액이 에멀션에 적용된다. 도 4는 반점효과에 기여할 수 있는 에멀션의 두께와, 에멀션 및 에멀션 두께에 대한 비알칼리성의 pH용액(예컨대, 7.0 pH 또는 그 이하인 중성용액, 예컨대 물)과 알칼리성 pH용액(pH가 7.0이상) 모두의 적용 사이의 관계를 나타낸다. 시간(402)에서 중성 pH용액의 적용에 의존하여, 통과시간 주기(403)가 시작된다. 통과시간은, 필름의 후방에 의해 보여질 때, 후방에 도달하기에 앞서 수성용액이 에멀션의 전방층에 의해 흡수되는 시간을 나타낸다. 액체가 필름의 후방에 도달하면, 시간(407)에서 필름 확장이 시작된다. 시간(408)에서 최종 두께(405)에 도달할 때까지 에멀션은 계속 확장된다. 시간(408)에서, 에멀션은 포화되고 더 이상 확장되지 않는다.First, a solution is applied to the emulsion to begin the full expansion of the emulsion. 4 shows both the thickness of the emulsion, which may contribute to the spot effect, and both non-alkaline pH solutions (e.g., neutral solutions such as 7.0 pH or less, such as water) and alkaline pH solutions (pH greater than 7.0) for the emulsion and emulsion thickness. The relationship between the application of Depending on the application of the neutral pH solution at time 402, a transit time period 403 begins. The transit time, when viewed by the rear of the film, represents the time that the aqueous solution is absorbed by the front layer of the emulsion before reaching the rear. Once the liquid reaches the back of the film, film expansion begins at time 407. At time 408 the emulsion continues to expand until the final thickness 405 is reached. At time 408, the emulsion is saturated and no longer expands.

그래프에 도시된 바와 같이, 에멀션 두께는 적용된 에멀션-확장 용액의 pH에 의존하여 변화된다. 시간(402)에서 알칼리성 pH용액의 적용에 의존하여, 에멀션의 확장이 시작되어 시간(408)에서 그 최종두께(406)에 도달하도록 된다. 본 발명에 의하면, 현상이 시작되기 전이나 에멀션의 최종두께가 도달될 때의 시간(408) 후에, 간섭성 반점을 최소화하거나 소멸시키기 위해 기판의 프리스캔이 최적화된다.As shown in the graph, the emulsion thickness varies depending on the pH of the emulsion-expansion solution applied. Depending on the application of the alkaline pH solution at time 402, the expansion of the emulsion begins to reach its final thickness 406 at time 408. According to the present invention, the prescan of the substrate is optimized to minimize or eliminate coherent spots before the development begins or after time 408 when the final thickness of the emulsion is reached.

에멀션을 확장시키기 위한 하나의 적정한 용액은 현상제를 포함하지 않는 현상액이다. 스테이플(staple) 타입의 현상액은 뉴욕 로체스터의 이스트만 코닥사에 의해 제조되는 HC-110을 포함하는 바, 1:7 비율로 희석된다. 한편, 에멀션 확장용액은 용액의 pH를 알칼리성으로 높임으로써 현상제를 작용시키는 활성제일 수 있다. 수성 운반체에서 용해된 전형적인 알칼리 활성제는 황산나트륨 및 탄산나트륨을 포함하지만, 이에 한정되지는 않는다.One suitable solution for expanding the emulsion is a developer that does not contain a developer. The staple type developer contains HC-110, manufactured by Eastman Kodak, Rochester, NY, and is diluted 1: 7. On the other hand, the emulsion expansion solution may be an activator to act as a developer by raising the pH of the solution to alkaline. Typical alkali activators dissolved in aqueous carriers include, but are not limited to, sodium sulfate and sodium carbonate.

본 발명의 다른 실시예에 있어서, 현상제를 포함하는 현상액은 필름 에멀션에 적용된다. 현상제는 잠재화상 중심을 포함하는 활로겐화은 결정을 감소시킨다. 적당한 현상제는 수성운반체에 용해되고, 이스트만 코닥과 아그파 및 그 밖의 회사에 의해 제조되는 엘론(Elon)과 페니돈(phenidone) 및 하이드로퀴논(hydroquinone)을 포함하나, 이에 한정되지는 않는다. 이 경우에 있어서, 프리스캔은 실질적인 현상의 시작 전에 그 최종 확장에 도달하는 에멀션에 의존하여 행해져야만 한다. 도 5는 현상액의 적용과 에멀션의 현상 사이의 관계를 나타낸다. 시간(502)에서의 현상액 적용에 따라, 관성점(506)에서 필름 현상이 시작되기 전에, 유도시간으로 불리는 특정 시간주기가 있게 된다. 유도시간이 진행됨에 따라, 에멀션의 광학밀도는 증가한다. 에멀션 확장 및 필름 현상국면이 겹치는 시간이 있을 수 있다. 본 실시예에 있어서는, 에멀션이 실질적으로 확장된 후, 유도시간(504)의 결말 전에, 최적으로 프리스캔이 실행된다. 이 점에서 행해지는 프리스캔은 바람직하지 않은 환원된 활로겐화은 그레인이 없는 최종 간섭성 반점 패턴을 나타낸다.In another embodiment of the invention, the developer comprising the developer is applied to the film emulsion. The developer reduces the silver halide crystals containing the latent image center. Suitable developers include, but are not limited to, Elon, Phenidone, and Hydroquinone, which are dissolved in aqueous carriers and are manufactured by Eastman Kodak, Agfa, and others. In this case, the prescan must be done depending on the emulsion reaching its final expansion before the actual development begins. 5 shows the relationship between the application of the developer and the development of the emulsion. Depending on the developer application at time 502, there is a specific time period called induction time before film development begins at inertia point 506. As the induction time progresses, the optical density of the emulsion increases. There may be a time when the emulsion expansion and film development phases overlap. In this embodiment, the prescan is optimally performed after the emulsion is substantially extended and before the end of the induction time 504. The prescan done at this point shows a final coherent spot pattern that is free of undesirable reduced halogenation.

에멀션에 적용된 용액이 현상제를 갖는 현상액이면, 현상제의 관성점에 도달 후, 즉시 현상이 시작된다. 에멀션에 적용되는 용액이 현상제를 포함하지 않으면, 스캔이 이루어지는 필름이 확장된 후 일정하지 않은 긴 시간이 있게된다. 현상제가 필름상에서 용액에 부가될 때, 유도시간(504)은 시작된다. 현상이 시작된 후, 이격된 시간간격에서 다수의 스캔이 수행된다. 그 다음, 이러한 스캔은 전자필름 현상기술에서 이미 공지된 바와 같이, 단일 포스트 현상 스캔에 결합된다. 본 발명은 화상 및 반점 정보를 포함하는 포스트 현상 스캔을 택하고, 이것을 화상없이 반점 패턴을 포함하는 프리스캔 정보로부터 픽셀마다 구별시킨다. 구별공정동안, 제1화상 및 제2화상은 픽셀로서 컴퓨터내에 수신된다. 각 픽셀은 그 픽셀에 대응하는 휘도와 같은, 기판의 특성을 나타내는 숫자값을 갖는다. 제1화상 및 제2화상내의 대응하는 픽셀정보는 반점 패턴이 감소되거나 완전히 소멸된 제3화상을 발생시키는 픽셀 값을 야기하도록 결합된다. 결합함수는 소정의 수학적인 단계 및 나눗셈이나 감산을 포함하는 단계의 조합으로 구성되나, 이에 한정되지 않는다. 본 발명에 있어서, 제1 및 제2화상의 결합의 결과에 따라 반점 패턴은 영(零)으로 되거나 현저하게 감소될 수 있다.If the solution applied to the emulsion is a developer having a developer, development is started immediately after reaching the developer's inertia point. If the solution applied to the emulsion does not contain a developer, there is an inconsistent long time after the film on which the scan is made is expanded. When the developer is added to the solution on the film, induction time 504 begins. After development starts, multiple scans are performed at spaced time intervals. This scan is then combined into a single post development scan, as is already known in the electronic film development technique. The present invention takes a post-development scan that includes an image and spot information, and distinguishes it pixel by pixel from prescan information that includes a spot pattern without an image. During the discrimination process, the first image and the second image are received in the computer as pixels. Each pixel has a numerical value representing the characteristics of the substrate, such as the luminance corresponding to that pixel. Corresponding pixel information in the first and second pictures is combined to result in pixel values resulting in a third picture in which the spot pattern is reduced or completely extinguished. The coupling function consists of a combination of predetermined mathematical steps and steps including division or subtraction, but is not limited thereto. In the present invention, the spot pattern may be zeroed or significantly reduced as a result of the combination of the first and second images.

일반적인 2성분 필름 현상에 있어서는, 전형적으로 현상제를 포함하는 비알칼리 용액이 첫째로 적용되고, 그 다음 알칼리 활성제가 적용된다. 그러나, 약품이 적용되는 순서가 바뀌거나, 현상액 및 활성제 모두가 현상제와 활성제로 이루어진 단일 용액에 적용되면, 보다 낳은 결과의 경우가 얻어질 수 있다. 결합된 용액 접근은 필름 현상의 기술분야에서는 보다 일반적이다.In general two-component film development, typically a non-alkaline solution comprising a developer is applied first, followed by an alkali activator. However, if the order in which the chemicals are applied is changed, or if both the developer and the active agent are applied to a single solution consisting of the developer and the active agent, better results can be obtained. Combined solution approaches are more common in the art of film development.

본 발명이 바람직한 실시예에 의존하여 중요성을 기술하였지만, 바람직한 구성 및 방법에 있어서의 변형이 사용될 수 있고, 여기에 특정하게 기술된 바와 다른 실시예가 실행될 수 있다.Although the invention has been described in importance in terms of preferred embodiments, variations in the preferred configurations and methods may be used, and other embodiments than those specifically described herein may be practiced.

Claims (32)

기판을 소정 정도로 확장시키기 위해 기판에 제1용액을 적용하는 단계와,Applying a first solution to the substrate to extend the substrate to a predetermined degree; 이 기판이 상기 소정 정도로 확장되도록 허용하는 단계,Allowing the substrate to expand to the predetermined degree, 제1스캔을 발생시키도록 상기 확장된 기판을 스캔하는 단계,Scanning the expanded substrate to produce a first scan, 상기 기판의 현상을 유도하는 단계,Inducing a phenomenon of the substrate, 제2스캔을 발생시키기 위해 현상 유도단계 후에 상기 기판을 스캔하는 단계 및,Scanning the substrate after a development induction step to generate a second scan, and 감소된 노이즈로 화상을 발생시키기 위해 상기 제1스캔 및 상기 제2스캔을 결합하는 단계를 구비하여 이루어진 것을 특징으로 하는 잠재화상을 내재하는 기판의 전자필름 현상에서 노이즈를 감소시키기 위한 방법.And combining the first scan and the second scan to generate an image with reduced noise. 제1항에 있어서, 상기 제1용액이 현상제 및 활성제를 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein the first solution comprises a developer and an activator. 제1항에 있어서, 상기 제1용액이 비 알칼리 pH용액인 것을 특징으로 하는 방법.The method of claim 1 wherein the first solution is a non-alkali pH solution. 제1항에 있어서, 상기 제1용액이 알칼리용액을 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein the first solution comprises an alkaline solution. 제1항에 있어서, 상기 제1용액이 알칼리 활성제를 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein the first solution comprises an alkali activator. 제1항에 있어서, 상기 제1용액이 현상제를 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein the first solution comprises a developer. 제1항에 있어서, 상기 기판이 반점 간섭을 야기시키는 입자를 포함하는 에멀션을 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein the substrate is configured with an emulsion comprising particles that cause spot interference. 제1항에 있어서, 상기 소정 정도가 상기 기판의 최종 확산을 나타내는 것을 특징으로 하는 방법.The method of claim 1, wherein the predetermined degree represents final diffusion of the substrate. 제8항에 있어서, 상기 제1스캔이, 상기 기판의 실질적인 현상전이나 상기 최종확산이 실질적으로 도달된 후에 일어나는 것을 특징으로 하는 방법.10. The method of claim 8, wherein the first scan occurs before substantial development of the substrate or after the final diffusion is substantially reached. 제2항에 있어서, 상기 제1용액이 에멀션 확장 및 현상의 유도를 야기시키는 것을 특징으로 하는 방법.3. The method of claim 2, wherein said first solution causes induction of emulsion expansion and development. 제7항에 있어서, 상기 현상 유도단계는 상기 제2스캔에 앞서 제2용액을 상기 기판에 적용하는 단계를 구비하여 구성되는 것을 특징으로 하는 방법.8. The method of claim 7, wherein said developing inducing step comprises applying a second solution to said substrate prior to said second scan. 제11항에 있어서, 제2용액이 현상제를 구비하여 구성된 것을 특징으로 하는 방법.The method according to claim 11, wherein the second solution comprises a developer. 제11항에 있어서, 제2용액이 활성제를 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 11 wherein the second solution comprises an active agent. 제11항에 있어서, 상기 소정 정도가 상기 기판의 최종확장을 나타내고, 상기 제1스캔이 유도시간의 결말 전이면서 최종확장이 도달된 후에 발생되는 것을 특징으로 하는 방법.12. The method of claim 11, wherein the predetermined degree is indicative of a final extension of the substrate and occurs after the last extension is reached while the first scan is at the end of the induction time. 제1항에 있어서, 상기 제2스캔 단계가 현상동안 다수의 스캔을 발생시키는 단계를 구비하여 구성된 것을 특징으로 하는 방법.The method of claim 1, wherein said second scanning step comprises the step of generating a plurality of scans during development. 제15항에 있어서, 상기 다수의 스캔을 단일 포스트 현상스캔에 결합하는 단계를 더 구비하여 구성되는 것을 특징으로 하는 방법.16. The method of claim 15, further comprising combining the multiple scans into a single post development scan. 제1항에 있어서, 상기 제1 및 제2스캔이 상기 기판으로부터 수신되는 광도를 나타내는 양자화 픽셀정보를 독출하는 것을 특징으로 하는 방법.2. The method of claim 1 wherein the first and second scans read quantized pixel information indicative of the luminosity received from the substrate. 제17항에 있어서, 상기 결합단계가 상기 제1 및 제2스캔으로부터의 상기 픽셀정보를 구별하는 단계를 구비하여 구성된 것을 특징으로 하는 방법.18. The method of claim 17, wherein said combining step comprises the step of distinguishing said pixel information from said first and second scans. 제18항에 있어서, 상기 구별 단계가 상기 제1스캔으로부터의 상기 대응하는 픽셀정보에 의한 상기 제2스캔으로부터의 상기 픽셀정보를 나누는 단계를 구비하여 구성된 것을 특징으로 하는 방법.19. The method of claim 18, wherein the discriminating step comprises dividing the pixel information from the second scan by the corresponding pixel information from the first scan. 제1항에 있어서, 상기 제1스캔단계가, 유도시간이 끝나기 전이면서 상기 허용단계 후에 일어나는 것을 특징으로 하는 방법.The method of claim 1, wherein said first scanning step occurs after said accepting step before the induction time ends. 기판에 제1용액을 적용하고, 소정 정도로 상기 기판을 확장하도록 허용하는 수단과,Means for applying a first solution to the substrate and allowing the substrate to expand to a predetermined degree; 제1스캔을 발생시키기 위해 상기 기판을 스캔하기 위한 수단,Means for scanning the substrate to generate a first scan, 상기 기판의 현상을 유도하기 위한 수단,Means for inducing a phenomenon of the substrate, 제2스캔을 발생시키기 위해 현상 유도 후에 상기 기판을 스캔하기 위한 수단 및,Means for scanning the substrate after developing induction to generate a second scan, 감소된 노이즈로 화상을 발생시키기 위해 상기 제1스캔 및 상기 제2스캔을 결합하기 위한 수단을 구비하여 구성된 것을 특징으로 하는 잠재화상을 내재한 기판의 전자필름 현상에서 노이즈를 감소시키기 위한 장치.And means for combining the first scan and the second scan to generate an image with reduced noise. 제21항에 있어서, 상기 제1용액이 현상제 및 활성제를 구비하여 구성된 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein the first solution comprises a developer and an activator. 제21항에 있어서, 상기 노이즈가, 상기 기판에 증착된 에멀션 내에 포함된 입자에 의해 야기되는 반점 간섭으로부터 일어나는 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein the noise results from spot interference caused by particles contained in an emulsion deposited on the substrate. 제21항에 있어서, 상기 소정 정도가 상기 기판의 최종 확장을 나타내는 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein the predetermined degree represents final expansion of the substrate. 제21항에 있어서, 상기 제1용액이 현상액을 구비하여 구성된 것을 특징으로 하는 장치.The apparatus of claim 21, wherein the first solution comprises a developing solution. 제21항에 있어서, 상기 제2용액이, 상기 제2스캔에 앞서 현상을 유도하기 위해 상기 기판에 적용된 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein said second solution is applied to said substrate to induce development prior to said second scan. 제26항에 있어서, 상기 제2용액이 현상제를 구비하여 구성된 것을 특징으로 하는 장치.27. An apparatus according to claim 26, wherein said second solution comprises a developer. 제26항에 있어서, 상기 제2용액이 활성제를 구비하여 구성된 것을 특징으로 하는 장치.27. The device of claim 26, wherein said second solution comprises an activator. 제21항에 있어서, 다수의 스캔이 현상동안 생성되는 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein a plurality of scans are generated during development. 제21항에 있어서, 상기 제1 및 제2스캔이 상기 기판으로부터 수신된 광도를 나타내는 양자화 픽셀정보를 독출하는 것을 특징으로 하는 장치.22. The apparatus of claim 21, wherein the first and second scans read quantized pixel information indicative of the brightness received from the substrate. 제21항에 있어서, 상기 결합수단이 상기 제1 및 제2스캔으로부터의 상기 픽셀정보를 구별하기 위한 수단인 것을 특징으로 하는 장치.22. An apparatus according to claim 21, wherein said combining means is means for distinguishing said pixel information from said first and second scans. 제31항에 있어서, 상기 구별수단이 상기 제1스캔으로부터의 상기 대응하는 픽셀정보에 의한 상기 제2스캔으로부터 상기 픽셀정보를 수학적으로 나누기 위한 수단인 것을 특징으로 하는 장치.32. The apparatus of claim 31, wherein said means for discriminating is means for mathematically dividing said pixel information from said second scan by said corresponding pixel information from said first scan.
KR1019997002001A 1996-12-05 1997-12-04 Method and apparatus for reducing noise in electronic film development KR100317824B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US3211496P 1996-12-05 1996-12-05
US60/32,114 1996-12-05
US08/979,038 US6069714A (en) 1996-12-05 1997-11-26 Method and apparatus for reducing noise in electronic film development
US8/979,038 1997-11-26
US08/979,038 1997-11-26

Publications (2)

Publication Number Publication Date
KR20000044037A true KR20000044037A (en) 2000-07-15
KR100317824B1 KR100317824B1 (en) 2001-12-22

Family

ID=26707988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019997002001A KR100317824B1 (en) 1996-12-05 1997-12-04 Method and apparatus for reducing noise in electronic film development

Country Status (7)

Country Link
US (2) US6069714A (en)
EP (1) EP0944998A4 (en)
JP (1) JP2001503163A (en)
KR (1) KR100317824B1 (en)
CN (1) CN1231098A (en)
AU (1) AU5796698A (en)
WO (1) WO1998025399A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069714A (en) 1996-12-05 2000-05-30 Applied Science Fiction, Inc. Method and apparatus for reducing noise in electronic film development
US6017688A (en) 1997-01-30 2000-01-25 Applied Science Fiction, Inc. System and method for latent film recovery in electronic film development
ATE224622T1 (en) 1998-02-23 2002-10-15 Applied Science Fiction Inc PROGRESSIVE AREA SCANNING IN ELECTRONIC FILM DEVELOPMENT
US6594041B1 (en) 1998-11-20 2003-07-15 Applied Science Fiction, Inc. Log time processing and stitching system
US6404516B1 (en) 1999-02-22 2002-06-11 Applied Science Fiction, Inc. Parametric image stitching
US6781620B1 (en) 1999-03-16 2004-08-24 Eastman Kodak Company Mixed-element stitching and noise reduction system
TW495389B (en) 1999-06-29 2002-07-21 Applied Science Fiction Inc Slot coater device for applying developer to film for electronic film development
AU6914900A (en) 1999-08-17 2001-03-13 Applied Science Fiction, Inc. Method and system for using calibration patches in electronic film processing
US6952294B2 (en) * 1999-11-30 2005-10-04 Fuji Photo Film Co., Ltd. Method of reading an image, method of forming a color image, device for forming a color image, silver halide color photosensitive material, and a device for processing a photosensitive material
US6915021B2 (en) * 1999-12-17 2005-07-05 Eastman Kodak Company Method and system for selective enhancement of image data
US6447178B2 (en) 1999-12-30 2002-09-10 Applied Science Fiction, Inc. System, method, and apparatus for providing multiple extrusion widths
US6788335B2 (en) 1999-12-30 2004-09-07 Eastman Kodak Company Pulsed illumination signal modulation control & adjustment method and system
US6461061B2 (en) 1999-12-30 2002-10-08 Applied Science Fiction, Inc. System and method for digital film development using visible light
US6707557B2 (en) 1999-12-30 2004-03-16 Eastman Kodak Company Method and system for estimating sensor dark current drift and sensor/illumination non-uniformities
US20010030685A1 (en) * 1999-12-30 2001-10-18 Darbin Stephen P. Method and apparatus for digital film processing using a scanning station having a single sensor
AU2463501A (en) * 1999-12-30 2001-07-24 Applied Science Fiction, Inc. Methods and apparatus for transporting and positioning film in a digital film processing system
US6864973B2 (en) * 1999-12-30 2005-03-08 Eastman Kodak Company Method and apparatus to pre-scan and pre-treat film for improved digital film processing handling
US6554504B2 (en) 1999-12-30 2003-04-29 Applied Science Fiction, Inc. Distributed digital film processing system and method
US6628884B2 (en) 1999-12-30 2003-09-30 Eastman Kodak Company Digital film processing system using a light transfer device
US6505977B2 (en) 1999-12-30 2003-01-14 Applied Science Fiction, Inc. System and method for digital color dye film processing
US6813392B2 (en) 1999-12-30 2004-11-02 Eastman Kodak Company Method and apparatus for aligning multiple scans of the same area of a medium using mathematical correlation
AU2743701A (en) 1999-12-30 2001-07-16 Applied Science Fiction, Inc. System and method for digital film development using visible light
AU2733601A (en) * 1999-12-31 2001-07-16 Applied Science Fiction, Inc. Digital film processing method
US6475711B1 (en) 1999-12-31 2002-11-05 Applied Science Fiction, Inc. Photographic element and digital film processing method using same
US20010040701A1 (en) * 2000-02-03 2001-11-15 Edgar Albert D. Photographic film having time resolved sensitivity distinction
US6619863B2 (en) 2000-02-03 2003-09-16 Eastman Kodak Company Method and system for capturing film images
EP1252549A2 (en) * 2000-02-03 2002-10-30 Applied Science Fiction Film processing solution cartridge and method for developing and digitizing film
US6786655B2 (en) 2000-02-03 2004-09-07 Eastman Kodak Company Method and system for self-service film processing
US6369873B1 (en) 2000-06-13 2002-04-09 Eastman Kodak Company Thermal processing system and method including a kiosk
US6781724B1 (en) * 2000-06-13 2004-08-24 Eastman Kodak Company Image processing and manipulation system
CA2347181A1 (en) 2000-06-13 2001-12-13 Eastman Kodak Company Plurality of picture appearance choices from a color photographic recording material intended for scanning
US20060182337A1 (en) * 2000-06-28 2006-08-17 Ford Benjamin C Method and apparatus for improving the quality of reconstructed information
US20020118402A1 (en) * 2000-09-19 2002-08-29 Shaw Timothy C. Film bridge for digital film scanning system
US7016080B2 (en) * 2000-09-21 2006-03-21 Eastman Kodak Company Method and system for improving scanned image detail
US20020146171A1 (en) * 2000-10-01 2002-10-10 Applied Science Fiction, Inc. Method, apparatus and system for black segment detection
US6868190B1 (en) 2000-10-19 2005-03-15 Eastman Kodak Company Methods for automatically and semi-automatically transforming digital image data to provide a desired image look
US6888997B2 (en) * 2000-12-05 2005-05-03 Eastman Kodak Company Waveguide device and optical transfer system for directing light to an image plane
EP1360551A2 (en) 2001-02-09 2003-11-12 Applied Science Fiction, Inc. Digital film processing solutions and method of digital film processing
US6805501B2 (en) * 2001-07-16 2004-10-19 Eastman Kodak Company System and method for digital film development using visible light
JP2003075922A (en) * 2001-09-04 2003-03-12 Konica Corp Image forming method and apparatus for silver halide color photographic sensitive material
US6947607B2 (en) * 2002-01-04 2005-09-20 Warner Bros. Entertainment Inc. Reduction of differential resolution of separations
US6956976B2 (en) * 2002-01-04 2005-10-18 Warner Bros. Enterianment Inc. Reduction of differential resolution of separations
US7263240B2 (en) * 2002-01-14 2007-08-28 Eastman Kodak Company Method, system, and software for improving signal quality using pyramidal decomposition
ES2381982T3 (en) * 2004-11-16 2012-06-04 Thomson Licensing Film grain simulation method based on transformation coefficients previously generated by computer

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404138A (en) 1941-10-06 1946-07-16 Alvin L Mayer Apparatus for developing exposed photographic prints
BE682559A (en) 1965-06-16 1966-11-14
US3520690A (en) 1965-06-25 1970-07-14 Fuji Photo Film Co Ltd Process for controlling dye gradation in color photographic element
GB1193386A (en) 1967-07-29 1970-05-28 Fuji Photo Film Co Ltd Derivatives of p-Hydroxyaniline and the use thereof in Colour-Forming Developing Compositions
US3615479A (en) 1968-05-27 1971-10-26 Itek Corp Automatic film processing method and apparatus therefor
US3587435A (en) 1969-04-24 1971-06-28 Pat P Chioffe Film processing machine
US3617282A (en) 1970-05-18 1971-11-02 Eastman Kodak Co Nucleating agents for photographic reversal processes
US3946398A (en) 1970-06-29 1976-03-23 Silonics, Inc. Method and apparatus for recording with writing fluids and drop projection means therefor
SE349676B (en) 1971-01-11 1972-10-02 N Stemme
BE786790A (en) 1971-07-27 1973-01-26 Hoechst Co American DEVICE FOR PROCESSING A LIGHT SENSITIVE AND EXPOSED FLAT PRINTING PLATE
FR2171177B3 (en) 1972-02-08 1976-01-30 Bosch Photokino Gmbh
US3937175A (en) 1973-12-26 1976-02-10 American Hoechst Corporation Pulsed spray of fluids
US3959048A (en) 1974-11-29 1976-05-25 Stanfield James S Apparatus and method for repairing elongated flexible strips having damaged sprocket feed holes along the edge thereof
US4026756A (en) 1976-03-19 1977-05-31 Stanfield James S Apparatus for repairing elongated flexible strips having damaged sprocket feed holes along the edge thereof
US4745040A (en) * 1976-08-27 1988-05-17 Levine Alfred B Method for destructive electronic development of photo film
US4777102A (en) * 1976-08-27 1988-10-11 Levine Alfred B Method and apparatus for electronic development of color photographic film
US4142107A (en) 1977-06-30 1979-02-27 International Business Machines Corporation Resist development control system
US4249985A (en) 1979-03-05 1981-02-10 Stanfield James S Pressure roller for apparatus useful in repairing sprocket holes on strip material
US4215927A (en) 1979-04-13 1980-08-05 Scott Paper Company Lithographic plate processing apparatus
US4265545A (en) 1979-07-27 1981-05-05 Intec Corporation Multiple source laser scanning inspection system
US4301469A (en) 1980-04-30 1981-11-17 United Technologies Corporation Run length encoder for color raster scanner
JPS5857843U (en) 1981-10-16 1983-04-19 パイオニア株式会社 Photoresist wet development equipment
US4490729A (en) 1982-09-15 1984-12-25 The Mead Corporation Ink jet printer
JPS5976265A (en) 1982-10-26 1984-05-01 Sharp Corp Ink jet recording apparatus
US4564280A (en) 1982-10-28 1986-01-14 Fujitsu Limited Method and apparatus for developing resist film including a movable nozzle arm
JPS6089723A (en) 1983-10-21 1985-05-20 Canon Inc Color information detector
JPS60146567A (en) 1984-01-10 1985-08-02 Sharp Corp Color picture reader
JPS60151632A (en) 1984-01-19 1985-08-09 Fuji Photo Film Co Ltd Calibrating method of photographic image information
US4621037A (en) 1984-07-09 1986-11-04 Sigma Corporation Method for detecting endpoint of development
JPS61251135A (en) 1985-04-30 1986-11-08 Toshiba Corp Automatic developing apparatus
JPS61275625A (en) 1985-05-31 1986-12-05 Fuji Photo Film Co Ltd Calibrating method for color photographic image information
US4636808A (en) 1985-09-09 1987-01-13 Eastman Kodak Company Continuous ink jet printer
US4736221A (en) 1985-10-18 1988-04-05 Fuji Photo Film Co., Ltd. Method and device for processing photographic film using atomized liquid processing agents
US4623236A (en) 1985-10-31 1986-11-18 Polaroid Corporation Photographic processing composition applicator
JPS62116937A (en) 1985-11-16 1987-05-28 Dainippon Screen Mfg Co Ltd Film attaching and detaching device for drum type image scanning and recording device
DE3614888A1 (en) 1986-05-02 1987-11-05 Hell Rudolf Dr Ing Gmbh OPTICAL ARRANGEMENT FOR LINEAR LIGHTING OF SCAN TEMPLATES
US4741621A (en) 1986-08-18 1988-05-03 Westinghouse Electric Corp. Geometric surface inspection system with dual overlap light stripe generator
JPS63250881A (en) * 1987-04-07 1988-10-18 Semiconductor Energy Lab Co Ltd Manufacture of superconductor
US4814630A (en) 1987-06-29 1989-03-21 Ncr Corporation Document illuminating apparatus using light sources A, B, and C in periodic arrays
US4875067A (en) 1987-07-23 1989-10-17 Fuji Photo Film Co., Ltd. Processing apparatus
IL83676A (en) 1987-08-28 1991-07-18 Hanetz Photographic Systems Lt Photographic development system
US5079222A (en) * 1987-08-31 1992-01-07 Semiconductor Energy Laboratory Co., Ltd. Superconducting ceramic circuits and manufacturing method for the same
US4857430A (en) 1987-12-17 1989-08-15 Texas Instruments Incorporated Process and system for determining photoresist development endpoint by effluent analysis
US4851311A (en) 1987-12-17 1989-07-25 Texas Instruments Incorporated Process for determining photoresist develop time by optical transmission
CA1309166C (en) 1988-05-20 1992-10-20 Toshinobu Haruki Image sensing apparatus having automatic iris function of automatically adjusting exposure in response to video signal
US4994918A (en) 1989-04-28 1991-02-19 Bts Broadcast Television Systems Gmbh Method and circuit for the automatic correction of errors in image steadiness during film scanning
US5027146A (en) 1989-08-31 1991-06-25 Eastman Kodak Company Processing apparatus
US5267030A (en) 1989-12-22 1993-11-30 Eastman Kodak Company Method and associated apparatus for forming image data metrics which achieve media compatibility for subsequent imaging application
US5101286A (en) * 1990-03-21 1992-03-31 Eastman Kodak Company Scanning film during the film process for output to a video monitor
US5196285A (en) 1990-05-18 1993-03-23 Xinix, Inc. Method for control of photoresist develop processes
US5124216A (en) 1990-07-31 1992-06-23 At&T Bell Laboratories Method for monitoring photoresist latent images
JP2771352B2 (en) 1990-08-03 1998-07-02 富士写真フイルム株式会社 How to handle photo film patrone
GB9020124D0 (en) 1990-09-14 1990-10-24 Kodak Ltd Photographic processing apparatus
US5091972A (en) * 1990-09-17 1992-02-25 Eastman Kodak Company System and method for reducing digital image noise
GB9023013D0 (en) 1990-10-23 1990-12-05 Crosfield Electronics Ltd Method and apparatus for generating representation of an image
US5212512A (en) 1990-11-30 1993-05-18 Fuji Photo Film Co., Ltd. Photofinishing system
US5155596A (en) * 1990-12-03 1992-10-13 Eastman Kodak Company Film scanner illumination system having an automatic light control
GB9100194D0 (en) 1991-01-05 1991-02-20 Ilford Ltd Roll film assembly
US5296923A (en) 1991-01-09 1994-03-22 Konica Corporation Color image reproducing device and method
US5452018A (en) 1991-04-19 1995-09-19 Sony Electronics Inc. Digital color correction system having gross and fine adjustment modes
US5391443A (en) 1991-07-19 1995-02-21 Eastman Kodak Company Process for the extraction of spectral image records from dye image forming photographic elements
US5334247A (en) 1991-07-25 1994-08-02 Eastman Kodak Company Coater design for low flowrate coating applications
US5235352A (en) 1991-08-16 1993-08-10 Compaq Computer Corporation High density ink jet printhead
US5200817A (en) 1991-08-29 1993-04-06 Xerox Corporation Conversion of an RGB color scanner into a colorimetric scanner
JP2654284B2 (en) 1991-10-03 1997-09-17 富士写真フイルム株式会社 Photo print system
US5436738A (en) 1992-01-22 1995-07-25 Eastman Kodak Company Three dimensional thermal internegative photographic printing apparatus and method
US5255408A (en) 1992-02-11 1993-10-26 Eastman Kodak Company Photographic film cleaner
US5266805A (en) 1992-05-05 1993-11-30 International Business Machines Corporation System and method for image recovery
US5371542A (en) 1992-06-23 1994-12-06 The United States Of America As Represented By The Secretary Of The Navy Dual waveband signal processing system
BE1006067A3 (en) 1992-07-01 1994-05-03 Imec Inter Uni Micro Electr OPTICAL SYSTEM FOR REPRESENTING A MASK PATTERN IN A photosensitive layer.
CA2093840C (en) * 1992-07-17 1999-08-10 Albert D. Edgar Duplex film scanning
CA2093449C (en) * 1992-07-17 1997-06-17 Albert D. Edgar Electronic film development
EP0580293A1 (en) 1992-07-17 1994-01-26 International Business Machines Corporation Scanning film during the film process
US5418597A (en) 1992-09-14 1995-05-23 Eastman Kodak Company Clamping arrangement for film scanning apparatus
US5300381A (en) 1992-09-24 1994-04-05 Eastman Kodak Company Color image reproduction of scenes with preferential tone mapping
US5357307A (en) 1992-11-25 1994-10-18 Eastman Kodak Company Apparatus for processing photosensitive material
US5448377A (en) 1992-11-30 1995-09-05 Konica Corporation Film image editing apparatus using image density variation detection
US5568270A (en) 1992-12-09 1996-10-22 Fuji Photo Film Co., Ltd. Image reading apparatus which varies reading time according to image density
GB9302841D0 (en) 1993-02-12 1993-03-31 Kodak Ltd Photographic elements for producing blue,green and red exposure records of the same hue and methods for the retrieval and differentiation of the exposure reco
GB9302860D0 (en) 1993-02-12 1993-03-31 Kodak Ltd Photographic elements for producing blue,green and red exposure records of the same hue and methods for the retrival and differentiation of the exposure
US5546477A (en) 1993-03-30 1996-08-13 Klics, Inc. Data compression and decompression
US5414779A (en) 1993-06-14 1995-05-09 Eastman Kodak Company Image frame detection
US5596415A (en) 1993-06-14 1997-01-21 Eastman Kodak Company Iterative predictor-based detection of image frame locations
US5550566A (en) 1993-07-15 1996-08-27 Media Vision, Inc. Video capture expansion card
US5418119A (en) 1993-07-16 1995-05-23 Eastman Kodak Company Photographic elements for producing blue, green and red exposure records of the same hue
KR950004881A (en) 1993-07-31 1995-02-18 김광호 Color image processing method and device
US5440365A (en) 1993-10-14 1995-08-08 Eastman Kodak Company Photosensitive material processor
JPH07125902A (en) 1993-10-29 1995-05-16 Minolta Co Ltd Image printer
US5477345A (en) 1993-12-15 1995-12-19 Xerox Corporation Apparatus for subsampling chrominance
KR100300950B1 (en) 1994-01-31 2001-10-22 윤종용 Method and apparatus for correcting color
US5516608A (en) 1994-02-28 1996-05-14 International Business Machines Corporation Method for controlling a line dimension arising in photolithographic processes
EP0669753A3 (en) 1994-02-28 1995-12-20 Minolta Co Ltd An apparatus for reproducing images.
KR0164007B1 (en) 1994-04-06 1999-02-01 이시다 아키라 Method of dryng substrate with fine patterned resist and apparatus thereof
US5790277A (en) * 1994-06-08 1998-08-04 International Business Machines Corporation Duplex film scanning
DE59509010D1 (en) 1994-08-16 2001-03-15 Gretag Imaging Ag Method and device for producing index prints on or with a photographic printer
JPH0877341A (en) 1994-08-29 1996-03-22 Xerox Corp Equipment and method for color image processing
US5966465A (en) 1994-09-21 1999-10-12 Ricoh Corporation Compression/decompression using reversible embedded wavelets
US5649032A (en) 1994-11-14 1997-07-15 David Sarnoff Research Center, Inc. System for automatically aligning images to form a mosaic image
CH690639A5 (en) 1994-11-29 2000-11-15 Zeiss Carl Fa Apparatus for scanning digitize image templates and processes for their operation.
DE69515823T2 (en) 1994-12-20 2000-10-12 Canon Kk Ink jet recording method and device
US5771107A (en) 1995-01-11 1998-06-23 Mita Industrial Co., Ltd. Image processor with image edge emphasizing capability
US5563717A (en) 1995-02-03 1996-10-08 Eastman Kodak Company Method and means for calibration of photographic media using pre-exposed miniature images
US5979011A (en) 1995-04-07 1999-11-09 Noritsu Koki Co., Ltd Dust removing apparatus
WO1996033575A1 (en) 1995-04-18 1996-10-24 Advanced Micro Devices, Inc. Video decoder using block oriented data structures
US5587752A (en) 1995-06-05 1996-12-24 Eastman Kodak Company Camera, system and method for producing composite photographic image
US5649260A (en) 1995-06-26 1997-07-15 Eastman Kodak Company Automated photofinishing apparatus
JPH0915748A (en) 1995-06-29 1997-01-17 Fuji Photo Film Co Ltd Film loading method and film carrying device
JP3136965B2 (en) 1995-08-31 2001-02-19 ノーリツ鋼機株式会社 Photosensitive material processing equipment
US5664253A (en) 1995-09-12 1997-09-02 Eastman Kodak Company Stand alone photofinishing apparatus
US5695914A (en) 1995-09-15 1997-12-09 Eastman Kodak Company Process of forming a dye image
US5779185A (en) 1995-09-18 1998-07-14 Noritsu Koki Co., Ltd. Film splicing device
US5698382A (en) 1995-09-25 1997-12-16 Konica Corporation Processing method for silver halide color photographic light-sensitive material
US5959720A (en) 1996-03-22 1999-09-28 Eastman Kodak Company Method for color balance determination
US5667944A (en) 1995-10-25 1997-09-16 Eastman Kodak Company Digital process sensitivity correction
JP3669448B2 (en) 1995-10-31 2005-07-06 富士写真フイルム株式会社 Image reproduction method and apparatus
US5641596A (en) * 1995-12-05 1997-06-24 Eastman Kodak Company Adjusting film grain properties in digital images
US5892595A (en) 1996-01-26 1999-04-06 Ricoh Company, Ltd. Image reading apparatus for correct positioning of color component values of each picture element
US5627016A (en) 1996-02-29 1997-05-06 Eastman Kodak Company Method and apparatus for photofinishing photosensitive film
EP0794454B1 (en) 1996-03-04 2005-05-11 Fuji Photo Film Co., Ltd. Film scanner
US5870172A (en) 1996-03-29 1999-02-09 Blume; Stephen T. Apparatus for producing a video and digital image directly from dental x-ray film
JP3417516B2 (en) 1996-05-10 2003-06-16 ノーリツ鋼機株式会社 Cassette type electronic image printing apparatus, photographic processing apparatus, and photographic processing system using these apparatuses
US5982951A (en) 1996-05-28 1999-11-09 Canon Kabushiki Kaisha Apparatus and method for combining a plurality of images
US5664255A (en) 1996-05-29 1997-09-02 Eastman Kodak Company Photographic printing and processing apparatus
US5963662A (en) 1996-08-07 1999-10-05 Georgia Tech Research Corporation Inspection system and method for bond detection and validation of surface mount devices
US5835795A (en) 1996-06-25 1998-11-10 Photo Dimensions Blended photographic composite images
US6102508A (en) 1996-09-27 2000-08-15 Hewlett-Packard Company Method and apparatus for selecting printer consumables
US5691118A (en) 1996-10-10 1997-11-25 Eastman Kodak Company Color paper processing using two acidic stop solutions before and after bleaching
JPH10178564A (en) 1996-10-17 1998-06-30 Sharp Corp Panorama image generator and recording medium
JP3493104B2 (en) 1996-10-24 2004-02-03 シャープ株式会社 Color image processing equipment
US5988896A (en) 1996-10-26 1999-11-23 Applied Science Fiction, Inc. Method and apparatus for electronic film development
US6069714A (en) 1996-12-05 2000-05-30 Applied Science Fiction, Inc. Method and apparatus for reducing noise in electronic film development
US5982937A (en) 1996-12-24 1999-11-09 Electronics For Imaging, Inc. Apparatus and method for hybrid compression of raster data
US5982941A (en) 1997-02-07 1999-11-09 Eastman Kodak Company Method of producing digital image with improved performance characteristic
US6000284A (en) 1997-04-02 1999-12-14 Board Of Trustees Operating Michigan State University Method and apparatus for determining and quantifying resistance to scuff damage of a film adhered on a panel
JPH10334230A (en) 1997-05-09 1998-12-18 Xerox Corp Control method for image emphasis processing
TW350183B (en) * 1997-07-07 1999-01-11 Umax Data Systems Inc Method of mobile image scanning
JP3380754B2 (en) 1997-10-17 2003-02-24 富士写真フイルム株式会社 Document carrier and image reading device
US5998109A (en) 1997-12-24 1999-12-07 Konica Corporation Method for a silver halide light-sensitive photographic material and development reading method
EP0930498A3 (en) 1997-12-26 1999-11-17 Nidek Co., Ltd. Inspection apparatus and method for detecting defects
US6089687A (en) 1998-03-09 2000-07-18 Hewlett-Packard Company Method and apparatus for specifying ink volume in an ink container
US6200738B1 (en) 1998-10-29 2001-03-13 Konica Corporation Image forming method
CA2257420A1 (en) 1998-12-22 2000-06-22 Gid Gmbh A container for developing equipment
AU6914900A (en) 1999-08-17 2001-03-13 Applied Science Fiction, Inc. Method and system for using calibration patches in electronic film processing
US6915021B2 (en) 1999-12-17 2005-07-05 Eastman Kodak Company Method and system for selective enhancement of image data
US6461061B2 (en) 1999-12-30 2002-10-08 Applied Science Fiction, Inc. System and method for digital film development using visible light
AU2743701A (en) 1999-12-30 2001-07-16 Applied Science Fiction, Inc. System and method for digital film development using visible light
AU2463501A (en) 1999-12-30 2001-07-24 Applied Science Fiction, Inc. Methods and apparatus for transporting and positioning film in a digital film processing system
US6505977B2 (en) 1999-12-30 2003-01-14 Applied Science Fiction, Inc. System and method for digital color dye film processing
AU2733601A (en) 1999-12-31 2001-07-16 Applied Science Fiction, Inc. Digital film processing method
WO2001050196A1 (en) 2000-01-06 2001-07-12 Trebla Chemical Company One-part bleach-fix liquid concentrates

Also Published As

Publication number Publication date
EP0944998A1 (en) 1999-09-29
JP2001503163A (en) 2001-03-06
KR100317824B1 (en) 2001-12-22
WO1998025399A1 (en) 1998-06-11
US6503002B1 (en) 2003-01-07
AU5796698A (en) 1998-06-29
EP0944998A4 (en) 2001-04-04
US6069714A (en) 2000-05-30
CN1231098A (en) 1999-10-06

Similar Documents

Publication Publication Date Title
KR100317824B1 (en) Method and apparatus for reducing noise in electronic film development
CA2093840C (en) Duplex film scanning
US6910816B2 (en) Digital film processing method
US6705777B2 (en) System and method for digital film development using visible light
KR970005226B1 (en) The scanning apparatus to produce digital image
US6439784B1 (en) Method and system for using calibration patches in electronic film processing
US6540416B2 (en) System and method for digital film development using visible light
JPH0918704A (en) Image reproducing method and its device
EP0777154A1 (en) Diffusion transfer integral film unit
US6990251B2 (en) Method, system, and software for signal processing using sheep and shepherd artifacts
US5786902A (en) Photographic printer and method of digitally correcting for a photographic printer
JPH10112799A (en) Flair correction method
US20010048818A1 (en) Scanning apparatus and digital film processing method
JPH0338577B2 (en)
JP2009164950A (en) Imaging system
JPH05297529A (en) Image recorder
EP0579391A2 (en) Colour film
JPH11220621A (en) Picture reader
JPS63107365A (en) Image reader

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20051014

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee