KR20000041563A - Electrolyte of a lithium ion battery - Google Patents

Electrolyte of a lithium ion battery Download PDF

Info

Publication number
KR20000041563A
KR20000041563A KR1019980057488A KR19980057488A KR20000041563A KR 20000041563 A KR20000041563 A KR 20000041563A KR 1019980057488 A KR1019980057488 A KR 1019980057488A KR 19980057488 A KR19980057488 A KR 19980057488A KR 20000041563 A KR20000041563 A KR 20000041563A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium ion
carbonate
ion battery
active material
Prior art date
Application number
KR1019980057488A
Other languages
Korean (ko)
Other versions
KR100521463B1 (en
Inventor
손영배
김유미
김진경
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019980057488A priority Critical patent/KR100521463B1/en
Publication of KR20000041563A publication Critical patent/KR20000041563A/en
Application granted granted Critical
Publication of KR100521463B1 publication Critical patent/KR100521463B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An electrolyte of a lithium ion battery is provided to improve the low temperature discharging characteristics and the cycle life characteristics of a lithium ion battery by using an organic solvent and a lithium salt. CONSTITUTION: An electrolyte of a lithium ion battery uses a metal oxide as an anode active material, and uses a black lead as a cathode active material. The electrolyte of a lithium ion battery comprises an organic solvent and a lithium salt. The organic solvent comprises ethylene carbonate, dimethyl carbonate, diethyl carbonate, and propylene carbonate. According to the electrolyte of a lithium ion battery, the low temperature discharging characteristics and the cycle life characteristics of the lithium ion battery is improved.

Description

리튬 이온 전지용 전해액Electrolyte for Lithium Ion Battery

산업상 이용 분야Industrial use field

본 발명은 리튬 이온 전지용 전해액에 관한 것으로서, 더욱 상세하게는 저온 방전 특성 및 사이클 수명 특성이 우수한 전해액에 관한 것이다.The present invention relates to an electrolyte for lithium ion batteries, and more particularly to an electrolyte having excellent low temperature discharge characteristics and cycle life characteristics.

종래 기술Prior art

리튬 이온 전지에 사용되는 유기 전해액은 리튬염과 유기 용매로 구성되어 있으며, 상기 유기 용매는 첫째, 리튬과의 반응성이 작아야하고, 둘째, 내부 저항이 작아서 리튬 이온의 이동이 원활히 이루어져야 하며, 셋째, 광범위한 온도에서 열적 안정성이 있어야 하며, 넷째, 음극, 양극 등 다른 셀 구성요소, 특히 음극 활물질과의 상용성이 있어야 하며, 다섯째, 다량의 리튬염을 용해시킬 수 있도록 높은 유전상수를 가져야 한다.The organic electrolyte used in the lithium ion battery is composed of a lithium salt and an organic solvent, the organic solvent is first, the reactivity with lithium is small, second, the internal resistance is small, the movement of lithium ions must be made smoothly, third, Fourth, it must be thermally stable over a wide range of temperatures. Fourth, it must be compatible with other cell components such as a negative electrode and a positive electrode, particularly a negative active material. Fifth, it must have a high dielectric constant to dissolve a large amount of lithium salt.

이와 같은 유기 용매로는 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC)등과 같은 고리형 카보네이트(cyclic carbonate)와 디메틸카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC) 등과 같은 선형 카보네이트(chain carbonate)가 주로 사용된다.Such organic solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC). Linear carbonates such as) are mainly used.

상기 유기 전해액 중 PC는 용융점(M.P.)이 -49℃로서 저온 특성이 우수하며 비정질계 탄소와 상용성이 좋고, 유전 상수(Dielectric constant)가 커서 다량의 무기 리튬염을 용해시킬 수 있지만, 점성(Viscosity)이 크고 흑연과 같은 결정성 음극 활물질과 함께 사용할 경우에는 충전시 음극의 탄소층 사이로 삽입되면서 분해되어 프로필렌 가스와 리튬 카보네이트를 형성하여, 전지 용량을 감소시키고, 비가역 용량을 증가시키는 것으로 알려져 있다. 반면에 EC는 흑연계 음극 활물질과 반응하지 않으므로 결정질 탄소를 음극으로 사용하는 전지에도 용이하게 적용할 수 있으며, 유전 상수가 크므로 다량의 리튬염을 용해시킬 수 있으나, 점성이 크고 용융점이 약 36℃이어서 저온 성능을 확보할 수 없는 단점이 있다.In the organic electrolyte, PC has a melting point (MP) of -49 ° C, excellent low temperature characteristics, good compatibility with amorphous carbon, and a large dielectric constant, which can dissolve a large amount of inorganic lithium salts. When used with a crystalline anode active material such as graphite and having a large viscosity, it is known to be inserted into the carbon layer of the anode during decomposition to decompose to form propylene gas and lithium carbonate, thereby reducing battery capacity and increasing irreversible capacity. . On the other hand, EC does not react with the graphite-based negative active material, so it can be easily applied to a battery using crystalline carbon as a negative electrode. Since EC has a large dielectric constant, it can dissolve a large amount of lithium salt. There is a disadvantage in that it can not secure the low temperature performance.

또한 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC) 등과 같은 선형 카보네이트는 점성이 작고, 탄소층 사이로 쉽게 인터칼레이트되어 전지의 비가역 용량을 줄일 수 있으며, 리튬과의 반응성도 작으나, 일반적으로 유전율이 낮아 다량의 리튬염을 용해시킬 수 없다는 단점이 있다. 특히 DMC의 경우에는 전기전도도가 커서 고전류 및 고전압 전지에의 사용이 기대되지만, 용융점이 높아(M.P.=4.6℃) 저온 특성이 나쁘다.In addition, linear carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC) are small in viscosity and can be easily intercalated between the carbon layers to reduce the irreversible capacity of the battery and to react with lithium. Although small, in general, a low dielectric constant has a disadvantage in that a large amount of lithium salt cannot be dissolved. In particular, DMC is expected to be used in high current and high voltage batteries because of its high electrical conductivity, but its low melting point (M.P. = 4.6 ° C.) results in poor low temperature characteristics.

따라서 최근에는 각각의 전해질 용매가 가지는 단점을 보완하기 위하여 하나 이상의 용매를 혼합 사용하는 방법이 연구되고 있다.Therefore, in recent years, a method of mixing one or more solvents in order to compensate for the drawbacks of the respective electrolyte solvents has been studied.

미국 특허 제5,422,203호에서는 EC와 DMC의 혼합액을 리튬 전지용 전해액으로 사용하였는데, 이와 같이 EC:DMC 시스템을 사용하고 리튬염으로 LiPF6을 사용하면 2차 전지에서 기존에 문제가 되었던 첫 반응시의 비가역적인 리튬의 손실량을 감소시킴으로서 1C 방전시 90%까지의 가역적인 사이클을 보였다는 보고가 있으며, 이와 같은 효과는 전해액중 50부피% 이상 존재하는 선형 카보네이트 또는 사슬 에스테르가 카본층 사이로 자유롭게 삽입, 탈리되어 발생하는 것으로 알려져 있다. 그러나, EC:DMC 시스템의 경우에는 EC의 용융점이 높기 때문에 -20℃에서의 저온 방전 특성이 대략 공칭 용량(nominal capacity)의 20% 수준으로 매우 불량한 단점이 있다.In US Patent No. 5,422,203, a mixture of EC and DMC was used as an electrolyte for lithium batteries. Thus, using an EC: DMC system and using LiPF 6 as a lithium salt, irreversible at the first reaction, which was previously a problem in secondary batteries, was used. It has been reported that the reversible cycle of up to 90% was achieved at 1C discharge by reducing the amount of lithium loss. This effect is caused by free insertion and desorption of linear carbonates or chain esters present in the electrolyte at least 50% by volume between the carbon layers. It is known to occur. However, in the case of EC: DMC system, since the melting point of EC is high, the low temperature discharge characteristic at -20 ° C is about 20% of the nominal capacity, which is very poor.

상기 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 저온 방전 특성 이 우수한 리튬 이온 전지용 전해액을 제공하는 것이다. 본 발명의 다른 목적은 전기전도도 및 리튬염의 용해도가 상대적으로 높으면서 사이클 수명 특성이 우수한 리튬 이온 전지용 전해액을 제공하는 것이다.In order to solve the above problems, an object of the present invention is to provide a lithium ion battery electrolyte excellent in low-temperature discharge characteristics. It is another object of the present invention to provide an electrolyte solution for a lithium ion battery having excellent cycle life characteristics with relatively high electrical conductivity and solubility of lithium salts.

도 1은 본 발명의 일 실시예 및 비교예에 따른 전해액을 채용한 전지의 사이클 수명 특성을 나타낸 그래프.1 is a graph showing the cycle life characteristics of a battery employing an electrolyte according to an embodiment and a comparative example of the present invention.

상기 본 발명의 목적을 달성하기 위하여, 본 발명은 양극 활물질로서 금속 산화물을 사용하고, 음극 활물질로 결정성 흑연을 사용하는 리튬 이온 전지용 전해액으로서, 에틸렌 카보네이트(ethylene carbonate), 디메틸 카보네이트(dimethyl carbonate), 디에틸 카보네이트(diethyl carbonate) 및 프로필렌 카보네이트(propylene carbonate)를 포함하는 비수성 유기 용매와 리튬염을 포함하는 리튬 이온 전지용 전해액을 제공한다.In order to achieve the object of the present invention, the present invention is a lithium ion battery electrolyte using a metal oxide as a positive electrode active material, crystalline graphite as a negative electrode active material, ethylene carbonate (ethylene carbonate), dimethyl carbonate (dimethyl carbonate) It provides a non-aqueous organic solvent containing diethyl carbonate and propylene carbonate and a lithium ion battery electrolyte containing a lithium salt.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 양극 활물질로서 금속 산화물을 사용하고, 음극 활물질로 결정성 흑연을 사용하는 리튬 이온 전지에 있어서, EC:DMC 시스템에 DEC를 첨가함으로써 저온 특성이 우수한 전해액을 제공할 수 있으며, 여기에 결정성 흑연에 적용하기 어려운 것으로 알려진 PC를 첨가함으로써 DEC의 첨가에 따른 사이클 수명 특성의 열화 문제를 해결할 수 있음을 발견하고 본 발명을 완성하였다.MEANS TO SOLVE THE PROBLEM In the lithium ion battery which uses a metal oxide as a positive electrode active material, and uses crystalline graphite as a negative electrode active material, by adding DEC to an EC: DMC system, the inventors can provide the electrolyte solution excellent in low-temperature characteristics, and here it determines The present invention has been found to solve the problem of deterioration of cycle life characteristics due to the addition of DEC by adding PC, which is known to be difficult to apply to the graphite.

본 발명에 따른 전해액을 적용하기에 적합한 리튬 이온 전지는 양극 활물질로서, LiCoO2, LiNiO2, LiMnO2, LiMn2O4등의 금속 산화물을 사용하며, 음극 활물질로는 전위 평탄성이 양호할 뿐만 아니라 상대적으로 충방전 과정의 가역성이 양호한 결정성 흑연을 사용한다.The lithium ion battery suitable for applying the electrolyte according to the present invention uses a metal oxide such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 as a positive electrode active material, and has a good potential flatness as the negative electrode active material. Relatively crystalline graphite having good reversibility in the charge and discharge process is used.

본 발명의 따른 전해액은 5-50부피%의 에틸렌 카보네이트, 3-40부피%의 디메틸 카보네이트, 5-20부피%의 디에틸 카보네이트 및 5-50부피%의 프로필렌 카보네이트를 포함하는 것이 바람직하다. 디에틸 카보네이트를 20부피% 이상으로 사용할 경우에는 전기전도도가 작고 리튬염의 용해가 어려운 문제점이 발생한다. 상기 조성 범위를 벗어날 경우, 바람직한 저온 방전 특성 및 사이클 수명 특성을 나타내기가 어렵다.The electrolyte according to the invention preferably comprises 5-50% by volume of ethylene carbonate, 3-40% by volume of dimethyl carbonate, 5-20% by volume of diethyl carbonate and 5-50% by volume of propylene carbonate. When diethyl carbonate is used in an amount of 20% by volume or more, a problem arises in that electrical conductivity is small and dissolution of lithium salt is difficult. If it is out of the composition range, it is difficult to exhibit desirable low-temperature discharge characteristics and cycle life characteristics.

상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4또는 이들의 혼합물을 사용할 수 있으며, 0.8-1.5M의 농도로 사용하는 것이 바람직하다.The lithium salt may use LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 or a mixture thereof, and is preferably used at a concentration of 0.8-1.5M.

본 기술 분야의 당업자는 상기 본 발명의 음극 활물질을 사용하여 공지된 전지 제조 방법에 따라 용이하게 리튬 이온 이차 전지를 제조할 수 있을 것이다.Those skilled in the art will be able to easily manufacture a lithium ion secondary battery according to a known battery manufacturing method using the negative electrode active material of the present invention.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1 및 비교예 1-2Example 1 and Comparative Example 1-2

표 1의 조성으로 비수성 유기 용매와 LiPF6(1M)를 포함하는 전해액을 제조하였다.An electrolyte solution containing a non-aqueous organic solvent and LiPF 6 (1M) was prepared in the composition of Table 1.

양극 활물질로서 LiCoO2, 결착제로서 폴리 비닐리덴 플루오라이드, 및 도전제로서 아세틸렌 블랙을 N-메틸 피롤리돈과 혼합하여 양극 활물질 슬러리를 제조한 후, 이를 알루미늄 호일 집전체에 도포하여 양극판을 제조하였다.LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder, and acetylene black as a conductive agent were mixed with N-methyl pyrrolidone to prepare a positive electrode active material slurry, and then applied to an aluminum foil current collector to prepare a positive electrode plate. It was.

음극 활물질로서 결정성 흑연 및 결착제로서 폴리 비닐리덴 플루오라이드를 N-메틸 피롤리돈과 혼합하여 음극 활물질 슬러리를 제조한 후, 이를 구리 호일 집전체에 도포하여 음극판을 제조하였다.Crystalline graphite as a negative electrode active material and polyvinylidene fluoride as a binder were mixed with N-methyl pyrrolidone to prepare a negative electrode active material slurry, which was then applied to a copper foil current collector to prepare a negative electrode plate.

상기 양극판, 음극판, 전해액을 사용하여 18650 타입 원통형 전지를 제조하였다. 이 전지의 저온 방전 효율을 측정하여 표 1에 나타내었고, 사이클 수명 특성을 측정하여 도 1에 나타내었다. 저온 방전 효율은 전지를 1C, 4.1V 정전류 정전압(constant current constant voltage) 충전 후, 1C 2.75V 컷-오프 방전하여 측정하였으며, 공칭 용량 대비 -20℃에서의 방전 용량을 % 비율로 나타내었다. 사이클 수명 특성은 전지를 0.2C, 4.1V 정전류 정전압(constant current constant voltage)로 충전 후 -20℃ 16시간 방치 후 0.2C 2.75V 컷-오프 방전시켜 측정하였다.An 18650 type cylindrical battery was manufactured using the positive electrode plate, negative electrode plate, and electrolyte solution. The low temperature discharge efficiency of this battery was measured and shown in Table 1, and the cycle life characteristics were measured and shown in FIG. Low-temperature discharge efficiency was measured by 1C, 4.1V constant current constant voltage charging, 1C 2.75V cut-off discharge, the discharge capacity at -20 ℃ compared to the nominal capacity expressed as a percentage ratio. Cycle life characteristics were measured by 0.2C, 2.75V cut-off discharge after charging the battery to 0.2C, 4.1V constant current constant voltage and left at -20 ℃ 16 hours.

전해액 조성Electrolyte composition 저온 방전 효율 (%)Low Temperature Discharge Efficiency (%) ECEC PCPC DMCDMC DECDEC 실시예 1Example 1 36부피%36% by volume 16부피%16% by volume 36부피%36% by volume 12부피%12% by volume 82.982.9 비교예 1Comparative Example 1 50부피%50% by volume 50부피%50% by volume 21.221.2 비교예 2Comparative Example 2 42.5부피%42.5% by volume 42.5부피%42.5% by volume 15부피%15% by volume 72.172.1

상기 표 1에서 보이는 바와 같이, EC:DMC 시스템에 DEC를 첨가함으로써 저온 특성이 개선되며, 여기에 PC를 첨가하면 저온 특성이 더욱 향상됨을 알 수 있다.As shown in Table 1, the low temperature characteristics are improved by adding DEC to the EC: DMC system, and it can be seen that the low temperature characteristics are further improved by adding PC thereto.

또한 도 1에서 보이는 바와 같이, EC:DMC 시스템에 DEC를 첨가함으로써 사이클 수명 특성이 저하되나, 여기에 PC를 첨가하면 사이클 수명 특성이 월등히 향상됨을 알 수 있다.In addition, as shown in FIG. 1, the cycle life characteristics are lowered by adding DEC to the EC: DMC system, but it can be seen that the cycle life characteristics are significantly improved when the PC is added thereto.

본 발명에 따른 전해액은 음극 활물질로 결정성 흑연을 사용하는 리튬 이온 전지에 바람직하게 적용될 수 있는 것으로 저온 방전 특성 및 사이클 수명 특성이 우수하며, DEC를 상대적으로 소량 포함함으로써 전기전도도 및 리튬염에 대한 용해도가 상대적으로 우수한 전해액을 제공한다.The electrolyte according to the present invention can be suitably applied to lithium ion batteries using crystalline graphite as a negative electrode active material, and has excellent low-temperature discharge characteristics and cycle life characteristics, and includes relatively small amounts of DEC, thereby preventing electrical conductivity and lithium salts. It provides an electrolyte solution having a relatively high solubility.

Claims (3)

양극 활물질로서 금속 산화물을 사용하고, 음극 활물질로 결정성 흑연을 사용하는 리튬 이온 전지용 전해액으로서, 에틸렌 카보네이트(ethylene carbonate), 디메틸 카보네이트(dimethyl carbonate), 디에틸 카보네이트(diethyl carbonate) 및 프로필렌 카보네이트(propylene carbonate)를 포함하는 비수성 유기 용매와 리튬염을 포함하는 리튬 이온 전지용 전해액.As an electrolyte for lithium ion batteries using a metal oxide as a positive electrode active material and crystalline graphite as a negative electrode active material, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and propylene carbonate A non-aqueous organic solvent containing carbonate) and a lithium ion battery electrolyte containing a lithium salt. 제 1항에 있어서, 상기 전해액은 5-50부피%의 에틸렌 카보네이트, 3-40부피%의 디메틸 카보네이트, 5-20부피%의 디에틸 카보네이트 및 5-50부피%의 프로필렌 카보네이트를 포함하는 것을 특징으로 하는 리튬 이온 전지용 전해액.The method of claim 1, wherein the electrolyte comprises 5-50% ethylene carbonate, 3-40% dimethyl carbonate, 5-20% diethyl carbonate and 5-50% propylene carbonate. An electrolyte solution for lithium ion batteries. 제 1항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4및 이들의 혼합물로 이루어진 군에서 선택되는 것인 리튬 이온 전지용 전해액.The electrolyte of claim 1, wherein the lithium salt is selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4, and mixtures thereof.
KR1019980057488A 1998-12-23 1998-12-23 Electrolyte for Lithium Ion Battery KR100521463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980057488A KR100521463B1 (en) 1998-12-23 1998-12-23 Electrolyte for Lithium Ion Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980057488A KR100521463B1 (en) 1998-12-23 1998-12-23 Electrolyte for Lithium Ion Battery

Publications (2)

Publication Number Publication Date
KR20000041563A true KR20000041563A (en) 2000-07-15
KR100521463B1 KR100521463B1 (en) 2006-01-12

Family

ID=19564804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980057488A KR100521463B1 (en) 1998-12-23 1998-12-23 Electrolyte for Lithium Ion Battery

Country Status (1)

Country Link
KR (1) KR100521463B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030436A (en) * 2016-09-15 2018-03-23 도요타 지도샤(주) Lithium ion secondary battery and method of manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127266T2 (en) * 1990-12-12 1998-03-12 Sanyo Electric Co Non-aqueous electrolyte cell
JPH05217602A (en) * 1992-01-31 1993-08-27 Sony Corp Nonaqueous electrolyte battery
JP3278837B2 (en) * 1992-08-31 2002-04-30 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH0684542A (en) * 1992-09-02 1994-03-25 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030436A (en) * 2016-09-15 2018-03-23 도요타 지도샤(주) Lithium ion secondary battery and method of manufacturing same
US10411265B2 (en) 2016-09-15 2019-09-10 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of manufacturing same

Also Published As

Publication number Publication date
KR100521463B1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7709154B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
JP4012174B2 (en) Lithium battery with efficient performance
KR100988657B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US20060078792A1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
KR20050014408A (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20200082557A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
KR100515331B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US20040101762A1 (en) Electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR20040037053A (en) Electrolyte for Lithium Rechargeable Battery to Control Swelling
KR100708210B1 (en) Nonaqueous electrolyte for secondary battery
KR100521463B1 (en) Electrolyte for Lithium Ion Battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100328152B1 (en) Nonaqueous Battery Electrolyte
KR100328153B1 (en) Nonaqueous Battery Electrolyte
KR100309777B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
KR100309776B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
KR100309775B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
KR100417084B1 (en) New additives for electrolyte and lithium ion battery using the same
KR101340024B1 (en) Lithium rechargeable battery
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR20090120963A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR20080087343A (en) Lithium rechargeable battery
KR100277790B1 (en) Electrolyte for Lithium Ion Secondary Battery
KR20000014375A (en) Electrolyte for lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160922

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 14

EXPY Expiration of term