KR20000039560A - Tertiary treatment of wastewater - Google Patents

Tertiary treatment of wastewater Download PDF

Info

Publication number
KR20000039560A
KR20000039560A KR1019980054924A KR19980054924A KR20000039560A KR 20000039560 A KR20000039560 A KR 20000039560A KR 1019980054924 A KR1019980054924 A KR 1019980054924A KR 19980054924 A KR19980054924 A KR 19980054924A KR 20000039560 A KR20000039560 A KR 20000039560A
Authority
KR
South Korea
Prior art keywords
wastewater
reverse osmosis
activated carbon
water
osmosis membrane
Prior art date
Application number
KR1019980054924A
Other languages
Korean (ko)
Other versions
KR100313670B1 (en
Inventor
홍진의
백제석
주용현
윤창한
Original Assignee
차동천
한솔제지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차동천, 한솔제지 주식회사 filed Critical 차동천
Priority to KR1019980054924A priority Critical patent/KR100313670B1/en
Publication of KR20000039560A publication Critical patent/KR20000039560A/en
Application granted granted Critical
Publication of KR100313670B1 publication Critical patent/KR100313670B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Abstract

PURPOSE: A tertiary treatment of wastewater is provided, which is characterized in that raw water is filtered, and organic matters are adsorbed by activated carbon, then ionic matters are treated by osmotic pressure. CONSTITUTION: Organic matters included in wastewater are cohered by using inorganic cohesion agent like alum and polymer cohesion agent. The size of cohered floc and intensity are appropriate, so the amount of remained agent can be reduced. Raw water including surface active agent is difficult to disintegrate biologically, so, activated carbon is used for adsorbing. A filtration device which uses dead-end flow form is provided. The membrane of the filtration device is made of poly acrylo nitrile, and remained organic matters are piled on the membrane. Pressured air is passed through the membrane for scrubbing, so, operating pressure can also be lowered.

Description

제관 공장폐수의 고도정화 처리방법Advanced purification of wastewater from factory

본 발명은 제관 공장폐수의 고도정화 처리방법에 관한 것으로서, 더욱 상세하게는 원폐수를 응집 부상처리 및 다층여과 처리한 후 활성탄 흡착법을 이용하여 비이온성 계면활성제 성분이 유발하는 유기물을 일부 제거하고, 그 다음에 역세가능한 한외여과 장치로 분자량이 큰 유기물질과 현탁물질을 제거한 후 역삼투막으로 처리하여 이온성 물질을 제거한 다음에 역삼투막 처리수는 제관 제조공정수로 재사용하고 역삼투막 농축수는 다시 활성탄 흡착법으로 처리하여 방류하므로써, 기존의 제관 공장폐수의 정화 처리방법에 비하여 월등히 우수한 정화처리능을 갖음은 물론, 응집 침전방법을 사용하지 않기 때문에 응집 침전을 위한 넓은 부지가 필요없고 투자비와 운전비를 크게 낮출 수 있어 경제적이면서, 발생된 폐수를 대부분 재사용할 수 있어 하천이나 지하수의 오염을 크게 줄일 수 있는 개선된 제관 공장폐수의 고도정화 처리방법에 관한 것이다.The present invention relates to a method for highly purified treatment of wastewater from a steel mill, and more specifically, after the flocculation flotation and multi-layer filtration of the raw wastewater, the organic matter caused by the nonionic surfactant component is removed by using activated carbon adsorption. Then, a high-molecular-weight reverse filtration apparatus removes the organic material and the suspended substance with high molecular weight, and then treats with reverse osmosis membrane to remove the ionic substance, and then the reverse osmosis membrane treated water is reused as manufacturing process water and reverse osmosis membrane concentrated water is again activated carbon adsorption method. By discharging and discharging, it not only has a superior purification performance compared to the conventional treatment method of wastewater from the steel mill, but also does not use the coagulation sedimentation method, thus eliminating the need for a large site for coagulation sedimentation and significantly lowering the investment and operating costs. It is economical and can reuse most of the generated waste water It relates to a method for purifying highly improved canning factory waste water can greatly reduce the pollution of the groundwater or cloth.

음료수 용기에 사용되는 스틸캔은 첨부도면 도 1에 나타낸 바와 같은 공정으로 제조되는데, 원료인 스틸코일을 들여와서 프레스에 의해 컵을 만들고, 인쇄 및 내부 코팅을 위해서 컵 표면의 이물질이나 윤활유를 제거하여야 하고, 이를 위하여 탈지 및 세척공정을 수행하는데, 이러한 탈지 및 세척공정에서 대부분의 폐수가 발생하게 되며, 이때 발생되는 폐수는 폐수 중에 수용성 오일과 미세량의 자유오일을 함유하고, 계면활성제를 포함하여 생분해성이 낮으므로 화학적인 방법으로 처리하는데, 제관용 원폐수는 첨부도면 도 1에 나타낸 바와 같이 pH는 6 ∼ 8이고, COD는 50 ∼ 60ppm이며, 고형화물(SS)는 50 ∼ 60ppm이고, n-헥산은 40 ∼ 50ppm인 폐수이다.Steel cans used in beverage containers are manufactured by a process as shown in the accompanying drawings, in which a steel coil as a raw material is brought in to make a cup by a press, and foreign substances or lubricants on the surface of the cup are removed for printing and internal coating. To this end, degreasing and washing processes are performed, and most of the wastewater is generated in the degreasing and washing process, and the generated wastewater contains water-soluble oils and fine amounts of free oil in the wastewater, and includes biodegradable substances including surfactants. Since it is low, it is treated by a chemical method. As shown in FIG. 1, the raw wastewater for canning is pH 6-8, COD 50-60 ppm, solids (SS) 50-60 ppm, n- Hexane is wastewater with 40-50 ppm.

제관 공장폐수의 일반적 처리공정은 첨부도면 도 2에 나타낸 바와 같은 바, 이를 첨부도면을 들어 더욱 상세히 하면 다음과 같다.The general treatment process of the wastewater plant can be as shown in the accompanying drawings, Figure 2, which will be described in more detail for the accompanying drawings.

먼저, 원폐수로부터 자유오일을 제거하기 위하여 유수분리기로 처리한 다음에, 수용성 오일과 부유고형물, 유기물질을 제거하기 위하여 FeCl3, NaOH 및 음이온성 고분자 응집제를 첨가하여 1차 응집 침전처리한다. 그 다음에 유기물의 농도를 낮추기 위하여 분말활성탄(100 메쉬 이하)과 함께 FeCl3, NaOH 및 음이온성 고분자 응집제를 첨가하여 2차 응집침전 처리한 후, 상기 응집침전 처리수로부터 잔존 고형물을 제거하기 위해 모래여과 장치를 통해 여과시킨다. 그 다음에 활성탄 흡착탑을 사용하여 유기물을 저감시켜 방류하는 것이다.First, treatment with an oil / water separator to remove free oil from the raw wastewater, and then primary flocculation precipitation treatment by addition of FeCl 3 , NaOH and anionic polymer flocculant to remove water-soluble oils, suspended solids and organic substances. Then, in order to lower the concentration of organic matter, secondary coagulation sedimentation treatment was performed by adding FeCl 3 , NaOH, and anionic polymer coagulant together with powdered activated carbon (100 mesh or less), and then to remove residual solids from the coagulation sedimentation treatment water. Filter through a sand filtration device. Then, the activated carbon adsorption column is used to reduce organic matter and discharge the same.

그러나, 상기 방법은 응집 침전처리를 위해서 넓은 부지를 필요로 하는 문제점이 있으며, 분말활성탄을 사용하므로 응집을 위하여 다량의 무기응집제와 고분자응집제를 첨가하여야 되고, 높은 운전비로 인하여 경제적이지 않음은 물론, 처리수내의 전도도를 높이는 문제가 있다.However, the method has a problem that requires a large site for the flocculation sedimentation treatment, and because powdered activated carbon is used, a large amount of inorganic flocculant and polymer flocculant must be added for flocculation, and it is not economical due to high operating cost. There is a problem of increasing the conductivity in the treated water.

또한, 종래의 제관 공장폐수 정화방법은 추가적으로 폐수 재활용 방법을 도입할 수 있는 바, 이러한 폐수 재활용 방법은 평행흐름(cross-flow) 방식의 정밀여과 또는 한외여과처리한 후, 역삼투막으로 처리하여 처리수를 제관 제조공정에 재사용하고, 농축수는 산화법을 사용하여 처리한 후, 방류하거나 증발농축기로 농축하는 것이다. 그러나, 상기 평행흐름(cross-flow) 방식의 정밀여과 또는 한외여과처리할 경우, 펌프(pump)의 운전압에 따라 운전비가 많이 소요되고, 여과막에 생성된 오염물을 여과막으로부터 제거하기 위하여 약품세정이 필요하게 되고, 설령 약품세정을 하더라도 여과막의 처리수량이 100%로 회복되기 어려운 문제가 있다.In addition, the conventional waste water purification method in the steel can factory can additionally introduce a wastewater recycling method, such wastewater recycling method is treated with a reverse osmosis membrane after the cross-flow microfiltration or ultrafiltration treatment. It is reused in the manufacturing process, and the concentrated water is treated using an oxidation method, and then discharged or concentrated by an evaporator. However, in the case of the cross-flow microfiltration or ultrafiltration treatment, a high operating cost is required according to the operating pressure of the pump, and chemical cleaning is performed to remove contaminants generated in the filtration membrane from the filtration membrane. If necessary, even if the cleaning of the drug, there is a problem that the treated water amount of the membrane is difficult to recover to 100%.

또한, 역삼투막의 농축수를 처리하는 방법에 있어서, 펜톤(Fenton)법으로 처리할 경우에는 약품비가 과다하게 소요되고, 자외선(UV)으로 처리할 경우에는 전력소모로 인한 운전비가 높아 경제적이지 않으며, 증발농축기로 처리하는 방법은 고농도 폐수에 적합한 방법으로 운전비가 대단히 높은 문제점이 있다.In addition, in the method of treating the concentrated water of the reverse osmosis membrane, when the treatment by the Fenton method is excessively expensive, and when treated with ultraviolet (UV), the operating cost due to power consumption is not economical, Treatment with an evaporator is a method suitable for high concentration wastewater has a very high operating costs.

따라서, 기존의 제관 공장폐수의 정화 처리방법에 비하여 월등히 우수한 정화처리능을 갖음은 물론, 응집 침전방법을 사용하지 않기 때문에 응집 침전을 위한 넓은 부지가 필요없고 투자비와 운전비를 크게 낮출 수 있어 경제적이면서, 발생된 폐수를 대부분 재사용할 수 있어 하천이나 지하수의 오염을 크게 줄일 수 있는 개선된 제관 공장폐수의 고도정화 처리방법을 제공하는데 그 목적이 있다.Therefore, it has excellent purification treatment ability compared to the existing treatment method of wastewater in the steel mill, and also does not use the flocculation sedimentation method, so it does not need a large site for flocculation sedimentation, and it is possible to reduce the investment cost and operation cost significantly. The aim is to provide an improved method for the advanced purification of wastewater from the factory, which can reuse most of the generated wastewater, thus greatly reducing pollution of rivers and groundwater.

도 1은 제관 제조공정을 나타낸 개략도이고,1 is a schematic view showing a manufacturing process of the tube,

도 2는 종래의 제관 공장폐수의 처리과정을 나타낸 개략도이고,2 is a schematic view showing a conventional process of treating wastewater from a steel mill,

도 3은 본 발명에 따른 제관 공장폐수의 처리과정을 나타낸 개략도이다.Figure 3 is a schematic diagram showing the treatment process of the canister factory wastewater according to the present invention.

본 발명은 제관 공장폐수를 정화처리하는 방법에 있어서,The present invention relates to a method for purifying a wastewater plant.

a) 제관 공장에서 발생하는 종합 원폐수를 응집 부상처리하는 과정;a) a process of flocculating flotation of the total raw wastewater generated in the steel mill;

b) 상기 부상 처리수를 다층여과 장치로 여과한 후, 8 ∼ 30메쉬의 입자크기를 갖는 석탄계열의 활성탄 흡착장치로 흡착처리하는 과정;b) filtering the flotation water with a multilayer filtration apparatus and then adsorbing the coal-based activated carbon adsorption apparatus having a particle size of 8 to 30 mesh;

c) 상기 활성탄 흡착처리수를 한외여과 장치로 여과하는 과정;c) filtering the activated carbon adsorption treated water with an ultrafiltration device;

d) 상기 한외여과 처리수를 역삼투막으로 여과하여 역삼투막 처리수 및 역삼투막 농축수로 분리하는 과정; 그리고d) filtering the ultrafiltration treated water with a reverse osmosis membrane to separate the reverse osmosis membrane treated water and the reverse osmosis membrane concentrated water; And

e) 상기 역삼투막 처리수를 제관 제조공정에 재사용하고, 상기 역삼투막 농축수를 활성탄 흡착탑으로 흡착처리하여 방류하는 과정으로 구성된 제관 공장 폐수의 고도정화처리 방법을 그 특징으로 한다.e) The reverse osmosis membrane treated water is reused in a manufacturing process, and the reverse osmosis membrane concentrated water is adsorbed by an activated carbon adsorption tower.

본 발명에 따른 폐수의 정화처리방법을 첨부한 도 3을 중심으로 각 과정별로 구체적으로 설명하면 다음과 같다.With reference to Figure 3 attached to the wastewater purification treatment method according to the present invention will be described in detail for each process as follows.

먼저, 제관 제조공장에서 발생된 종합 원폐수 중에 함유된 유기물질을 알럼(Alum)계 무기응집제 800 ∼ 1,200ppm, 아크릴산계 음이온 고분자응집제 2 ∼ 3ppm을 투입하여 응집시킨 후, 상기 응집된 폐수를 가압부상 설비를 사용하여 부상 처리한다. 이때, 알럼계열의 무기응집제와 아크릴산계의 음이온 고분자응집제를 사용할 경우, 가격이 저렴하고 응집된 플럭들의 크기가 적당하고 강도가 크기 때문에 약품비용 절감과 잔류 응집제를 감소 시킬 수 있고, 폐수내의 전도도의 상승폭을 줄일 수 있으며, 또한 부상 처리하는 과정을 도입하므로서 폐수표면에 부상하고 있어 침전방법으로 처리가 곤란한 자유오일(free oil)의 제거 효율을 향상시킬수 있으며, 소요부지도 줄일수 있다. 만일 상기 알럼(Alum)계 무기응집제를 800ppm 미만으로 첨가할 경우, 응집 플럭이 잘 형성되지 않는 문제가 있어 바람직하지 않고, 반면에 1,200ppm을 초과하여 첨가할 경우, 응집플럭의 크기가 작게 형성되어 바람직하지 않다. 또한, 상기 아크릴산계 음이온 고분자응집제를 2 ppm 미만으로 첨가할 경우, 응집된 플럭의 응결이 작게 일어나 바람직하지 않고, 반면에 3ppm을 초과하여 첨가할 경우, 고분자 응집제가 잔류하여 여과공정에서 여과매체를 뭉치게 할 수 있으므로 바람직하지 않다.First, the organic material contained in the general wastewater generated in the steel pipe manufacturing plant is agglomerated by adding 800-1,200ppm of Alum-based inorganic coagulant and 2-3ppm of acrylic acid-based anionic polymer coagulant, and then pressurizing the agglomerated wastewater. Use flotation equipment to handle the injury. In this case, when the alum-based inorganic coagulant and acrylic acid anionic polymer coagulant are used, the cost is low, the size of the flocculated flocs is appropriate and the strength is high, thereby reducing the chemical cost and reducing the residual coagulant, and the conductivity of the wastewater. It can reduce the extent of the rise and also improve the removal efficiency of free oil, which is difficult to treat by the sedimentation method because it is floating on the surface of the waste water by introducing the flotation process, and the required site can be reduced. If the alum-based inorganic coagulant is added below 800 ppm, there is a problem in that the flocculation floc is not well formed. On the other hand, when it is added in excess of 1,200 ppm, the flocculation floc has a small size. Not desirable In addition, when the acrylic acid-based anionic polymer coagulant is added below 2 ppm, the flocculation of the aggregated floc is small, which is not preferable. On the other hand, when it is added in excess of 3 ppm, the polymer coagulant remains and the filtration medium is filtered. This is undesirable because it can clump together.

상기 부상처리를 통해 생성된 미세 플럭을 함유한 부상처리수를 다층여과기를 사용하여 제거한다.The flotation treatment water containing the fine floc produced through the flotation treatment is removed using a multilayer filter.

그 다음 과정으로, 원폐수는 계면활성제 성분을 포함하고 있으므로 화학적, 생물학적으로 분해가 어렵기 때문에, 계면활성제 성분을 쉽게 흡착하는 8 ∼ 30 메쉬의 입자크기를 갖는 석탄계열의 활성탄을 사용하여 흡착처리하므로 계면활성제 성분으로 유발되는 화학적 산소요구량이 크게 감소시킬 수 있다. 이때, 상기 활성탄의 입자크기를 8메쉬 미만으로 할 경우, 활성탄 사이의 공극이 넓어 여과효율이 감소하여 바람직하지 않고, 반면에 그 입자크기가 30메쉬를 초과할 경우, 공극이 너무 작아 여과유속이 감소하고 역세유속을 크게하여야 하므로 바람직하지 않다.As a next step, the raw waste water contains a surfactant component, which is difficult to decompose chemically and biologically. Therefore, the adsorption treatment is performed using coal-based activated carbon having a particle size of 8 to 30 mesh that easily adsorbs the surfactant component. Therefore, the chemical oxygen demand caused by the surfactant component can be greatly reduced. In this case, when the particle size of the activated carbon is less than 8 mesh, the pore between the activated carbons is wide and the filtration efficiency is not preferable. On the other hand, when the particle size exceeds 30 mesh, the pore size is too small and the filtration flow rate is low. This is undesirable because it requires a decrease and a large backwash flow rate.

그 다음 과정으로는, 폐수의 재활용을 위한 역삼투막처리의 전처리 공정으로서 역세척이 가능한 수직류(dead-end) 흐름 방식의 한외여과 장치를 사용하여 한외여과처리를 수행한다. 한외여과 장치에 사용된 한외여과막은 기공크기가 0.01㎛이며, 신축성이 있는 폴리아크리로니트릴(PAN)의 재질로써 중공사 형태를 사용한다.Next, as a pretreatment process of reverse osmosis membrane for recycling wastewater, ultrafiltration is performed using a dead-end flow type ultrafiltration apparatus capable of backwashing. The ultrafiltration membrane used in the ultrafiltration apparatus has a pore size of 0.01 μm and uses a hollow fiber form as a material of the elastic polyacrylonitrile (PAN).

상기 한외여과 장치의 여과원리는 다음과 같다. 활성탄 흡착탑 처리수를 한외여과막 외부에서 내부로 통과시킨다. 이때, 여과가 진행되는 동안 잔존 유기물질 및 현탁물질은 한외여과막 외부에 쌓이게 되고 여과수의 흐름은 수직류(dead-end) 흐름 방식이며, 유입된 처리수는 모두 여과가 이루어진다. 그런 다음 한계 투과수량에 도달하게 되면, 현탁물질이 한외여과막의 표면에 쌓이므로 운전압이 상승하게 된다. 따라서, 운전압을 낮추고 한외여과막의 오염을 줄이기 위해서 한외여과막의 역세척을 실시하는데, 이러한 역세척은 한외여과 처리수를 여과막의 내부에서 외부로 통과시켜 막의 기공내에 있는 오염물과 표면에 쌓여 있는 오염물을 일부 제거한 후, 외부로부터 압축공기를 유입하여 세척(scrubbing)을 행하여 중공사막이 좌우로 심하게 흔들릴 수 있도록 하여 여과막의 외부에 붙어 있는 현탁물질을 떨어내고, 여과막 세척에 사용된 세척수는 한외여과막으로부터 배출시킨다. 이러한 현탁물질의 여과, 역세척, 압축공기에 의한 세척(scrubbing) 및 세척물 배출의 반복과정을 통해 여과막의 운전압을 낮출 수 있고 여과막의 오염을 줄일 수 있는 것이다.The filtration principle of the ultrafiltration device is as follows. Activated carbon adsorption column treated water is passed from the outside of the ultrafiltration membrane to the inside. At this time, the remaining organic material and the suspended material is accumulated outside the ultrafiltration membrane during the filtration process, the flow of the filtered water is a dead-end flow method, all the treated water is filtered. Then, when the limit permeate amount is reached, the operating pressure increases because the suspended substance accumulates on the surface of the ultrafiltration membrane. Therefore, in order to lower the operating pressure and reduce the contamination of the ultrafiltration membrane, the ultrafiltration membrane is backwashed. This backwashing passes the ultrafiltration treated water from the inside of the filtration membrane to the outside, and the contaminants accumulated in the pores of the membrane and the contaminants accumulated on the surface. After removing some of them, scrubbing is performed by introducing compressed air from the outside so that the hollow fiber membranes can be shaken severely from side to side to remove the suspended substances attached to the outside of the filtration membrane, and the washing water used for the filtration membrane is washed from the ultrafiltration membrane. Discharge it. Filtration, backwashing, scrubbing of compressed air, and the repeated discharge of the washing material can reduce the operating pressure of the filtration membrane and reduce the contamination of the filtration membrane.

상기 한외여과처리를 거침으로 현탁물질이 완전히 제거된 한외여과 처리수를 역삼투막으로 유입시켜 역삼투처리하는 바, 역삼투막은 안정적으로 이온성 물질과 유기물질을 저감시켜 역삼투막 처리수와 역삼투막 농축수로 분리시키고, 상기 역삼투막을 거친 상기 역삼투막 처리수는 제관 제조공정수로 재사용하며, 역삼투막을 거쳐 농축된 상기 역삼투막 농축수는 활성탄 흡착탑으로 처리한 후 방류하므로써, 전체 폐수량의 극히 소량만이 외부로 배출되는 것이다.After the ultrafiltration treatment, the ultrafiltration treated water completely removed from the suspension material is introduced into the reverse osmosis membrane, and the reverse osmosis membrane is stably separated from the reverse osmosis membrane treated water and the reverse osmosis membrane concentrated water by reducing ionic substances and organic substances. The reverse osmosis membrane treated water passed through the reverse osmosis membrane is reused as a manufacturing process water, and the reverse osmosis membrane concentrated water concentrated through the reverse osmosis membrane is discharged after treating with activated carbon adsorption tower, so that only a small amount of the total wastewater is discharged to the outside. .

이와 같은 본 발명을 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Although this invention is demonstrated in more detail based on an Example, this invention is not limited by an Example.

실시예Example

본 발명에 따른 폐수 정화처리공정을 사용하되, 다음 표 1에 나타낸 조성, 함량 및 조건으로 실시하였다. 그리고, CODCr, CODMn을 통상적인 방법으로 측정하여 그 결과를 다음 표 1에 나타내었고, 경제성을 하기한 처리비 기준으로 평가하여 다음 표 1에 나타내었다.Wastewater purification treatment process according to the invention was used, but was carried out with the composition, content and conditions shown in Table 1. In addition, COD Cr and COD Mn were measured by a conventional method, and the results are shown in Table 1 below.

처리비 기준Treatment fee basis

1. 알럼(Alum)계열의 응집제(C1) : 60원/㎏(비중 1.2)1. Alum-based coagulant (C1): 60 won / ㎏ (specific gravity 1.2)

2. FeCl3: 200원/㎏ (비중 1.4)2. FeCl 3 : 200 won / ㎏ (specific gravity 1.4)

3. 분말활성탄 : 1500원/㎏3. Powdered activated carbon: 1500 won / ㎏

4. 석탄계열의 입상활성탄 : 1,500원/㎏4. Granular activated carbon of coal series: 1,500 won / ㎏

비교예 1 ∼ 4Comparative Examples 1 to 4

첨부도면 도 2에 도시한 바와 같은 기존의 폐수 정화처리 공정을 사용하되, 상기 실시예와 동일한 방법으로 수행하였다.Attached drawings In the conventional wastewater purification process as shown in Figure 2, but using the same method as the above embodiment.

구 분division 원폐수Wastewater 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 실시예Example 조 성Furtherance 알럼계열 응집제 (ppm)1) Alum Coagulant (ppm) 1) -- -- 10001000 10001000 10001000 10001000 FeCl3(ppm)FeCl 3 (ppm) -- 10001000 -- -- -- -- 유기물 흡착제(ppm)Organic Sorbent (ppm) -- 500500 500500 -- -- -- 음이온성 고분자응집제(ppm)2) Anionic polymer coagulant (ppm) 2) -- 22 22 22 22 22 분말활성탄(ppm)3) Powdered activated carbon (ppm) 3) -- -- -- 500500 500500 입상활성탄흡착처리4) Granular activated carbon adsorption treatment 4) pH 조정pH adjustment -- 77 77 77 77 77 검사결과test results CODCr COD Cr 152152 3535 3030 3434 3131 1010 CODMn COD Mn 5252 16.816.8 14.214.2 14.914.9 14.314.3 55 CODMn제거율(%)COD Mn removal rate (%) -- 67.767.7 72.772.7 71.371.3 72.572.5 9090 처리비 (원/㎥)Treatment Fee (KRW / ㎥) -- 11801180 972972 10301030 822822 576576 (주)1) 제품명: C1, 제조회사명 : 신진화학 제품2) 제품명: A-601P, 제조회사명 : 이양화학 제품3) : 제품명: SPC-100, 제조회사명 : (주)삼천리 제품4) : 입상활성탄 흡착능: COD 0.1㎏ 제거/활성탄 1㎏1) Product Name: C1, Company Name: Shinjin Chemicals 2) Product Name: A-601P, Company Name: Yiyang Chemicals3): Product Name: SPC-100, Company Name: Samchully Products4 ): Granular activated carbon adsorption capacity: 0.1 kg of COD removal / 1 kg of activated carbon

상기 표 1 결과를 볼 때, 기존의 폐수 정화처리공정을 사용한 경우(비교예 3)에는 처리비가 972원/㎥이고, CODMn제거율이 72.7%인 것에 비해, 본 발명에 따른 폐수 정화처리공정을 사용한 경우(실시예)에는 처리비가 576원/㎥이고, CODMn제거율이 90%으로 처리비의 저감측면에서와 CODMn제거율에 있어서 월등히 향상된 결과를 얻을 수 있었다.In the results of Table 1, when the existing wastewater purification process is used (Comparative Example 3), the wastewater purification process according to the present invention is compared with the treatment cost of 972 won / m 3 and the COD Mn removal rate of 72.7%. In the case of use (Example), the treatment cost was 576 won / m 3, and the COD Mn removal rate was 90%, resulting in a much improved result in terms of reduction in treatment cost and COD Mn removal rate.

실험예 : 본 발명에 의한 처리공정 각 단계별 수질분석Experimental Example: Water quality analysis for each step of the treatment process according to the present invention

본 발명에 따른 폐수의 정화처리공정에 의하여 제관 생산공장에서 발생하는 폐수(500톤/일)를 고도정화처리하고, 폐수의 콜로이드 및 입자에 의해 발생하는 오염비율을 추정하기 위하여 다음 수학식 1에 의해 계산된 SDI(Silt Density Index)를 사용하여 30 psi 압력하에서 47㎜ 직경의 0.45㎛ 기공을 가진 평막을 통과하는 유량 및 유속감소를 측정하였다.By the wastewater purification process according to the present invention, the wastewater (500 tons / day) generated in the steel production plant is highly purified, and the following equation 1 is used to estimate the pollution rate generated by the colloid and particles of the wastewater. The SDI (Silt Density Index) calculated by the above was used to measure the flow rate and flow rate through the flat membrane having 0.45 μm pores of 47 mm diameter under 30 psi pressure.

상기 수학식 1에서 :In Equation 1 above:

TI는 실험초기 500㎖를 투과하는데 걸리는 시간이고,TI is the time taken to penetrate 500 ml at the beginning of the experiment,

TF는 F분 경과후 500㎖ 투과하는데 걸리는 시간이고,TF is the time taken to penetrate 500 ml after F minutes,

F는 경과시간(분)이다.F is the elapsed time in minutes.

그리고, 탁도를 분광광도계로 측정하였으며, TDS(Total Dissolved Solid)를 TDS Meter로 측정하였다. 그리고, 본 발명에 따른 원폐수 그리고 각 장치별 처리수질을 다음 표 2에 나타내었다.And turbidity was measured by a spectrophotometer, TDS (Total Dissolved Solid) was measured by a TDS meter. In addition, the raw wastewater according to the present invention and the treated water quality of each apparatus are shown in Table 2 below.

구 분division 종합 원폐수General wastewater 응집부상처리수Flocculation flotation 다층여과처리수Multilayer filtration water 활성탄여과 처리수Activated Carbon Filtration 한외여과 처리수Ultrafiltration Treatment 역삼투막 처리수Reverse Osmosis Membrane Treatment Water 역삼투막 농축수→활성탄여과Reverse osmosis membrane concentrated water → Activated carbon filtration CODCr COD Cr 측정값 (ppm)Measured value (ppm) 152152 6565 6060 1010 1010 55 32 → 1832 → 18 제거율 (%)Removal rate (%) -- 5757 88 8383 -- -- 4343 CODMn COD Mn 측정값 (ppm)Measured value (ppm) 5252 3636 3434 33 33 1One 10 → 510 → 5 제거율 (%)Removal rate (%) -- 3030 77 9191 -- -- 5050 탁도Turbidity 측정값 (ppm)Measured value (ppm) -- 0.530.53 0.450.45 0.350.35 0.300.30 0.150.15 2.90→2.862.90 → 2.86 제거율 (%)Removal rate (%) -- -- 1515 2222 -- 5050 33 TDSTDS 측정값 (ppm)Measured value (ppm) 1,5801,580 1,6901,690 1,6901,690 1,6801,680 1,6801,680 8080 4,700→4,6504,700 → 4,650 제거율 (%)Removal rate (%) -- -- -- -- -- 9595 --

상기 표 2의 결과를 보면, 원수를 응집부상 처리한 결과, 유분은 50 ppm에서 1 ppm 이하로 제거 되었으며, CODMn은 30%의 제거효율을 보였고, 유기물 제거를 위해 입상 활성탄을 사용한 결과, CODMn제거율이 90% 이상으로 높게 나타났으며, 탁도 제거율도 22%를 나타내었다. 또한, 현탁물질을 제거하기 위해 한외여과처리를 수행하게되면 투과수질의 SDI가 0.5 이하의 값을 보여 역삼투막의 유입수로 양호한 수질을 보였으며, 역삼투막의 처리수는 TDS를 95% 제거하여 공정수로 사용하는데 적합하였고, 역삼투막의 농축수를 활성탄으로 처리할 경우, CODCr가 18ppm이었으며, CODMn는 5ppm을 나타내어 외부로 방류하여도 환경오염에 거의 영향이 없음을 알 수 있다.In the results of Table 2, when flocculation flotation treatment of raw water, the oil was removed from 50 ppm to less than 1 ppm, COD Mn showed 30% removal efficiency, using granular activated carbon to remove organic matter, COD Mn removal rate was higher than 90% and turbidity removal rate was 22%. In addition, when the ultrafiltration treatment was performed to remove the suspended substances, the SDI of permeated water showed a value of 0.5 or less, which showed good water quality as the inflow of the reverse osmosis membrane. When the concentrated water of the reverse osmosis membrane was treated with activated carbon, COD Cr was 18ppm, and COD Mn was 5ppm, indicating that there was little effect on environmental pollution even when discharged to the outside.

따라서, 본 발명에 따른 제과 공장폐수의 정화처리방법은 기존의 제관 공장폐수의 정화 처리방법에 비하여 월등히 우수한 정화처리능을 갖음은 물론, 응집 침전방법을 사용하지 않기 때문에 응집 침전을 위한 넓은 부지가 필요없고 투자비와 운전비를 크게 낮출 수 있어 경제적이면서, 발생된 폐수를 대부분 재사용할 수 있어 하천이나 지하수의 오염을 크게 줄이는 효과가 있다.Therefore, the confectionery plant wastewater purification method according to the present invention has a much better purification treatment ability than the existing plant-based plant wastewater purification process, and does not use the flocculation sedimentation method. It is economical because it is not necessary, and the investment cost and operation cost can be greatly reduced, and most of the generated wastewater can be reused, which greatly reduces the pollution of rivers and groundwater.

Claims (3)

제관 공장폐수를 정화처리하는 방법에 있어서,In the method for purifying the canning plant wastewater, a) 제관 공장에서 발생하는 종합 원폐수를 응집 부상처리하는 과정;a) a process of flocculating flotation of the total raw wastewater generated in the steel mill; b) 상기 부상 처리수를 다층여과 장치로 여과한 후, 8 ∼ 30메쉬의 입자크기를 갖는 석탄계열의 활성탄 흡착장치로 흡착처리하는 과정;b) filtering the flotation water with a multilayer filtration apparatus and then adsorbing the coal-based activated carbon adsorption apparatus having a particle size of 8 to 30 mesh; c) 상기 활성탄 흡착처리수를 한외여과 장치로 여과하는 과정;c) filtering the activated carbon adsorption treated water with an ultrafiltration device; d) 상기 한외여과 처리수를 역삼투막으로 여과하여 역삼투막 처리수 및 역삼투막 농축수로 분리하는 과정; 그리고d) filtering the ultrafiltration treated water with a reverse osmosis membrane to separate the reverse osmosis membrane treated water and the reverse osmosis membrane concentrated water; And e) 상기 역삼투막 처리수를 제관 제조공정에 재사용하고, 상기 역삼투막 농축수를 활성탄 흡착탑으로 흡착처리하여 방류하는 과정으로 구성된 것을 특징으로 하는 제관 공장 폐수의 고도정화처리 방법.and e) reusing the reverse osmosis membrane treated water in a manufacturing process, and discharging the reverse osmosis membrane concentrated water with an activated carbon adsorption tower to discharge the purified water. 제 1 항에 있어서, 상기 응집부상처리는 알럼계 무기응집제 800 ∼ 1,200 ppm과 아크릴산계 음이온 고분자응집제 2 ∼ 3 ppm를 첨가하는 것을 특징으로 하는 제관 공장 폐수의 고도정화처리 방법.2. The method of claim 1, wherein the flocculation flotation treatment comprises adding 800-1,200 ppm of an alum inorganic coagulant and 2-3 ppm of an acrylic acid anionic polymer coagulant. 제 1항에 있어서, 상기 한외여과장치는 수직류(dead-end) 흐름방식으로 여과하고, 한외여과막의 재질을 폴리아크릴로니트릴로하여 제작된 것을 특징으로 하는 제관 공장 폐수의 고도정화처리 방법.The method of claim 1, wherein the ultrafiltration device is filtered using a dead-end flow method, and the ultrafiltration membrane is made of polyacrylonitrile.
KR1019980054924A 1998-12-14 1998-12-14 Treatment of the steel-can waste water KR100313670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980054924A KR100313670B1 (en) 1998-12-14 1998-12-14 Treatment of the steel-can waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980054924A KR100313670B1 (en) 1998-12-14 1998-12-14 Treatment of the steel-can waste water

Publications (2)

Publication Number Publication Date
KR20000039560A true KR20000039560A (en) 2000-07-05
KR100313670B1 KR100313670B1 (en) 2002-11-25

Family

ID=19562784

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980054924A KR100313670B1 (en) 1998-12-14 1998-12-14 Treatment of the steel-can waste water

Country Status (1)

Country Link
KR (1) KR100313670B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736428B1 (en) * 2001-09-19 2007-07-09 주식회사 미래엔지니어링 A method for removal and recovery of nitrogen compounds in the wastewater and a device therefor
KR100809683B1 (en) * 2005-07-14 2008-03-07 삼성전자주식회사 Semiconductor Memory Device and Multi row address test method which reduces Multi row address test time.
KR100898015B1 (en) * 2002-08-30 2009-05-19 재단법인 포항산업과학연구원 Method for treatment of watersoluble oil containing waste water having improved membrane process
WO2015184471A3 (en) * 2014-05-30 2017-05-04 Znano Llc Systems for treating water
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures
US10589231B2 (en) 2010-05-21 2020-03-17 Znano Llc Self-assembled surfactant structures

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736428B1 (en) * 2001-09-19 2007-07-09 주식회사 미래엔지니어링 A method for removal and recovery of nitrogen compounds in the wastewater and a device therefor
KR100898015B1 (en) * 2002-08-30 2009-05-19 재단법인 포항산업과학연구원 Method for treatment of watersoluble oil containing waste water having improved membrane process
KR100809683B1 (en) * 2005-07-14 2008-03-07 삼성전자주식회사 Semiconductor Memory Device and Multi row address test method which reduces Multi row address test time.
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures
US10589231B2 (en) 2010-05-21 2020-03-17 Znano Llc Self-assembled surfactant structures
US11401179B2 (en) 2010-05-21 2022-08-02 Diamond Gold Investors, Llc Self-assembled surfactant structures
WO2015184471A3 (en) * 2014-05-30 2017-05-04 Znano Llc Systems for treating water
JP2017518176A (en) * 2014-05-30 2017-07-06 ゼットナノ エルエルシーzNano LLC System for treating water
JP2021073092A (en) * 2014-05-30 2021-05-13 ゼットナノ エルエルシーzNano LLC System for treating water

Also Published As

Publication number Publication date
KR100313670B1 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
CA2080939A1 (en) Fluid treatment process using dynamic microfiltration and ultrafiltration
KR100611171B1 (en) Advanced water treatment using membrane Filtration
WO2013054810A1 (en) Organic sewage collection processing device and collection processing method
KR101391709B1 (en) a method of treating emulsified oil wastewater for industrial water reuse
KR100356343B1 (en) Sewage and wastewater recycling metacarpus-treatment system using reverse osmosis membrane
TWI387562B (en) Process and treatment device for water containing biological treatment water
RU2422383C2 (en) Complex for sorption treatment of contaminated waters
KR100313670B1 (en) Treatment of the steel-can waste water
CN113480089A (en) Advanced treatment method of petrochemical wastewater
JP2003093803A (en) Oil-containing wastewater treatment method
US20040026326A1 (en) Liquid treatment method and apparatus
JP4169614B2 (en) Wastewater treatment method
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
KR0162157B1 (en) Process for treating chemical waste by reverse osmotic membrane system
KR100352740B1 (en) Pretreatment Method of Water Reuse System using Air Flotation and Continuous Microfilter
KR200383096Y1 (en) Advanced water treatment using membrane Filtration
CN206437968U (en) A kind of system of high-salt wastewater treatment for reuse
CN114538693A (en) Cleaning agent regeneration method for antirust surface cleaning process
Jang et al. Performance of ultrafiltration membrane process combined with coagulation/sedimentation
KR20060005023A (en) Electro-coagulation activated carbon filtration system
JP4229361B2 (en) Cleaning wastewater treatment method
KR101091092B1 (en) Two step advanced water purification apparatus
JP2002346347A (en) Method and apparatus for filtration

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091001

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee