KR20000039148A - Method for the preparation of nickel-alumina catalyst, nickel-alumina catalyst therefrom, and method for modifying carbon dioxide by methane using the same - Google Patents
Method for the preparation of nickel-alumina catalyst, nickel-alumina catalyst therefrom, and method for modifying carbon dioxide by methane using the same Download PDFInfo
- Publication number
- KR20000039148A KR20000039148A KR1019980054391A KR19980054391A KR20000039148A KR 20000039148 A KR20000039148 A KR 20000039148A KR 1019980054391 A KR1019980054391 A KR 1019980054391A KR 19980054391 A KR19980054391 A KR 19980054391A KR 20000039148 A KR20000039148 A KR 20000039148A
- Authority
- KR
- South Korea
- Prior art keywords
- nickel
- catalyst
- carbon dioxide
- alumina
- methane
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
본 발명은 촉매상의 코크생성이 방지되는 니켈-알루미나 촉매제조방법, 이에 따라 제조된 촉매 및 이를 이용한 메탄의 이산화탄소개질방법에 관한 것이며, 보다 상세하게는 공침법에 의한 니켈-알루미나 촉매 제조방법, 제조된 촉매 및 이를 이용한 메탄의 이산화탄소개질방법에 관한 것이다.The present invention relates to a method for preparing a nickel-alumina catalyst to prevent coke formation on a catalyst, a catalyst prepared according to the present invention, and a method for carbon dioxide reforming of methane using the same, and more particularly, a method for preparing a nickel-alumina catalyst by coprecipitation and preparation. And a method for carbon dioxide reforming of methane using the same catalyst.
메탄의 이산화탄소 개질반응은 천연가스의 대부분을 차지하고 있는 메탄을 활성화시켜 유용한 화합물로 전환하는 자원활용 측면과 지구 온난화기체인 이산화탄소의 고정화라는 측면에서 매우 큰 의의를 갖는 것이다.The carbon dioxide reforming reaction of methane has great significance in terms of resource utilization, which activates methane, which accounts for most of natural gas, and converts it into useful compounds, and immobilization of carbon dioxide, a global warming gas.
메탄의 이산화탄소 개질반응은 다음과 화학식 1과 같이 진행되며, 이때 얻어지는 혼합가스는 기존의 수증기 개질반응에 비하여 수소:일산화탄소의 비가 1:1에 가깝기 때문에 옥소합성공정이나 Fisher-Tropsch 합성, 초산의 제조에 효과적이며, 또한 높은 흡열도로 인하여 화학에너지 전송시스템(Chemical Energy Transport System, CET)등의 분야에서 공업적인 주목을 받고 있다.The carbon dioxide reforming reaction of methane proceeds as shown in the following formula (1), and the mixed gas obtained at this time has a ratio of hydrogen: carbon monoxide close to 1: 1 compared to the conventional steam reforming reaction. In addition, due to its high degree of endotherm, it has received industrial attention in the field of Chemical Energy Transport System (CET).
메탄의 이산화탄소 개질반응은 매우 강한 흡열반응로서 주어진 온도에서의 이론적 최대 전환률인 평형전환률은 온도가 높아짐에 따라 증가하여 650℃ 이상의 온도에서 반응이 개시되며, 보통 850℃정도에서 반응이 진행된다. 이 반응은 반응기체의 탄소 대 수소의 비가 높아 열역학적으로 탄소의 형성이 용이하다는 특징이 있으며 따라서 보다 낮은 온도에서 우수한 활성을 나타낸다. 그러나, 촉매상에 코크가 생성됨에 따라 촉매활성이 저하됨으로 코크의 생성과 소결에 의한 비활성화에 강한 촉매의 개발이 이 분야에서 중요한 개발분야로 대두되고 있다.The carbon dioxide reforming reaction of methane is a very strong endothermic reaction. The equilibrium conversion rate, which is the theoretical maximum conversion rate at a given temperature, increases with increasing temperature, and the reaction starts at a temperature above 650 ° C. This reaction is characterized by a high carbon-to-hydrogen ratio of the reactor, which is thermodynamically easy to form carbon, and thus shows excellent activity at lower temperatures. However, as coke is generated on the catalyst, catalytic activity is lowered, and thus, development of a catalyst resistant to coke formation and deactivation by sintering has emerged as an important development field in this field.
종래 사용되는 촉매로는 크게 두 종류의 촉매계가 제시되고있는데, 수증기 개질촉매로서 널리 알려진 니켈-알루미나 촉매와 Rh, Pt, Ir등의 귀금속 촉매로서 대부분 8족 전이금속등이며, 모두 평형전환률에 근접하는 높은 활성을 나타내는 것으로 보고되고 있다.Conventionally, two types of catalyst systems have been proposed. Nickel-alumina catalysts, which are widely known as steam reforming catalysts, and precious metal catalysts such as Rh, Pt, and Ir, are mostly Group 8 transition metals, and all are close to equilibrium conversion rates. Is reported to exhibit high activity.
귀금속 담지 촉매는 1990년 영국의 Cheetham 등에 의해(Veron. P.D.F, Green, M.L.H, Cheetham, A.K. and Ashcroft, A. T., Catal. Today, 13, 417, 1992) 처음 보고된 이래로 많은 연구가 이루어졌으며, 반응활성이 높고 코크가 적게 형성되는 안정한 촉매를 개발할 수 있음을 보여주고 있다. 그러나, 귀금속 촉매의 경우 다량의 촉매를 필요로 하는 실제 공정에 도입시 경제성이 저하되는 문제가 있으며, 이에 보다 경제적인 촉매의 개발을 필요로 하는 것이다.Precious metal supported catalysts have been studied since Cheetham et al. In England (Veron. PDF, Green, MLH, Cheetham, AK and Ashcroft, AT, Catal. Today, 13, 417, 1992). It has been shown that it is possible to develop stable catalysts with high and low coke formation. However, in the case of the noble metal catalyst, there is a problem that the economical efficiency is lowered when introduced into the actual process requiring a large amount of catalyst, it is necessary to develop a more economic catalyst.
한편, 수증기 개질반응의 촉매로 널리 알려진 니켈계 촉매는 높은 활성을 갖으며, 경제적으로도 유리한 점이 있으나 급격한 코크의 생성으로 촉매의 안정성이 떨어지는 문제점이 있다. 따라서 다양한 촉매의 변형에 의하여 코크의 생성을 억제시켜 안정성을 확보하는 것에 연구의 초점이 맞추어져 진행되고 있다.On the other hand, nickel-based catalysts, which are widely known as catalysts for steam reforming reactions, have high activity and are economically advantageous, but have a problem in that the stability of the catalysts is poor due to the rapid formation of coke. Therefore, research is focused on securing the stability by suppressing the formation of coke by modification of various catalysts.
이에 본 발명의 목적은 우수한 활성 및 안정성을 갖으며, 메탄의 이산화탄소개질에 사용되는 니켈-알루미나 촉매의 제조방법 및 이에 따라 제조된 촉매를 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for preparing a nickel-alumina catalyst used for carbon dioxide reforming of methane and a catalyst prepared according to the present invention.
본 발명의 다른 목적은 촉매상의 코크발생이 감소되는 메탄의 이산화탄소 개질에 사용되는 니켈-알루미나 촉매를 제공하는 것이다.It is another object of the present invention to provide a nickel-alumina catalyst used for carbon dioxide reforming of methane where coke generation on the catalyst is reduced.
본 발명의 또 다른 목적은 상기 니켈-알루미나 촉매를 이용한 메탄의 이산화탄소개질 방법을 제공하는 것이다.Still another object of the present invention is to provide a carbon dioxide reforming method of methane using the nickel-alumina catalyst.
본 발명에 있어서,In the present invention,
니켈과 알루미나의 질산염, 황산염, 초산염 및 염화물을 각각 물에 첨가하고 첨전물이 형성되도록 pH를 조절하는 단계;Adding nitrates, sulfates, acetates and chlorides of nickel and alumina to water, respectively, and adjusting the pH to form a additive;
상기 단계에서 형성되는 침전물을 850∼1000℃의 온도로 공기분위기하에서 소성하는 단계; 및Firing the precipitate formed in the step at an air temperature of 850 to 1000 ° C .; And
소성된 촉매 전구체를 850℃이상의 온도로 수소분위기하에서 환원시키는 단계;Reducing the calcined catalyst precursor to a temperature of at least 850 ° C. under a hydrogen atmosphere;
를 포함하는 니켈-알루미나의 촉매제조방법이 제공된다.Provided is a method for producing a catalyst of nickel-alumina comprising a.
본 발명의 다른 견지에 있어서,In another aspect of the present invention,
니켈과 알루미나의 질산염, 황산염, 초산염 및 염화물을 각각 물에 첨가하고 첨전물이 형성되도록 pH를 조절하는 단계;Adding nitrates, sulfates, acetates and chlorides of nickel and alumina to water, respectively, and adjusting the pH to form a additive;
상기 단계에서 형성되는 침전물을 850∼1000℃의 온도로 공기분위기하에서 소성하는 단계; 및Firing the precipitate formed in the step at an air temperature of 850 to 1000 ° C .; And
소성된 촉매 전구체를 850℃이상의 온도로 수소분위기하에서 환원시키는 단계;Reducing the calcined catalyst precursor to a temperature of at least 850 ° C. under a hydrogen atmosphere;
를 포함하는 방법에 의해 제조된 니켈-알루미나 촉매가 제공된다.Provided is a nickel-alumina catalyst prepared by a method comprising a.
본 발명의 또 다른 견지에 있어서,In another aspect of the present invention,
상기 본 발명에 의한 니켈-알루미나 촉매존재하에서 메탄과 이산화탄소를 750∼1000℃로 반응시킴을 특징으로 하는 메탄의 이산화탄소개질방법이 제공된다.In the presence of a nickel-alumina catalyst according to the present invention there is provided a carbon dioxide reforming method of methane, characterized in that the reaction of methane and carbon dioxide at 750 ~ 1000 ℃.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
종래 니켈-알루미나 촉매는 함침법으로 제조하나, 본원발명에서의 니켈-알루미나 촉매는 공침법에 의해 제조한다.Conventional nickel-alumina catalysts are prepared by impregnation, but nickel-alumina catalysts in the present invention are prepared by coprecipitation.
즉, 물에 니켈 및 알루미나염을 첨가하여 용해시킨 후, 침전물이 형성되도록 pH를 조절한다. 이 때 사용되는 니켈 및 알루미나염은 니켈 및 알루미나의 질산염, 초산염, 황산염 및 염화물이다. 그 후 형성된 침전물을 공기분위기하에서 850∼1000℃의 온도로 소성시킨다.That is, after adding and dissolving nickel and alumina salts in water, the pH is adjusted to form a precipitate. Nickel and alumina salts used at this time are nitrates, acetates, sulfates and chlorides of nickel and alumina. Thereafter, the formed precipitate is calcined at a temperature of 850 to 1000 ° C. under an air atmosphere.
850℃이하의 온도에서 소성하는 경우, 니켈-알루미나 촉매상에 코크가 형성되고 따라서 촉매가 비활성화된다. 또한, 850℃이상의 온도에서 소성시켰을 때, 메탄의 이산화탄소개질반응에서 평형전화률에 근접하는 높은 활성과 안정성을 나타낸다. 850℃이상의 온도에서 촉매를 소성시켰을 때 촉매가 니켈알루미네이트를 형성하는 등 금속성분이 변형되어 이루어진 것으로 판단되며 이것은 XRD분석으로 확인된다. 1000℃이상의 온도에서는 금속이 휘발되고, 니켈 및 알루미나가 엉겨붙고 표면적이 감소되어 촉매로서의 활성이 저하된다. 또한, 1000℃이상에서의 소성은 에너지면에서도 불리한 것이다.When firing at temperatures below 850 ° C., coke forms on the nickel-alumina catalyst and the catalyst is thus deactivated. In addition, when calcined at a temperature of 850 ℃ or higher, it shows high activity and stability close to the equilibrium conversion rate in the carbon dioxide reforming reaction of methane. When the catalyst is calcined at a temperature of 850 ° C. or higher, it is determined that the metal component is modified such that the catalyst forms nickel aluminate, which is confirmed by XRD analysis. At temperatures of 1000 ° C. or higher, metals volatilize, nickel and alumina become entangled, and the surface area is reduced to lower the activity as a catalyst. In addition, firing at 1000 ° C or higher is disadvantageous in terms of energy.
상기한 바와 같이 소성한 후, 수소분위기하에서 850℃이상의 온도로 상기 소성된 촉매전구체를 환원시킨다. 소성된 촉매전구체를 환원시킴에 따라, 촉매전구체는 촉매로서 반응활성을 나타내는 환원된 금속표면으로 활성화된다. 환원시킴으로써, 니켈 및 알루미나 산화물이 니켈 및 알루미나 금속으로 전환된다. 850℃이하의 온도에서는 금속 산화물 형태의 촉매전구체가 충분이 금속으로 전환되지 않는다.After calcining as described above, the calcined catalyst precursor is reduced at a temperature of 850 ° C. or higher under hydrogen atmosphere. As the calcined catalyst precursor is reduced, the catalyst precursor is activated to a reduced metal surface that exhibits reactive activity as a catalyst. By reduction, nickel and alumina oxides are converted to nickel and alumina metals. At temperatures below 850 ° C., the catalytic precursor in the form of a metal oxide is not sufficiently converted to metal.
이와 같은 공침법으로 제조된 니켈-알루미나 촉매는 니켈과 알루미나가 니켈알루미네이트를 형성하여, 두 물질이 촉매전반에 고르게 분포한다.In the nickel-alumina catalyst prepared by the co-precipitation method, nickel and alumina form nickel aluminate, and both materials are evenly distributed throughout the catalyst.
상기 니켈-알루미나 촉매는 메탄의 이산화탄소개질 반응에 촉매로 사용된다.The nickel-alumina catalyst is used as a catalyst in the carbon dioxide reforming reaction of methane.
상기한 바와 같이 공침법으로 제조된 니켈-알루미나 촉매존재하에 750∼1000℃의 반응온도에서 메탄과 이산화탄소를 반응시킴으로써 상기 화학식 1의 반응에 의해 메탄과 이산화탄소는 일산화탄소 및 수소로 전환된다.As described above, methane and carbon dioxide are converted into carbon monoxide and hydrogen by the reaction of Chemical Formula 1 by reacting methane and carbon dioxide at a reaction temperature of 750 to 1000 ° C. in the presence of a nickel-alumina catalyst prepared by co-precipitation.
750℃이하에서 메탄과 이산화탄소를 반응시키는 경우, 촉매표면에 코크가 형성되어 촉매 활성이 감소되며, 1000℃이상의 온도에서는 촉매중 금속성분이 휘발되고 소결에 의해 촉매의 표면적이 감소되며, 따라서 촉매의 활성이 저하된다.When methane and carbon dioxide are reacted below 750 ° C., coke is formed on the surface of the catalyst to reduce the catalytic activity. At temperatures above 1000 ° C., metal components in the catalyst are volatilized and the surface area of the catalyst is reduced by sintering. Activity is reduced.
이하, 본 발명의 실시예에 대하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.
실시예Example
본 실시예에서 사용한 촉매는 니켈과 알루미나의 질산염, 초산염, 황산염, 염화물을 사용하여 공침시켜 제조하였으며, 120℃에서 12 시간동안 건조한 후, 각 실시예 및 비교예에 나타낸 온도로 소성시켰다.The catalyst used in this example was prepared by coprecipitation using nitrates, acetates, sulfates, chlorides of nickel and alumina, dried at 120 ° C. for 12 hours, and then calcined at the temperatures shown in the examples and comparative examples.
또한, 본 발명에 의한 방법으로 제조된 니켈-알루미나 촉매와 비교하기 위해 알루미나 담체에 질산염을 담지시켜 니켈-알루미나 촉매를 제조하였다. 제조후, 각 촉매에서 니켈의 함량은 17wt%였다.In addition, a nickel-alumina catalyst was prepared by supporting nitrate on an alumina carrier for comparison with the nickel-alumina catalyst prepared by the method according to the present invention. After preparation, the nickel content in each catalyst was 17 wt%.
상기 제조된 촉매전구체는 850℃의 온도에서 2시간동안 수소분위기하에서 환원시킨 후 사용하였다. 촉매의 반응활성을 측정하기 위해, 석영관으로 제작된 연속 흐름반응장치를 사용하였으며, 반응전후의 성분분석은 기체 크로마토그래피로 행하였다.The prepared catalyst precursor was used after reduction under hydrogen atmosphere at a temperature of 850 ° C. for 2 hours. In order to measure the reaction activity of the catalyst, a continuous flow reactor made of quartz tube was used, and the component analysis before and after the reaction was performed by gas chromatography.
실시예 1Example 1
상기 니켈 및 알루미나염을 각각 공침시켜 제조한 촉매 0.25g을 반응기에 충진하고 850℃로 승온한 후 6시간동안 공기분위기에서 소성하고, 그 후 수소분위기하에서 2시간동안 환원시켰다. 그 후 같은 온도에서 메탄과 이산화탄소가 1:1로 혼합된 가스를 100ml/min의 속도로 반응기로 주입하여 반응시켰다.0.25 g of the catalyst prepared by co-precipitation of the nickel and alumina salts was charged in a reactor, heated to 850 ° C., and then calcined in an air atmosphere for 6 hours, and then reduced for 2 hours under a hydrogen atmosphere. Thereafter, a mixture of methane and carbon dioxide 1: 1 at the same temperature was injected into the reactor at a rate of 100 ml / min and reacted.
그 결과 각각의 촉매가 동일하게 이산화탄소의 전환률은 98.2%로 평형전환률과 근접한 우수한 활성을 나타내며, 200시간동안 반응상태를 유지한 결과 최종 이산화탄소의 전환률은 97.8%로 초기 반응활성에 비하여 거의 변화되지 않음을 나타내었다.As a result, each of the catalysts showed the same level of CO2 conversion of 98.2%, showing excellent activity close to the equilibrium conversion rate, and after 200 hours of reaction, the final CO2 conversion rate was 97.8%, which is almost unchanged compared to the initial reaction activity. Indicated.
실시예 2Example 2
촉매의 소성온도를 1000℃로 한 것을 제외하고는 실시예 1과 동일한 조건에서 반응을 행하였다. 그 결과 이산화탄소의 전환율은 98.3%였고, 200시간동안 촉매의 비활성화는 관찰되지 않았다.The reaction was carried out under the same conditions as in Example 1 except that the calcination temperature of the catalyst was set at 1000 ° C. As a result, the conversion rate of carbon dioxide was 98.3%, and no catalyst deactivation was observed for 200 hours.
실시예 3Example 3
메탄과 이산화탄소의 반응온도를 750℃로 한 것을 제외하고는 실시예 1과 동일한 조건에서 반응을 행하였으며, 그 결과 이산화탄소의 전환율은 86.1%였고, 200시간동안 촉매의 활성저하가 관찰되지 않았다.The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature of methane and carbon dioxide was 750 ° C. As a result, the conversion of carbon dioxide was 86.1%, and no deactivation of the catalyst was observed for 200 hours.
실시예 4Example 4
메탄과 이산화탄소의 반응온도를 1000℃로 한 것을 제외하고는 실시예 1과 동일한 조건에서 반응을 행하였으며, 그 결과 이산화탄소의 전환율은 99%였고, 200시간동안 촉매의 활성저하가 관찰되지 않았다.The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature of methane and carbon dioxide was set to 1000 ° C. As a result, the conversion of carbon dioxide was 99%, and no deactivation of the catalyst was observed for 200 hours.
비교예 1Comparative Example 1
촉매의 소성온도를 800℃로 한 것을 제외하고는 실시예 1과 같은 방법으로 시험을 행하였으며, 그 결과 이산화탄소의 전환률은 98.2%였으며, 50분 경과후 촉매상에 형성된 코크에 의해 반응기가 막혔다. 따라서 촉매의 소성온도는 850℃이상이어야 함을 알 수 있다.The test was carried out in the same manner as in Example 1 except that the calcination temperature of the catalyst was 800 ° C. As a result, the conversion rate of carbon dioxide was 98.2%, and the reactor was blocked by coke formed on the catalyst after 50 minutes. Therefore, it can be seen that the firing temperature of the catalyst should be more than 850 ℃.
비교예 2Comparative Example 2
반응온도를 650℃로 한 것을 제외하고는 실시예 1과 같은 조건에서 반응을 행하였으며, 그 결과 이산화탄소의 전환률은 66.7℃로서 평형전환률에 근접한 활성을 보였으나, 반응시작후 60분 경과시 촉매에 코크가 침적되어 반응기가 막혔으며, 더 이상의 반응이 진행되지 않았다.The reaction was carried out under the same conditions as in Example 1, except that the reaction temperature was set at 650 ° C., and as a result, the conversion rate of carbon dioxide was 66.7 ° C., showing an activity close to the equilibrium conversion rate. Coke deposited and the reactor blocked, and no further reaction proceeded.
비교예 3Comparative Example 3
니켈-알루미나 촉매를 종래의 함침법으로 제조한 것을 제외하고는 실시예 1과 같은 방법으로 시험한 결과 초기 이산화탄소의 전환율은 97.6%였으나, 반응시작 후 20분 경과시, 촉매에 코크가 침적되어 반응기가 막혔으며, 더 이상의 반응이 진행되지 않았다.The nickel-alumina catalyst was tested in the same manner as in Example 1 except that the catalyst was prepared by the conventional impregnation method, but the conversion rate of the initial carbon dioxide was 97.6%. Was blocked and no further reaction proceeded.
상기 실시예에서와 같이 종래의 함침법으로 알루미나 담체에 니켈을 함침시켜 제조한 니켈-알루미나 촉매의 경우, 소성온도를 변화시켜도 금속성분의 상변화정도가 미비하였으며, 반응성 측정결과 초기 반응속도는 우수하나 반응이 진행됨에 따라 촉매상에 급격히 코크가 생성되며 따라서 촉매의 활성이 저하되고 촉매의 안정성이 또한 저하된다.In the case of the nickel-alumina catalyst prepared by impregnating alumina carrier with nickel by the conventional impregnation method as in the above embodiment, the degree of phase change of the metal component was insufficient even when the firing temperature was changed, and the initial reaction rate was excellent as a result of the reactivity measurement. However, as the reaction proceeds, coke is rapidly formed on the catalyst, so that the activity of the catalyst is lowered and the stability of the catalyst is also lowered.
그러나, 이에 반하여 본원발명에 의한 공침법으로 제조된 니켈-알루미나 촉매는 메탄의 이산화탄소개질반응에 촉매로 사용하는 경우, 우수한 이산화탄소의 전환률을 나타낼 뿐만 아니라 200시간 경과시에도 촉매의 비할성화가 관찰되지 않는다. 즉, 촉매상에의 코크형성에 의한 촉매의 비활성화 현상이 발생되지 않는다.However, the nickel-alumina catalyst prepared by the coprecipitation method according to the present invention, when used as a catalyst for the carbon dioxide reforming reaction of methane, not only shows a good conversion rate of carbon dioxide but also no deactivation of the catalyst after 200 hours. Do not. That is, the deactivation phenomenon of the catalyst due to coke formation on the catalyst does not occur.
종래 함침법으로 제조되는 촉매는 알루미나 담체표면에 니켈금속이 존재하나, 본원발명의 공침법으로 제조된 촉매는 니켈알루미네이트를 형성하는 것으로 동일한 니켈-알루미나계 촉매이나, 촉매내에서 각 성분이 존재하는 상태가 상이하며, 이와 같은 차이점으로 인하여 촉매상의 코크형성이 방지됨으로써 메탄의 이산화탄소 개질반응에 대한 촉매로서의 우수한 활성 및 안정성을 나타내는 것이다.The catalyst prepared by the conventional impregnation method has a nickel metal on the surface of the alumina carrier, but the catalyst prepared by the coprecipitation method of the present invention is the same nickel-alumina-based catalyst as forming nickel aluminate, but each component is present in the catalyst. Due to this difference, coke formation on the catalyst is prevented due to such a difference, thereby showing excellent activity and stability as a catalyst for the carbon dioxide reforming reaction of methane.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0054391A KR100406363B1 (en) | 1998-12-11 | 1998-12-11 | A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0054391A KR100406363B1 (en) | 1998-12-11 | 1998-12-11 | A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000039148A true KR20000039148A (en) | 2000-07-05 |
KR100406363B1 KR100406363B1 (en) | 2004-01-24 |
Family
ID=19562366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0054391A KR100406363B1 (en) | 1998-12-11 | 1998-12-11 | A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100406363B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180131145A (en) * | 2017-05-31 | 2018-12-10 | 한국에너지기술연구원 | Preparing method for ldh-based catalyst, catalyst prepared by the method, preparing method for ldh-based composite materials and composite materials prepared by the method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3988263A (en) * | 1974-10-02 | 1976-10-26 | Union Oil Company Of California | Thermally stable coprecipitated catalysts useful for methanation and other reactions |
US4191664A (en) * | 1975-06-16 | 1980-03-04 | Union Oil Company Of California | Thermally stable nickel-alumina catalysts useful for methanation and other reactions |
KR0132012B1 (en) * | 1994-02-26 | 1998-04-08 | 강박광 | Preparation of hydrocarbon reforming catalyst |
EP0692451B1 (en) * | 1994-07-13 | 2000-05-17 | Zhaolong Zhang | A stable and active nickel catalyst for carbon dioxide reforming of methane to synthesis gas |
JPH08131835A (en) * | 1994-11-11 | 1996-05-28 | Kaoru Fujimoto | Production of catalyst composition for producing synthesis gas of hydrogen and carbon monoxide from methane and carbon dioxide |
JPH08259203A (en) * | 1995-03-17 | 1996-10-08 | Sekiyu Shigen Kaihatsu Kk | Production of synthesis gas by using carbon dioxide containing natural gas as raw material |
JPH0925101A (en) * | 1995-07-10 | 1997-01-28 | Agency Of Ind Science & Technol | Method for reforming methane with carbon dioxide and catalyst used for the same |
KR100293200B1 (en) * | 1996-12-20 | 2001-10-24 | 이구택 | Nickel based catalyst used in carbon dioxide reforming(cdr) reaction of methane and reforming method using the same |
-
1998
- 1998-12-11 KR KR10-1998-0054391A patent/KR100406363B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180131145A (en) * | 2017-05-31 | 2018-12-10 | 한국에너지기술연구원 | Preparing method for ldh-based catalyst, catalyst prepared by the method, preparing method for ldh-based composite materials and composite materials prepared by the method |
Also Published As
Publication number | Publication date |
---|---|
KR100406363B1 (en) | 2004-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5285776B2 (en) | Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same | |
US6693060B2 (en) | Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas | |
AU767267B2 (en) | Nickel-rhodium based catalysts and process for preparing synthesis gas | |
JP2000084410A (en) | Preparation of autothermal reforming catalyst and production of hydrogen or synthesis gas | |
Igarashi et al. | Low-temperature steam reforming of n-butane over Rh and Ru catalysts supported on ZrO 2 | |
KR20010101612A (en) | Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum | |
KR101363384B1 (en) | Perovskite-supported catalysts for combined steam and carbon dioxide reforming with natural gas | |
Zhang et al. | CO 2 Conversion to Value‐Added Gas‐Phase Products: Technology Overview and Catalysts Selection | |
KR100406363B1 (en) | A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same | |
JPH0977501A (en) | Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials | |
KR100336968B1 (en) | Modified Zirconia-supported nickel reforming catalysts and its use for producing synthesis gas from natural gas | |
KR100912725B1 (en) | New catalysts for methane reforming with carbon dioxide to syngas, preparation method thereof and preparation method of syngas using there catalysts and carbon dioxide | |
KR101570943B1 (en) | A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof | |
KR101447681B1 (en) | Supported Perovskite type catalysts for combined steam and carbon dioxide reforming with methane | |
JPH07275711A (en) | Nickel-supported catalyst for modifying hydrocarbon and production thereof | |
RU2350386C1 (en) | Catalyst, method of preparation and method of synthetic gas production from methane | |
KR100390774B1 (en) | The preparation method of synthesis gas from natural gas by oxygen or steam-oxygen mixed reforming | |
KR100395095B1 (en) | A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst | |
JPH10194703A (en) | Catalyst for producing synthesis gas and production of synthesis gas | |
KR101440193B1 (en) | Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst | |
Maniecki et al. | Catalytic activity and physicochemical properties of Ni-Au/Al 3 CrO 6 system for partial oxidation of methane to synthesis gas | |
KR102186052B1 (en) | Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same | |
KR100293200B1 (en) | Nickel based catalyst used in carbon dioxide reforming(cdr) reaction of methane and reforming method using the same | |
Rakib et al. | Promoting effect of CeO2 addition on activity and catalytic stability in steam reforming of methane over Ni/Al2O3 | |
KR20240054706A (en) | Catalyst for reforming of methane and method for manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121107 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20131105 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20141105 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20151104 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20161107 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20171107 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |