KR20000039139A - Method of tempering cryogenic carbon steel by inputting recarburizing agent in vacuum degasifying - Google Patents

Method of tempering cryogenic carbon steel by inputting recarburizing agent in vacuum degasifying Download PDF

Info

Publication number
KR20000039139A
KR20000039139A KR1019980054382A KR19980054382A KR20000039139A KR 20000039139 A KR20000039139 A KR 20000039139A KR 1019980054382 A KR1019980054382 A KR 1019980054382A KR 19980054382 A KR19980054382 A KR 19980054382A KR 20000039139 A KR20000039139 A KR 20000039139A
Authority
KR
South Korea
Prior art keywords
molten steel
vacuum
decarburization
decarburizing
amount
Prior art date
Application number
KR1019980054382A
Other languages
Korean (ko)
Other versions
KR100406394B1 (en
Inventor
김종성
김창익
김시욱
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0054382A priority Critical patent/KR100406394B1/en
Publication of KR20000039139A publication Critical patent/KR20000039139A/en
Application granted granted Critical
Publication of KR100406394B1 publication Critical patent/KR100406394B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Abstract

PURPOSE: A tempering method is provided to improve purity of molten metal and to reduce producing cost by minimizing oxygen after decarburizing work without interrupting decarburizing work in vacuum degasifying process. CONSTITUTION: In a tempering method decarburizing and deoxidizing by flowing back the molten metal received in a ladle to a vacuum tub of a vacuum decarburizing line, a recarburizing agent from 0.09kg to 0.28kg per 1 ton of molten metal is input to the vacuum tub when the residual amount of oxygen before decarburizing is 400ppm and higher. The recarburizing agent is input dividedly from 0.03kg to 0.47kg per 1 ton in one time in decarburizing process within 2 and 5 minutes after starting flowing back.

Description

진공탈가스처리시 가탄제투입에 의한 극저탄소강의 정련방법Refining method of ultra low carbon steel by adding charcoal during vacuum degassing

본 발명은 자동차, 가전제품 등의 소재로 사용되는 극저탄소강의 정련방법에 관한 것으로, 보다 상세하게는 진공탈가스정련공정에서 가탄제를 투입하여 용존산소를 최소화함으로써 용강의 청정도를 향상시킬 수 있는 정련방법에 관한 것이다.The present invention relates to a method for refining ultra-low carbon steel used as a material for automobiles, home appliances, and more, and more specifically, to improve the cleanliness of molten steel by minimizing dissolved oxygen by incorporating a carbonization agent in a vacuum degassing and refining process. It relates to a refining method.

자동차, 가전제품 등의 소재에는 보통 강중 탄소 함량이 70ppm 이하의 극저탄소강이 이용되고 있으며, 최근 들어 고급강 수요의 증대에 따라 전로 출강후 진공탈가스처리를 실시하여 탄소함량을 극저로 관리하는 비율이 증가하고 있다.Ultra low carbon steels with a carbon content of less than 70 ppm are commonly used in materials such as automobiles and home appliances. Recently, as the demand for high quality steels increases, vacuum degassing is performed after the converter has been pulled out. The rate is increasing.

진공탈가스처리는 전로 출강후의 용강을 낮은 압력하에서 환류시킴으로써 수소, 질소 등의 성분을 감소시키거나 CO가스 발생에 의한 탈탄 및 탈산반응을 유도하여 극저탄소강을 제조하는데 주목적이 있는 것으로, 용강교반이나 환류에 의해 용강중의 개재물을 부상분리시켜 청정강을 얻는데도 그 목적이 있다. 이러한 극저탄소강의 정련공정에 있어 각 공정에서 용강은 아래 표 1과 같이 변한다.Vacuum degassing is the main purpose of manufacturing ultra-low carbon steel by reducing the components such as hydrogen and nitrogen by refluxing molten steel after tapping at low pressure or inducing decarburization and deoxidation by CO gas generation. In addition, the purpose is to obtain clean steel by floating separation of inclusions in molten steel by reflux. In the refining process of such ultra-low carbon steel, molten steel in each process is changed as shown in Table 1 below.

구분division 전로 취련종점Crusher Termination 진공탈가스개시 초기Initial start of vacuum degassing 진공탈가스개시 12∼20분후(탈산전)12 to 20 minutes after the start of vacuum degassing (before deoxidation) 용강온도(℃)Molten steel temperature (℃) 1650∼16801650-1680 1605∼16301605-1630 1580∼16001580-1600 탄소함량(ppm)Carbon content (ppm) 300∼500300-500 300∼480300 to 480 70∼2070-20 산소함량(ppm)Oxygen content (ppm) 500∼800500-800 350∼600350-600 300∼450300-450

이러한 용강의 정련공정에 있어 진공탈가스처리공정을 도 1를 통해 보다 구체적으로 설명하면 다음과 같다. 표 1과 같은 취련종점에서의 용강을 전로에서 레이들(1)로 출강한 다음, 레이들(1)에 수용된 용강(2)에 RH의 환류관(3)을 침적하여 RH의 진공 펌프(미도시)를 이용하여 진공조(1)내를 감압시키면 진공조 내부는 점차적으로 감압되어 수 토르(Torr)에 이르게 된다. 이때, 레이들의 용강은 침적관을 통해 진공조 내부로 상승되어 진공조 내부에서 탈탄 반응 및 탈가스 작업이 약 12∼20분동안 이루어진다.The vacuum degassing process in the refining process of such molten steel will be described in more detail with reference to FIG. 1 as follows. The molten steel at the termination point as shown in Table 1 is pulled out from the converter into the ladle 1, and then the reflux tube 3 of the RH is deposited on the molten steel 2 accommodated in the ladle 1 to obtain a vacuum pump of the RH. When the inside of the vacuum chamber 1 is depressurized using h), the inside of the vacuum chamber is gradually depressurized to reach several torr. At this time, the molten steel of the ladle is raised into the vacuum chamber through the deposition tube so that the decarburization reaction and the degassing operation are performed in the vacuum chamber for about 12 to 20 minutes.

상기와 같이 탈탄한 다음, 용강중 산소성분을 제거하기 위하여 탈산제인 알루미늄을 첨가하고 일정시간동안 용강을 환류하면서 아래 식(1)의 반응으로 알루미나를 발생시켜 산소를 제거한다. 알루미나는 환류되는 동안 충돌, 합체 및 부상분리과정을 통해 용강으로부터 슬래그층으로 이동하게 되나 일부는 여전히 용강중에 존재한다. 용강중의 비금속개재물은 첨가되는 알루미늄이 많을수록 많아지게 되어 제품의 결함을 유발하는 요인으로 작용하게 된다. 이러한 개재물은 완전히 제거하는 것은 불가능하기 때문에 최소화하는 것이 중요하나, 탈탄종료시점의 산소함량이 많아 최소화가 어려운 실정이다.After decarburizing as described above, in order to remove oxygen components in molten steel, aluminum as a deoxidizer is added, and molten steel is refluxed for a certain time to generate alumina by the reaction of Equation 1 below to remove oxygen. Alumina is transported from the molten steel to the slag layer through impingement, coalescence, and flotation separation during reflux, but some remain in the molten steel. Nonmetallic inclusions in the molten steel will increase as more aluminum is added, causing a defect in the product. Since it is impossible to completely remove these inclusions, it is important to minimize them, but it is difficult to minimize the oxygen content at the end of decarburization.

따라서, 최근에는 비금속개재물의 최소화보다는 정련시간의 단축을 위해 정련개시 초기 4-8분 동안 용강에 알루미늄을 소량씩 분할 투입하여 탈탄종료시점의 산소함량을 낮추어 탈산시간을 단축하는 방법이 제안된 바 있다. 그러나, 이 방법은 정련시간을 단축하는 장점은 있지만, 탈탄반응중 강한 탈산력을 지닌 알루미늄을 투입함으로써 탈탄반응을 억제하는 문제가 있고 여전히 알루미늄 과다 투입이 불가피하기 때문에 비금속개재물에 의한 고청정강의 제조가 어려운 실정이다.Therefore, in recent years, a method of shortening deoxidation time by reducing the oxygen content at the end of decarburization by dividing a small amount of aluminum into molten steel during the initial 4-8 minutes of refining rather than minimizing nonmetallic inclusions has been proposed. have. However, this method has the advantage of shortening the refining time, but there is a problem of suppressing the decarburization reaction by adding aluminum having strong deoxidizing power during the decarburization reaction, and the production of high clean steel using nonmetallic inclusions is still inevitable. Is difficult.

따라서, 본 발명은 상기의 종래기술의 문제를 해결하기 위해 안출된 것으로서, 진공탈가스공정중 탈탄작업에 지장을 주지 않고 탈탄작업후의 용존산소를 최소화하여 용강의 청정도를 효과적으로 향상시키면서 제조원가도 줄일 수 있는 극저탄소강의 정련방법을 제공하는데, 그 목적이 있다.Therefore, the present invention has been made to solve the above problems of the prior art, it is possible to reduce the production cost while effectively improving the cleanliness of molten steel by minimizing the dissolved oxygen after the decarburization operation without disturbing the decarburization operation during vacuum degassing process To provide a method for refining ultra low carbon steel, which has a purpose.

도 1 진공탈가스설비의 개략도1 is a schematic diagram of a vacuum degassing facility

도 2 가탄제 투입에 따른 알루미늄 투입량의 감소를 나타내는 그래프2 is a graph showing a decrease in the amount of aluminum input according to the addition of

도 3 탈산전 산소의 함량과 산화도의 관계를 나타내는 그래프3 is a graph showing the relationship between oxygen content and oxidation degree before deoxidation

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1..... 레이들 2..... 용강1 ..... ladle 2 ..... molten steel

3..... 침적관 4..... 진공조3 ..... immersion pipe 4 ..... vacuum chamber

상기 목적을 달성하기 위한 본 발명은, 레이들에 수강되어 있는 용강을 진공탈가스설비의 진공조내로 환류시켜 탈탄 및 탈산처리하는 정련방법에 있어서, 상기 용강의 용존산소량이 400 ppm이상의 경우 진공조내에 용강 1톤(TON)당 0.09∼0.28Kg의 가탄제를 탈탄처리중에 투입하는 것을 포함하여 구성된다.The present invention for achieving the above object, in the refining method of refluxing and deoxidation treatment by refluxing molten steel received in the ladle into the vacuum tank of the vacuum degassing equipment, the vacuum tank when the dissolved oxygen amount of the molten steel is 400 ppm or more It is comprised including the addition of 0.09-0.28Kg of a carburizing agent per ton of molten steel in a decarburization process.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 탈탄처리중에 가탄제를 투입하여 불필요한 용존산소를 제거함으로써, 탈산제의 투입량을 효과적으로 줄이는데, 그 특징이 있으며, 본 발명에 따라 가탄제를 투입하더라도 소강 탄소성분에는 아무런 지장이 없다.The present invention is characterized by effectively reducing the amount of deoxidizer added by adding a carbonizer during decarburization to remove unnecessary dissolved oxygen, and according to the present invention, there is no problem in the calcined carbon component.

극저탄소강의 정련은 위에서 설명한 바와 같이, 전로에서 1차정련하고 레이들로 출강한 다음, 레이들에 수강된 용강에 진공탈가스설비의 환류관을 침적하고, 진공조 내를 감압시켜 용강을 진공조 내부로 상승하여 탈탄 및 탈산처리한다.As described above, the refining of the ultra low carbon steel is first refined in the converter and exited by ladle, and then the reflux tube of the vacuum degassing equipment is deposited on the molten steel received in the ladle, and the pressure in the vacuum chamber is reduced to vacuum the molten steel. Ascending inside the bath to decarburize and deoxidize

진공탈가스처리전 전로에서 출강한 용강에는 산소가 일정량 함유되어야 탄소성분을 70ppm 이하로 만들 수 있어 진공탈가스처리초기에는 용존산소를 350ppm 이상으로 관리하고 있으나, 그 이상 함유되는 경우가 많다. 따라서, 용존산소량이 불필요하게 많아지므로 탈산처리에서 탈산제가 많이 필요로 하게 된다.Molten steel tapping out of the converter before vacuum degassing process must contain a certain amount of oxygen to make carbon component less than 70ppm. In the early stage of vacuum degassing process, dissolved oxygen is managed to more than 350ppm, but it is often contained more than that. Therefore, since the amount of dissolved oxygen becomes unnecessarily large, a large amount of deoxidizer is required in the deoxidation treatment.

본 발명에서는 도착산소가 400ppm 이상의 용강에 가탄제를 투입하는데, 이때 투입량은 적절히 조절할 필요가 있다. 가탄제의 투입량이 많게 되면 용강중의 산소는 급격히 낮아지게 되나 탈탄시간 연장측면에서 불리하고, 산소가 지나치게 낮아지는 경우 탈탄작업이 어렵게되어 소강 탄소성분에 문제가 생기게 된다. 투입량이 적은 경우에는 용강중 산화개재물 최소화 효과가 미미하다. 본 발명에서는 이를 고려하여 탈탄처리중 진공조내로 용강 1톤당 0.09∼0.28kg의 가탄제를 투입한다.In the present invention, a carbon dioxide is injected into molten steel having an arrival oxygen of 400 ppm or more. In this case, the input amount needs to be appropriately adjusted. When a large amount of the catalyst is added, the oxygen in the molten steel is drastically lowered, but it is disadvantageous in terms of extending the decarburization time, and when the oxygen is too low, the decarburization operation becomes difficult, causing problems in the carbon steel component. If the input amount is small, the effect of minimizing the oxidation inclusions in the molten steel is minimal. In the present invention, in consideration of this, 0.09 to 0.28 kg of a carburizing agent per ton of molten steel is introduced into the vacuum chamber during the decarburization treatment.

바람직하게는 필요한 양의 가탄제를 일시에 투입하는 것 보다 분할하여 투입하는 것이 좋다. 이는 한꺼번에 많은 양을 투입할 경우 급격한 CO반응에 의해 폭발이 일어날 수 있기 때문이다. 1회 투입량은 실시예에서 확인할 수 있듯이, 용강 320ton 일 경우 1회에 10∼15Kg(용강 1톤당 0.03∼0.047kg)으로 분할 투입하는 것이 좋다.Preferably, it is better to divide and add the required amount of carburizing agent at a time than to put at a time. This is because explosion may occur due to rapid CO reaction when a large amount is added at one time. As can be seen in the embodiment, the amount of one-time injection is preferably divided into 10 to 15 kg (0.03 to 0.047 kg per ton of molten steel) at a time of 320 tons of molten steel.

또한, 가탄제의 투입시기는 탈탄반응이 활발히 일어나는 탈탄처리 초기인 2∼5분내(환류개시후 2∼5분사이)에 투입하는 것이 탈탄시간을 단축시킬 수 있어 유리하다. 본 발명의 실시예에 의하면, 산소함량이 400∼450ppm 일 경우에는 약 1분 동안, 451∼550ppm일 경우 약 2분 동안, 551ppm 이상의 경우 약 3분 동안 투입하는 것이 좋다.In addition, it is advantageous that the addition time of the catalyst is shortened within 2 to 5 minutes (between 2 to 5 minutes after the start of reflux), which is the initial stage of the decarburization treatment in which the decarburization reaction is actively performed. According to an embodiment of the present invention, the oxygen content is 400 to 450ppm for about 1 minute, 451 to 550ppm for about 2 minutes, 551ppm or more may be added for about 3 minutes.

본 발명에 따라 가탄제를 투입하는 경우 가탄제 투입량에 따른 탈산공정에서 탈산제인 알루미늄의 투입량의 변화는 도 2에서 확인할 수 있다. 또한, 본 발명에 따라 탈산전 용존산소의 양을 줄이면 산화도가 적어 품질 및 원가적인 면에서 우수한 청정강을 얻을 수 있다는 것은 도 3에서 알 수 있다.In the case of adding the charcoal according to the present invention, the change in the amount of aluminum deoxidizer added in the deoxidation process according to the amount of the charcoal input may be confirmed in FIG. 2. In addition, according to the present invention it can be seen in Figure 3 that reducing the amount of dissolved oxygen before deoxidation can obtain a clean steel excellent in quality and cost in terms of less oxidation.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

진공탈가스처리전 산소함량이 아래 표 2와 같은 320톤의 용강을 표 2에 기재된 바와 같이 진공탈가스처리하였을 경우에 탈산처리전의 산소함량과 탈산처리시 탈산제의 투입량 그리고, 소강탄소의 함량을 아래 표 2에 나타내었다.Oxygen content before vacuum degassing treatment When the 320 tons of molten steel as shown in Table 2 is vacuum degassing as shown in Table 2, the oxygen content before deoxidation treatment, the input amount of deoxidizer during deoxidation treatment, and the content of calcined carbon It is shown in Table 2 below.

구분division 진공탈산가스처리전산소(ppm)Vacuum deoxidation gas treatment oxygen (ppm) 탈탄중 가탄제 투입Addition of carburizing agent during decarburization 탈산처리전산소(ppm)Deoxidation preoxygen (ppm) 탈탄시간(분)Decarburization time (min) 처리전탄소(ppm)Carbon before treatment (ppm) 소강탄소(ppm)Small carbon (ppm) 탈산시Al 투입량(kg)Al input amount in deoxidation (kg) 1회투입량(kg)1 dose (kg) 투입주기(분)Input cycle (minutes) 투입횟수(회)Input frequency (times) 총투입량(kg)Total input amount (kg) 종래예Conventional example 1One 510510 미실시Not carried 350350 1515 350350 3131 370370 22 460460 미실시Not carried 270270 1616 410410 3232 330330 33 614614 탈탄중 Al분할투입 120kgAl split injection during decarburization 120kg 280280 1717 290290 4747 340340 44 455455 Al60kgAl60kg 260260 1717 380380 4343 320320 55 470470 Al70kgAl70kg 255255 1818 360360 4242 320320 비교예6Comparative Example 6 505505 1010 0.50.5 22 2020 290290 1515 380380 2929 340340 발명예Inventive Example aa 523523 1010 0.50.5 33 3030 321321 1616 350350 3131 350350 bb 501501 1010 0.50.5 33 3030 318318 1616 380380 3030 350350 cc 498498 1010 0.30.3 55 5050 212212 1717 360360 3333 300300 dd 464464 1010 0.50.5 44 4040 205205 1717 390390 2828 290290 ee 580580 1515 0.30.3 55 7070 295295 1818 300300 3535 340340 ff 470470 1010 0.50.5 33 3030 220220 1717 420420 2929 300300 gg 620620 1515 0.30.3 66 9090 264264 2020 280280 3636 320320 hh 480480 1010 0.50.5 44 4040 214214 1616 400400 3535 300300 ii 514514 1010 0.50.5 55 5050 231231 1717 370370 3232 310310 jj 586586 1515 0.30.3 66 8080 227227 1818 300300 3434 310310 비교예7Comparative Example 7 723723 1515 0.30.3 88 110110 298298 2222 250250 3939 340340 비교예8Comparative Example 8 695695 1515 0.30.3 77 100100 289289 2222 270270 4040 340340 가탄제는 진공조내로 용강을 환류개시후 2분부터 투입시작함.The lubricating agent starts pouring the molten steel into the vacuum chamber from 2 minutes after the reflux starts.

표 2에 나타난 바와 같이, 종래예(1,2)의 경우 탈탄시간측면에서는 다소 유리하지만 탈탄후(탈산전)의 산소함량이 높아 탈산제의 투입량이 많다. 또한, 종래예( 3,4,5)의 경우 탈탄후의 산소함량은 낮아 탈산시 Al의 투입량은 적으나, 전체적으로 투입된 Al의 양은 많고, 또한 탈탄시간이 상대적으로 길어지는 문제가 있다.As shown in Table 2, the conventional examples (1, 2) is somewhat advantageous in terms of decarburization time, but the oxygen content after decarburization (before deoxidation) is high, so that a large amount of deoxidizer is input. In addition, in the case of the prior art (3, 4, 5), the oxygen content after decarburization is low, but the amount of Al added during deoxidation is large, but the amount of Al added as a whole is high, and the decarburization time is relatively long.

이에 반해, 발명예의 경우 Al보다 가격이 싼 가탄제를 이용하므로 원가를 줄일 수 있고, 소강 탄소성분에 지장을 주지 않는 범위내에서 일정량을 투입하여 Al의 투입량을 최소화 할 수 있었다. 비교예(6,7,8)의 경우는 알루미늄의 투입량은 줄일 수 있으나, 비교예(6)은 그 효과가 적고 비교예(7,8)은 탈탄에 너무 많은 시간이 걸렸다.On the other hand, in the case of the invention, since a cheaper than Al is used, the cost can be reduced, and the amount of Al can be minimized by adding a certain amount within a range that does not interfere with the carbon steel component. In the case of the comparative examples (6, 7, 8), the amount of aluminum input can be reduced, but the comparative example (6) is less effective and the comparative examples (7, 8) took too much time for decarburization.

상술한 바와 같이, 본 발명은 용강의 탈산를 위한 알루미늄과 같은 탈산제의 투입량을 효과적으로 줄임에 따라 고청정강을 제조할 수 있으며 탈산제의 저감에 따라 제조원가를 낮출 수 있는 효과가 있다.As described above, the present invention can produce high-clean steel by effectively reducing the amount of deoxidizer, such as aluminum for deoxidation of molten steel, and has the effect of lowering the manufacturing cost by reducing the deoxidizer.

Claims (2)

레이들에 수강되어 있는 용강을 진공탈가스설비의 진공조내로 환류시켜 탈탄 및 탈산처리하는 정련방법에 있어서,In the refining method of the molten steel received in the ladle to reflux in the vacuum chamber of the vacuum degassing equipment, decarburization and deoxidation treatment, 상기 탈탄처리전 용존산소량이 400 ppm이상의 경우 진공조내로 용강 1톤당 0.09∼0.28Kg의 가탄제를 탈탄처리중에 투입함을 특징으로 하는 진공탈가스처리시 가탄제투입에 의한 극저탄소강의 정련방법.A method for refining ultra low carbon steel by introducing a carbonaceous agent during vacuum degassing treatment, wherein when the dissolved oxygen amount before decarburization is 400 ppm or more, 0.09 to 0.28 Kg of carbonaceous agent per ton of molten steel is introduced into the vacuum chamber during decarburization. 제 1항에 있어서, 상기 가탄제의 투입은 환류개시후 2∼5분내의 탈탄처리중 1회에 용강 1톤당 0.03∼0.047Kg으로 분할투입하는 것을 특징으로 하는 고청정강의 제조방법.The method of claim 1, wherein the addition of the charcoal is divided into 0.03 to 0.047 Kg per ton of molten steel at a time during decarburization within 2 to 5 minutes after the start of reflux.
KR10-1998-0054382A 1998-12-11 1998-12-11 Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing KR100406394B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054382A KR100406394B1 (en) 1998-12-11 1998-12-11 Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054382A KR100406394B1 (en) 1998-12-11 1998-12-11 Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing

Publications (2)

Publication Number Publication Date
KR20000039139A true KR20000039139A (en) 2000-07-05
KR100406394B1 KR100406394B1 (en) 2004-03-22

Family

ID=19562357

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0054382A KR100406394B1 (en) 1998-12-11 1998-12-11 Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing

Country Status (1)

Country Link
KR (1) KR100406394B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782707B1 (en) * 2001-12-24 2007-12-07 주식회사 포스코 The Method for Preventing Reoxidation of Molten Steel at Steelmaking Process
KR100847776B1 (en) 2006-12-29 2008-07-23 주식회사 포스코 Refining method of vaccum degassing
KR100916099B1 (en) * 2002-12-27 2009-09-08 주식회사 포스코 Method of refining molten steel to manufacture semi-low carbon steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311811A (en) * 1976-07-20 1978-02-02 Kubota Ltd Carburizing method for molten steel
KR950012410B1 (en) * 1993-12-28 1995-10-17 포항종합제철주식회사 Ladle refining method of recarburizerand fe-cr

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782707B1 (en) * 2001-12-24 2007-12-07 주식회사 포스코 The Method for Preventing Reoxidation of Molten Steel at Steelmaking Process
KR100916099B1 (en) * 2002-12-27 2009-09-08 주식회사 포스코 Method of refining molten steel to manufacture semi-low carbon steel
KR100847776B1 (en) 2006-12-29 2008-07-23 주식회사 포스코 Refining method of vaccum degassing

Also Published As

Publication number Publication date
KR100406394B1 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
KR101074895B1 (en) Method of denitrifying molten steel
JP5904237B2 (en) Melting method of high nitrogen steel
US3891429A (en) Method for selective decarburization of alloy steels
JP2009167463A (en) METHOD FOR PRODUCING Mn-CONTAINING EXTRA-LOW-CARBON STEEL
KR100406394B1 (en) Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing
KR101434540B1 (en) Refining method of steel
KR101796088B1 (en) Refining method of alloy steel
JP5831194B2 (en) Method for melting manganese-containing low carbon steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
KR20000041028A (en) Method of deoxidizing and bubbling slag
KR100399220B1 (en) Refining method for steel sheet manufacturing
KR100925598B1 (en) Method for Refining Return Molten Steel
EP1757706B1 (en) Method for refining molten steel
JP7468567B2 (en) Method for denitrification of molten steel
KR100879740B1 (en) Method for refining hot metal
RU2754337C1 (en) Method for production of nitrogen-doped steel in bucket
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
KR100921500B1 (en) Method for Desulfurizing extra low carbon steel
KR101008087B1 (en) A method for desulfurizing at vacuum tank degasser
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
KR100406434B1 (en) Method for deoxidizing in the low carbon metal with Fe-Si
JP4020125B2 (en) Method of melting high cleanliness steel
KR20020036267A (en) Method for refining extra low carbon steel by using solid hydrogen-bearing materials
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
KR100929179B1 (en) Method for promoting desulfurization of molten steel with CaO-CaN2 mixed composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee