KR20000038842A - Method for preparing active carbon fiber having strong binding ability of coating layer and good adsorption ability - Google Patents

Method for preparing active carbon fiber having strong binding ability of coating layer and good adsorption ability Download PDF

Info

Publication number
KR20000038842A
KR20000038842A KR1019980053970A KR19980053970A KR20000038842A KR 20000038842 A KR20000038842 A KR 20000038842A KR 1019980053970 A KR1019980053970 A KR 1019980053970A KR 19980053970 A KR19980053970 A KR 19980053970A KR 20000038842 A KR20000038842 A KR 20000038842A
Authority
KR
South Korea
Prior art keywords
coating layer
organic solvent
glass fiber
pitch
thermosetting resin
Prior art date
Application number
KR1019980053970A
Other languages
Korean (ko)
Other versions
KR100340591B1 (en
Inventor
오세민
Original Assignee
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원 filed Critical 신현준
Priority to KR1019980053970A priority Critical patent/KR100340591B1/en
Publication of KR20000038842A publication Critical patent/KR20000038842A/en
Application granted granted Critical
Publication of KR100340591B1 publication Critical patent/KR100340591B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer

Abstract

PURPOSE: A method for preparing active carbon fiber used for purification of water and exhaust gas is provided to save investments and costs by using inexpensive glass fiber and to improve binding ability of coating layer and adsorption ability. CONSTITUTION: A method for preparing active carbon fiber having strong binding ability of coating layer and good adsorption ability comprises the following steps: a) mixing pitch with an organic solvent, stirring and then extracting soluble components; b) adding a thermosetting resin to the extract and mixing them; c) coating the mixture on a glass fiber and volatilizing the organic solvent; d) heat-treating the coated glass fiber from which the organic solvent is removed at temperature 500-1000°C under inert atmosphere to carbonize the coating layer; and e) activating the glass fiber wherein the coating layer is carbonized at temperature 700-1000°C under water steam.

Description

피복층의 접합성이 강하고 흡착능이 우수한 활성탄소섬유의 제조방법Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity

본 발명은 흡착제로 사용되는 활성탄소섬유의 제조방법에 관한 것으로, 보다 상세하게는 저렴한 유리섬유의 표면에 피치와 열경화성 수지를 피복하고 탄화 및 활성화함으로써 피복층의 접합성이 강하고 흡착능이 우수한 활성탄소섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon fibers used as an adsorbent, and more particularly, by coating a pitch and a thermosetting resin on a surface of an inexpensive glass fiber, carbonizing and activating a coating layer of activated carbon fibers having excellent adhesion and adsorption capacity. It relates to a manufacturing method.

일반적으로 수질 및 배가스등의 정화에는 활성탄소섬유와 활성탄이 흡착제로서 이용되고 있다. 활성탄소섬유는 형태가 섬유상으로, 통상 탄소섬유를 활성화시켜 제조된다. 활성탄은 기공분포가 표면에서부터 내부로 들어가면서 매크로기공, 메조기공, 마이크로기공의 순서로 형성되어 있기 때문에 흡착과 탈착의 속도가 느릴뿐 아니라, 실제로 흡착성능에 영향을 미치는 마이크로기공 부분이 제한되어 있다. 이에 반하여, 활성탄소섬유는 마이크로기공이 표면에 노출되어 있어서 흡착과 탈착의 속도가 빠르고 비표면적이 더 큰 장점이 있다.Generally, activated carbon fibers and activated carbon are used as an adsorbent for the purification of water quality and exhaust gas. Activated carbon fibers are fibrous in shape and are usually produced by activating carbon fibers. Activated carbon is formed in the order of macropores, mesopores, and micropores as the pore distribution enters the surface from the inside, so that the adsorption and desorption rate is slow, and the micropore portion that actually affects the adsorption performance is limited. On the other hand, activated carbon fiber has the advantage that the speed of adsorption and desorption is faster and the specific surface area is larger because the micropores are exposed on the surface.

종래의 활성탄소섬유는 피치계, 폴리아크릴로니트릴계, 페놀계 및 셀룰로즈계의 탄소섬유를 적절한 방법으로 활성화하여 제조한 것으로, 예를 들면 일본공개특허공보 (소)49-116332, 미국특허 4285831, 일보공개특허공보 (소)55-71614, 일본공개특허공보 (평)4-126826, 일본공개특허공보 (소)60-25528 등에 제안되어 있다.Conventional activated carbon fibers are prepared by activating pitch-based, polyacrylonitrile-based, phenol-based, and cellulose-based carbon fibers in an appropriate manner, for example, Japanese Patent Application Laid-Open No. 49-116332, US Patent 4285831. And Japanese Patent Application Laid-Open No. 55-71614, Japanese Patent Application Laid-Open No. 4-126826, Japanese Patent Application Laid-Open No. 60-25528, and the like.

이와 같이 탄소섬유를 활성화하여 제조하는 종래의 방법은 원료인 탄소섬유 자체의 가격이 비싸기 때문에 활성탄소섬유의 제조비용이 높아서 범용으로 사용되기에는 한계가 있다. 또한, 탄소섬유를 활성화하게 되면 탄소섬유 자체에 기공이 형성되므로 강도와 내마모성 등의 기계적 성질이 저하되어서 취급하기 어려운 단점이 있어 이를 개선하기 위해 다양한 연구가 진행되고 있었다.As such, the conventional method of activating and manufacturing carbon fibers has a high production cost of activated carbon fibers due to the high cost of carbon fibers as raw materials, and thus, there is a limit to using them universally. In addition, when the carbon fiber is activated, pores are formed in the carbon fiber itself, so mechanical properties such as strength and abrasion resistance are degraded, which makes it difficult to handle and various studies have been conducted to improve this.

이러한 연구의 일환으로 본 발명자는 탄소섬유 보다 저렴한 유리섬유에 피치를 피복하고, 피치의 피복층만을 탄화하고 활성화함으로써 기계적성질이 우수한 활성탄소섬유의 제조방법을 제안한 바 있다(대한민국 특허출원 97-72400호). 기 제안된 활성탄소섬유는 저렴한 가격과 우수한 기계적성질에 힘입어 범용으로 적용될 수 있는 장점이 있으나, 피복층과 유리섬유의 접착성이 다소 약하다는 문제가 제기 되고 있다.As part of this research, the present inventor has proposed a method for producing activated carbon fibers having excellent mechanical properties by coating pitch on glass fibers which are cheaper than carbon fibers, and carbonizing and activating only the coating layer of the pitch (Korean Patent Application No. 97-72400). ). Although the proposed activated carbon fiber has an advantage that it can be universally applied due to its low price and excellent mechanical properties, there is a problem that the adhesion between the coating layer and the glass fiber is rather weak.

본 발명은 상기한 선행기술의 문제점을 해소하기 위하여 안출된 것으로, 유리섬유에 피치와 열경화성 수지를 피복함으로써 피복층의 접합성을 개선하고 나아가 비표면적을 더 크게 하여 흡착능을 개선하는데, 그 목적이 있다.The present invention has been made in order to solve the above problems of the prior art, by coating a pitch and a thermosetting resin on the glass fiber to improve the adhesion of the coating layer and further to increase the specific surface area to improve the adsorption capacity, an object thereof.

상기 목적을 달성하기 위한 본 발명의 활성탄소섬유 제조방법은,Activated carbon fiber production method of the present invention for achieving the above object,

피치와 유기용매를 혼합하고 교반한 후 가용분을 추출하는 단계;Mixing and stirring the pitch and the organic solvent to extract the soluble component;

이 추출물에 열경화성 수지를 첨가하여 혼합하는 단계;Adding and mixing the thermosetting resin to the extract;

상기 혼합물을 유리섬유에 피복한 후 건조하여 유기용매를 휘발시키는 단계;Coating the mixture on glass fibers and drying to volatilize an organic solvent;

유기용매가 제거된 피복유리섬유를 500-1000℃의 온도에서 불활성분위기로 열처리하여 피복층을 탄화하는 단계; 및Carbonizing the coating layer by heat-treating the coated glass fiber from which the organic solvent was removed at an inert atmosphere at a temperature of 500-1000 ° C .; And

상기 피복층이 탄화된 유리섬유를 700-1000℃의 온도에서 수증기분위기로 활성화처리하는 단계;를 포함하여 구성된다.The coating layer is carbonized glass fiber at the temperature of 700-1000 ℃ activating treatment with a steam atmosphere; is configured to include.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 사용되는 피치는 석탄계나 석유계 모두 가능하며, 유기용매에 혼합되기 쉽도록 분말상태로 사용하는 것이 바람직하다. 피치를 유기용매에 녹이지 않고 가열하여 녹이면 점도가 너무 높아서 유리섬유에 균일하게 피복시키는 것이 어렵다. 또한, 피치를 유기용매에 용해시키면 점도를 낮출 수 있고, 건조에 의해 유기용매는 쉽게 제거할 수 있으며, 유기용매 중의 피치농도에 따라 피복두께를 조절할 수도 있다.The pitch used in the present invention can be either coal or petroleum, and is preferably used in powder form so as to be easily mixed with the organic solvent. If the pitch is melted by heating without dissolving it in an organic solvent, the viscosity is so high that it is difficult to uniformly coat the glass fiber. In addition, when the pitch is dissolved in the organic solvent, the viscosity can be lowered, the organic solvent can be easily removed by drying, and the coating thickness can be adjusted according to the pitch concentration in the organic solvent.

사용하는 유기용매는 피치를 용해시킬 수 있는 것이면 모두 가능하지만, 아세톤과 같이 피치의 용해도가 낮은 것은 추출물의 양이 낮을 뿐 아니라 추출물의 분자량이 낮아 탄화수율이 낮은 단점이 있다. 반면에 퀴놀린은 피치의 용해도는 높지만 비점이 높아서 건조하기 힘든 점이 있다. 따라서, 본 발명에서는 테트라하이드로퓨란이나 피리딘 또는 이와 유사한 용해도를 나타내는 유기용매가 가장 바람직하다.The organic solvent to be used may be any solvent that can dissolve the pitch, but the low solubility of the pitch, such as acetone, has a disadvantage in that the yield of carbonization is low because the amount of the extract is low and the molecular weight of the extract is low. Quinoline, on the other hand, has high pitch solubility but high boiling point, making it difficult to dry. Therefore, in the present invention, organic solvents showing tetrahydrofuran or pyridine or similar solubility are most preferred.

본 발명에 따라 피치와 유기용매의 혼합비는 피치와 유기용매의 종류에 따라 달라지므로 획일적으로 한정하기가 곤란하며, 그 혼합비는 피치와 유기용매에 따른 점도를 고려하여 정하는 것이 바람직하다. 일실시예로 콜타르 피치와 테트라하이드로퓨란(유기용매)를 혼합하는 경우 그 혼합비는 유기용매에 대하여 피치를 10-50중량%의 비율로 섞는 것이 바람직하다. 이는 10중량% 미만이면 탄화후 피복층이 너무 얇아서 활성화되기 어려우며, 50중량%를 넘으면 점도가 너무 높아서 균일하게 피복하기 어려운 점이 있다.According to the present invention, since the mixing ratio of the pitch and the organic solvent varies depending on the type of the pitch and the organic solvent, it is difficult to limit the uniformity, and the mixing ratio is preferably determined in consideration of the viscosity according to the pitch and the organic solvent. In one embodiment, when coal tar pitch and tetrahydrofuran (organic solvent) are mixed, the mixing ratio is preferably 10-50% by weight of the pitch relative to the organic solvent. If it is less than 10% by weight, the coating layer is too thin to be activated after carbonization, and if it is more than 50% by weight, the viscosity is too high to uniformly coat it.

상기와 같이 피치와 유기용매를 혼합하고 교반하는데, 그 방법은 통상의 교반기를 이용하여 상온에서 행하면 충분하며, 피치와 유기용매의 종류와 양에 따라 적절한 시간동안 교반하면 된다.As described above, the pitch and the organic solvent are mixed and stirred, and the method is sufficient at room temperature using a conventional stirrer, and may be stirred for an appropriate time depending on the type and amount of the pitch and the organic solvent.

상기와 같이 교반하면 피치와 유기용매의 혼합물에는 피치성분중 유기용매에 녹는 성분(가용분)과 녹지않는 성분(불용분)이 섞여 있는데, 불용분은 유기용매 중에서 고상으로 존재하기 때문에 균일하게 유리섬유에 피복하기 어렵게 되므로 가용분을 여과, 추출하여 이용하여야 한다. 이때의 추출방법은 여과지를 사용하는 것보다는 여과속도가 빠른 유리필터를 이용하는 진공여과 방법이 보다 바람직하다.After stirring as described above, the mixture of pitch and organic solvent contains a component (soluble component) and an insoluble component (insoluble component) in the organic solvent among the pitch components. Since it is difficult to coat the fibers, the soluble components should be filtered and used. The extraction method at this time is more preferably a vacuum filtration method using a glass filter having a high filtration rate than using a filter paper.

본 발명에 따라 상기 추출물에 열경화성 수지를 첨가한 혼합물을 유리섬유에 피복하여 피치와 열경화성수지의 피복층을 형성하는데, 이때의 열경화성수지는 피복층과 유리섬유와의 접합성을 개선하고 나아가 피복층의 비표면적을 개선한다. 이러한 열경화성수지의 작용을 설명하면 다음과 같다.According to the present invention, a mixture of thermosetting resin added to the extract is coated on a glass fiber to form a coating layer of pitch and thermosetting resin, wherein the thermosetting resin improves the adhesion between the coating layer and the glass fiber and further improves the specific surface area of the coating layer. Improve. Referring to the action of these thermosetting resins are as follows.

유리섬유에 피복된 열경화성 수지와 피치의 피복층은 후술하는 탄화처리에 의해 탄소질로 전환되며, 이때 열경화성 수지와 피치의 성분 중에서 비점이 낮은 저분자량 성분이 휘발되어 기체로 빠져나가게 된다. 이때 피치는 열가소성이기 때문에 기체가 빠져나가고 남은 기공이 다시 메워지는데 반하여, 열경화성 수지는 이미 경화되어 기공이 그대로 남게 된다. 따라서, 탄화처리 후에 열경화성 수지는 비표면적이 피치보다 훨씬 높은 값을 같게 된다. 즉 활성화 처리를 하기 이전인 탄화 단계에서 이미 열경화성 수지의 비표면적이 증가하는 장점이 있다. 또한, 열경화성 수지는 유리섬유와의 접합성이 좋으므로 좀 더 결합력이 강한 피복층을 형성시킬 수 있다.The coating layer of the thermosetting resin and the pitch coated on the glass fiber is converted into carbonaceous material by the carbonization treatment described below, and low molecular weight components having a low boiling point among the components of the thermosetting resin and the pitch are volatilized to escape into the gas. At this time, since the pitch is thermoplastic, the gas escapes and the remaining pores are filled again, whereas the thermosetting resin is already cured and the pores remain. Therefore, after the carbonization treatment, the thermosetting resin has a value whose specific surface area is much higher than the pitch. In other words, the specific surface area of the thermosetting resin is increased in the carbonization step before the activation treatment. In addition, since the thermosetting resin has good bonding property with glass fibers, it is possible to form a coating layer having a stronger bonding force.

본 발명에 따라 유리섬유에 피복되는 열경화성 수지로는, 일반적으로 많이 알려진 페놀수지나 퓨란수지 등을 사용하면 된다. 열경화성 수지의 첨가량은 사용하는 피치와 열경화성 수지의 종류에 따라 차이가 있어 그 첨가량을 한정하기가 곤란하나, 대체로 중량비로 피치 100부에 대하여 열경화성 수지 20부 내지 500부가 좋다. 이는 열경화성 수지의 첨가량이 20부 이하이면 첨가한 효과가 적기 때문이며, 반대로 500부 이상이면 열경화성 수지가 탄화될 때 수축이 심하여 피복층에 균열이 발생하기 쉽기 때문이다.As the thermosetting resin coated on the glass fiber according to the present invention, generally known phenol resins, furan resins or the like may be used. Although the amount of the thermosetting resin added varies depending on the pitch used and the type of the thermosetting resin, it is difficult to limit the amount of the thermosetting resin. However, the thermosetting resin is preferably 20 to 500 parts by weight based on 100 parts by weight. This is because when the amount of the thermosetting resin is added 20 parts or less, the added effect is small. On the contrary, when the amount of the thermosetting resin is 500 parts or more, the shrinkage is severe when the thermosetting resin is carbonized, and cracks are likely to occur in the coating layer.

본 발명에 따라 추출물에 열경화성 수지를 첨가하고 여기에 경화제를 첨가하여도 좋다. 경화제의 종류는 특별히 제한되는 것은 아니고 일반적으로 많이 사용하는 것을 사용하면 되는데, 페놀수지의 경우에는 인산을 사용하며, 퓨란수지의 경우에는 파라톨루엔술폰산을 사용한다. 본 발명의 실시예에서 경화제를 첨가하였을 때 비표면적의 큰 변화는 관찰하지 못하였으나, 경화제의 첨가량이 증가함에 따라 경화속도가 빨라진다. 경화제의 첨가량은 종류에 따라 적절히 조절하면 되는데, 0.1% 내지 5.0% 정도면 충분하다.According to the present invention, a thermosetting resin may be added to the extract and a curing agent may be added thereto. The type of the curing agent is not particularly limited, and generally used may be one used in general. Phosphoric acid is used in the case of phenol resin, and paratoluene sulfonic acid is used in the case of furan resin. In the embodiment of the present invention, a large change in specific surface area was not observed when the curing agent was added. However, as the amount of the curing agent is increased, the curing rate is increased. Although the addition amount of a hardening | curing agent should just be adjusted suitably according to a kind, about 0.1%-5.0% are enough.

상기와 같이 열경화성 수지가 첨가된 피치의 추출물에 유리섬유를 피복하는데, 그 방법은 상기의 추출물에 유리섬유를 담그어 적시면 된다. 유리섬유의 형태는 필라멘트 다발이나 직포 또는 부직포 등 어떤 것이나 사용할 수 있다. 이때, 피복두께는 유기용매의 종류 및 피치와 유기용매의 혼합량에 따라 가변적이어서 한정하는 것이 곤란하나, 본 발명의 일실시에 의하면 1-5㎛가 적당하다.As described above, the glass fiber is coated on the extract of the pitch to which the thermosetting resin is added, and the method may be soaked by soaking the glass fiber in the extract. The form of the glass fiber may be any filament bundle, woven or nonwoven fabric. At this time, the coating thickness is variable depending on the type and pitch of the organic solvent and the mixing amount of the organic solvent, so that it is difficult to limit the thickness, but according to one embodiment of the present invention, 1-5 μm is appropriate.

상기와 같이 유리섬유에 피복된 혼합물중 유기용매를 휘발시키고 피치와 열경화성 수지를 피복층에 남기기 위하여 상기의 피복물을 건조시켜야 하는데, 이때의 건조는 특별한 것은 아니고, 단지 유기용매를 휘발시키기만 하면 된다. 예를 들면, 실온에서 약 12시간 정도 유지하면 충분하며, 이때 약간의 열을 가하여 빠른 시간 내에 할 수도 있으나 너무 높은 열을 가하는 것은 유기용매가 급속히 휘발되면서 피복층에 기공을 형성시킬 수도 있으므로 바람직하지 않다.In order to volatilize the organic solvent in the mixture coated on the glass fiber and leave the pitch and the thermosetting resin in the coating layer as described above, the coating must be dried, and the drying is not special, and only the organic solvent is volatilized. For example, it may be sufficient to maintain at room temperature for about 12 hours, although it may be possible to apply a little heat in a short time, but applying too high heat is not preferable because the organic solvent may rapidly volatilize to form pores in the coating layer. .

상기와 같이 건조후에 직접 탄화처리하여도 좋으나 열경화성 수지가 완전히 경화하도록 하기 위해 열경화성 수지나 경화제의 종류에 따라 70-200℃에서 1-24시간 열처리하여 경화하여도 좋다. 또한, 탄화처리 하기 전에 피복층이 탄화과정에서 흘러내리는 것을 방지하기 위하여 산화성 분위기하에서 250 내지 400℃에서 10분 내지 2시간 열처리하여 안정화하여도 좋다. 이 안정화처리는 경우에 따라 처리하지 않아도 무방하다.After drying as described above may be directly carbonized, but in order to completely cure the thermosetting resin may be cured by heat treatment 1-270 hours at 70-200 ℃ depending on the type of thermosetting resin or curing agent. In addition, in order to prevent the coating layer from flowing down during the carbonization process, the coating layer may be stabilized by heat treatment at 250 to 400 ° C. for 10 minutes to 2 hours under an oxidizing atmosphere. This stabilization treatment may not be necessary in some cases.

본 발명에 따라 유리섬유에 피복된 피복층의 탄화는 500-1000℃의 온도에서 불활성분위기로 열처리하는 것이 좋은데 이는 500℃이하에서는 탄화가 불충분하며 1000℃이상에서는 유리섬유가 열화되어 강도가 저하하거나 파손되기 쉽게 때문이다.Carbonization of the coating layer coated on the glass fiber according to the present invention is preferably heat-treated in an inert atmosphere at a temperature of 500-1000 ℃, which is insufficient carbonization below 500 ℃ and glass fiber deteriorates above 1000 ℃ to lower the strength or breakage Because it is easy to be.

탄화된 피복층의 활성화는 일정온도에서 수증기를 흘려주면서 행한다. 수증기를 만드는 방법은 주사기펌프나 유량계 등을 이용하여 물을 일정한 유속으로 가열로로 보내어 증발시키면 된다. 활성화온도는 700-1000℃가 좋은데, 이는 700℃이하이면 활성화시키는데 시간이 너무 많이 걸리거나 불충분하며 1000℃이상에서는 역시 유리섬유가 열화되어 강도가 저하하거나 파손되기 쉽게 때문이다.Activation of the carbonized coating layer is performed while flowing steam at a constant temperature. Steam can be vaporized by using a syringe pump or flow meter to send water to the furnace at a constant flow rate. The activation temperature is good at 700-1000 ° C., because it takes too long or insufficient time to activate below 700 ° C. and above 1000 ° C., the glass fiber deteriorates and the strength is easily degraded or broken.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

연화점이 110℃인 콜타르 피치를 분쇄한 후 테트라하이드로퓨란에 대하여 피치가 20중량%의 비율이 되도록 혼합하고, 이어 4시간 교반한 후, 유리필터와 워터 아스피레이토를 이용하여 테트라하이드로퓨란 가용분을 추출하였다. 상기 추출물에 페놀수지가 10중량%의 범위가 되도록 첨가하고 이어 2시간 더 교반하였다. 이어서 상기 페놀수지가 첨가된 추출물을 유리섬유 다발에 적신 후 실온에서 24시간 건조시킨 후 질소 분위기에서 600℃에서 1시간동안 탄화하였다. 이어서 800℃에서 4시간 수증기 처리하여 활성화하였다. 이때 수증기는 물을 분당 1㎖의 유속으로 250℃의 가열로와 500℃의 가열로를 차례로 흘려주어 발생시켰다. 활성화 후 피복층의 두께와 비표면적(BET법으로 측정)을 측정하였다.After pulverizing the coal tar pitch having a softening point of 110 ° C., the mixture was mixed so that the pitch was 20% by weight with respect to tetrahydrofuran, followed by stirring for 4 hours, and then the tetrahydrofuran soluble powder using a glass filter and water aspirator. Was extracted. The phenol resin was added to the extract so as to be in the range of 10% by weight, followed by further stirring for 2 hours. Subsequently, the extract to which the phenolic resin was added was soaked in a glass fiber bundle, dried at room temperature for 24 hours, and carbonized at 600 ° C. for 1 hour in a nitrogen atmosphere. It was then activated by steam treatment at 800 ° C. for 4 hours. At this time, water vapor was generated by flowing a 250 ° C. heating furnace and a 500 ° C. heating furnace in sequence at a flow rate of 1 ml per minute. After activation, the thickness and specific surface area (measured by the BET method) of the coating layer were measured.

측정결과,Measurement results,

피복층의 두께: 평균 1.5㎛Thickness of coating layer: 1.5 μm on average

비표면적: 90㎠/gSpecific surface area: 90 cm 2 / g

[실시예 2]Example 2

연화점이 110℃인 콜타르 피치를 분쇄한 후 테트라하이드로퓨란에 대하여 피치가 25중량%의 비율이 되도록 혼합하고 이어 4시간 교반한 후, 유리필터와 워터 아스피레이토를 이용하여 테트라하이드로퓨란 가용분을 추출하였다. 상기 추출물에 대하여 페놀수지를 15중량%의 비율이 되도록 첨가하고 또한 경화제인 인산을 0.5중량%의 비율이 되도록 첨가하고 이어서 2시간 더 교반한 다음 유리섬유 다발에 적신 후 피복시켰다. 상기의 피복층을 실온에서 24시간 건조시킨 후 100℃유지된 오븐에서 12시간 열처리하여 경화시킨 다음 질소분위기에서 700℃에서 1시간동안 탄화하였다. 이어서 850℃에서 1시간 수증기 처리하여 활성화하였다. 이때 수증기는 물을 분당 1㎖의 유속으로 250℃의 가열로와 500℃의 가열로를 차례로 흘려주어 발생시켰다. 활성화후 피복층이 두께 및 비표면적을 측정하였다.After grinding the coal tar pitch having a softening point of 110 ° C., the mixture was mixed so that the pitch was 25% by weight with respect to tetrahydrofuran, followed by stirring for 4 hours, and then the tetrahydrofuran soluble component was dissolved using a glass filter and water aspirator. Extracted. The phenol resin was added in an amount of 15% by weight based on the extract, and phosphoric acid, which is a curing agent, was added in an amount of 0.5% by weight, followed by further stirring for 2 hours, followed by coating with a glass fiber bundle. The coating layer was dried at room temperature for 24 hours and then cured by heat treatment at 100 ° C. in an oven maintained at 100 ° C. for 1 hour at 700 ° C. in a nitrogen atmosphere. It was then activated by steam treatment at 850 ° C. for 1 hour. At this time, water vapor was generated by flowing a 250 ° C. heating furnace and a 500 ° C. heating furnace in sequence at a flow rate of 1 ml per minute. After activation the coating layer measured the thickness and specific surface area.

측정결과,Measurement results,

피복층의 두께: 평균 1.8㎛Coating layer thickness: average 1.8 μm

비표면적: 115㎠/gSpecific surface area: 115㎠ / g

[실시예 3]Example 3

연화점이 110℃인 콜타르 피치를 분쇄한 후 테트라하이드로퓨란에 대하여 피치가 20중량%의 비율이 되도록 혼합하고 이어 4시간 교반한 후, 유리필터와 워터 아스피레이토를 이용하여 테트라하이드로퓨란 가용분을 추출하였다. 상기 추출물에 퓨란수지가 10중량%의 비율이 되도록 첨가하고 이어 2시간 더 교반하였다. 상기 퓨란수지가 첨가된 추출물에 유리섬유 다발을 적신 후 실온에서 24시간 건조하였다. 이어서 상기 퓨란수지가 첨가된 피치 추출물이 피복된 유리섬유를 오븐속에 넣고 180℃의 온도에서 4시간 열처리하여 경화하였다. 이어서 질소분위기에서 600℃에서 1시간동안 탄화하였다. 이어서 850℃에서 1시간 수증기 처리하여 활성화하였다. 이때 수증기는 물을 분당 1㎖의 유속으로 250℃의 가열로와 500℃의 가열로를 차례로 흘려주어 발생시켰다. 활성화후 피복층이 두께 및 비표면적을 측정하였다.After crushing the coal tar pitch having a softening point of 110 ° C., the mixture was mixed so that the pitch was 20% by weight with respect to tetrahydrofuran, followed by stirring for 4 hours, and then the tetrahydrofuran soluble powder was dissolved using a glass filter and water aspirator. Extracted. Furan resin was added to the extract in a ratio of 10% by weight, followed by further stirring for 2 hours. The furan resin-added extract was wetted with a glass fiber bundle and dried at room temperature for 24 hours. Subsequently, the glass fiber coated with the pitch extract to which the furan resin was added was placed in an oven and cured by heat treatment at 180 ° C. for 4 hours. It was then carbonized at 600 ° C. for 1 hour in a nitrogen atmosphere. It was then activated by steam treatment at 850 ° C. for 1 hour. At this time, water vapor was generated by flowing a 250 ° C. heating furnace and a 500 ° C. heating furnace in sequence at a flow rate of 1 ml per minute. After activation the coating layer measured the thickness and specific surface area.

측정결과,Measurement results,

피복층의 두께: 평균 1.5㎛Thickness of coating layer: 1.5 μm on average

비표면적: 126㎠/gSpecific surface area: 126㎠ / g

[비교예][Comparative Example]

상기 실시예 1에 있어서 페놀수지를 첨가하는 단계를 생략한 결과 피복층의 두께는As a result of omitting the addition of the phenolic resin in Example 1, the thickness of the coating layer was

평균1.5㎛이었으며, 비표면적은 50㎠/g 이었다.The average was 1.5 탆 and the specific surface area was 50 cm 2 / g.

상술한 바와같이, 본 발명에 의하면, 유리섬유에 피치와 열경화성수지의 피복층을 형성하고 피복층만을 탄화하고 활성화처리하기 때문에 섬유자체의 강도와 내마모성등의 기계적특성이 우수하고 나아가 열경화성수지가 피복층과 유리섬유의 접합성을 개선하고, 특히 피복층의 비표면적을 더 크게 하기 때문에 흡착능이 우수한 활성탄소섬유를 저렴하게 제공할 수 있는 효과가 있다.As described above, according to the present invention, since the coating layer of the pitch and the thermosetting resin is formed on the glass fiber, and only the coating layer is carbonized and activated, the mechanical properties such as the strength and abrasion resistance of the fiber itself are excellent. Since the adhesion of the fibers is improved, and in particular, the specific surface area of the coating layer is increased, there is an effect that the activated carbon fibers having excellent adsorption capacity can be provided at low cost.

Claims (2)

피치와 유기용매를 혼합하고 교반한 후 가용분을 추출하는 단계;Mixing and stirring the pitch and the organic solvent to extract the soluble component; 이 추출물에 열경화성 수지를 첨가하여 혼합하는 단계;Adding and mixing the thermosetting resin to the extract; 이 혼합물을 유리섬유에 피복한 후 건조하여 유기용매를 휘발시키는 단계;Coating the mixture on glass fibers and drying to volatilize an organic solvent; 유기용매가 제거된 피복유리섬유를 500-1000℃의 온도에서 불활성분위기로 열처리하여 피복층을 탄화하는 단계; 및Carbonizing the coating layer by heat-treating the coated glass fiber from which the organic solvent was removed at an inert atmosphere at a temperature of 500-1000 ° C .; And 상기 피복층이 탄화된 유리섬유를 700-1000℃의 온도에서 수증기분위기로 활성화처리하는 단계;를 포함하여 이루어지는 피복층의 접합성이 강하고 흡착능이 우수한 활성탄소섬유의 제조방법.Activating the glass fiber carbonized in the coating layer with a steam atmosphere at a temperature of 700-1000 ° C .; 제 1항에 있어서, 상기 열경화성수지는 페놀수지, 퓨란수지중에서 선택된 1종임을 특징으로 하는 방법.The method of claim 1, wherein the thermosetting resin is one selected from a phenol resin and a furan resin.
KR1019980053970A 1998-12-09 1998-12-09 Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity KR100340591B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980053970A KR100340591B1 (en) 1998-12-09 1998-12-09 Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980053970A KR100340591B1 (en) 1998-12-09 1998-12-09 Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity

Publications (2)

Publication Number Publication Date
KR20000038842A true KR20000038842A (en) 2000-07-05
KR100340591B1 KR100340591B1 (en) 2002-08-22

Family

ID=19562056

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980053970A KR100340591B1 (en) 1998-12-09 1998-12-09 Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity

Country Status (1)

Country Link
KR (1) KR100340591B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388630B1 (en) * 2000-12-04 2003-06-25 한국에너지기술연구원 Manufacturing Method for Glass Fiber Reinforced Activated Carbon/Zeolite Composite Adsorbent with Waste Water Treatment Using Mixture of Zeolite and Phenolic Resin
KR100423095B1 (en) * 2002-02-20 2004-03-16 한국화학연구원 Method for preparing activated carbon-supported fibers using the inorganic fiber materials
KR100464718B1 (en) * 2002-07-23 2005-01-06 주식회사 웅천텍스텍 The method for manufacturing of heating fiber
CN115679700A (en) * 2021-07-27 2023-02-03 财团法人工业技术研究院 Immersion liquid and activated carbon cloth and forming method thereof
CN116180434A (en) * 2022-12-28 2023-05-30 安徽兆鑫铝业科技有限公司 Preparation method of carbonized molten iron filter screen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382820A (en) * 1989-08-23 1991-04-08 Kawasaki Steel Corp Activated carbon fiber, its production and pitch fiber for activated carbon fiber
JP3613304B2 (en) * 1996-09-06 2005-01-26 三菱瓦斯化学株式会社 Process for producing activated carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388630B1 (en) * 2000-12-04 2003-06-25 한국에너지기술연구원 Manufacturing Method for Glass Fiber Reinforced Activated Carbon/Zeolite Composite Adsorbent with Waste Water Treatment Using Mixture of Zeolite and Phenolic Resin
KR100423095B1 (en) * 2002-02-20 2004-03-16 한국화학연구원 Method for preparing activated carbon-supported fibers using the inorganic fiber materials
KR100464718B1 (en) * 2002-07-23 2005-01-06 주식회사 웅천텍스텍 The method for manufacturing of heating fiber
CN115679700A (en) * 2021-07-27 2023-02-03 财团法人工业技术研究院 Immersion liquid and activated carbon cloth and forming method thereof
CN116180434A (en) * 2022-12-28 2023-05-30 安徽兆鑫铝业科技有限公司 Preparation method of carbonized molten iron filter screen

Also Published As

Publication number Publication date
KR100340591B1 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
Uraki et al. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin
US4946663A (en) Production of high surface area carbon fibres
CN109943920B (en) Method for preparing carbon nanofibers by electrostatic blending of polyacrylonitrile/lignin
KR20030095694A (en) Preparation of activated carbon fibers using nano fibers
Zhang et al. Influence of Lignin units on the properties of Lignin/PAN‐derived carbon fibers
KR100340591B1 (en) Manufacturing method of activated carbon fiber with strong adhesion of coating layer and excellent adsorption capacity
KR101327972B1 (en) Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
KR100311692B1 (en) Manufacturing method of activated carbon fiber
CA2489689C (en) Isotropic pitch-based materials for thermal insulation
JPS59232905A (en) Manufacture of carbon product
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JP2598668B2 (en) Method for producing lignin fiber
CN113846512B (en) Self-supporting activated carbon fiber paper and preparation method and application thereof
JPH05155673A (en) Porous carbon material and its production
KR20200133520A (en) Method for manufacturing isotropic pitch from low-grade coal and ashfreechol and method for application of manufacturing low-cost high-strength isotropic carbon fiber using the same
JP2835525B2 (en) Method for producing carbon fiber / carbon composite material
KR100417714B1 (en) Compounded of activated alumina and activated carbon fiber and a preparation method for the same
JP3727664B2 (en) Stabilization of pitch fiber at high temperature and low oxidation
CN111394834B (en) Preparation method of mesophase pitch carbon fiber with rough surface
JPH06104562B2 (en) Activated carbon fiber manufacturing method
CA1046721A (en) Activated pitch based carbon fibers
KR100396078B1 (en) Activated carbon fiber compounded with zeolite and fabricating method thereof
JPS6252116A (en) Production of formed activated carbon
KR100528936B1 (en) Carbon felt having absorption property and manufacturing method thereof
KR20220094714A (en) Process for manufacturing high yield polyimide based activated carbon fiber and polyimide based activated carbon fiber using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee