KR20000033562A - Subphthalocyanine compound, its preparation method and display element using the same - Google Patents

Subphthalocyanine compound, its preparation method and display element using the same Download PDF

Info

Publication number
KR20000033562A
KR20000033562A KR1019980050471A KR19980050471A KR20000033562A KR 20000033562 A KR20000033562 A KR 20000033562A KR 1019980050471 A KR1019980050471 A KR 1019980050471A KR 19980050471 A KR19980050471 A KR 19980050471A KR 20000033562 A KR20000033562 A KR 20000033562A
Authority
KR
South Korea
Prior art keywords
liquid crystal
compound
subphthalocyanine
carbon atoms
dicyanobenzene
Prior art date
Application number
KR1019980050471A
Other languages
Korean (ko)
Other versions
KR100335962B1 (en
Inventor
김기문
강석호
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019980050471A priority Critical patent/KR100335962B1/en
Publication of KR20000033562A publication Critical patent/KR20000033562A/en
Application granted granted Critical
Publication of KR100335962B1 publication Critical patent/KR100335962B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A subphthalocyanine compound, a disc shaped liquid crystal compound, which shows liquid crystal property at room temperature and luminescence property, its preparation method and display element using the compound as a liquid crystal layer forming material or a color development material is provided. CONSTITUTION: The subphthalocyanine compound has a structure of formula I, wherein Ris alkyl group having 1-30 number of carbon, aliphatic cyclic hydrocarbons having a 5-20 number of carbon, or aromatic hydrocarbons having 6-30 number of carbon; X means halogen atom; and B means either boron(B) or aluminum(Al). Since the compound has liquid crystal at room temperature and luminescence property, it can be advantageously used for a display element such as a liquid crystal display element, an organic electroluminescence and the like. The preparation method for the compound includes reacting 1,2-dihalogen 4,5-dicyanobenzene with a thiol compound in the presence of a base to obtain 1,2-dialkylthio-4,5-dicyanobenzene, and conducting ring condensation step.

Description

서브프탈로시아닌 화합물, 그 제조방법 및 이를 이용한 표시소자Subphthalocyanine Compound, Manufacturing Method thereof and Display Device Using the Same

본 발명은 서브프탈로시아닌 화합물, 그 제조방법 및 이를 채용하고 있는 표시소자에 관한 것으로서, 보다 상세하기로는, 액정 성질과 발광 특성을 동시에 가지고 있는 서브프탈로시아닌 화합물과, 이 화합물을 제조하는 방법과, 상기 프탈로시아닌 화합물을 액정층 형성재료 또는 발색재료로서 채용하고 있는 표시소자에 관한 것이다.The present invention relates to a subphthalocyanine compound, a method for producing the same, and a display device employing the same, and more particularly, a subphthalocyanine compound having both liquid crystal properties and luminescent properties, a method for producing the compound, and the phthalocyanine A display element employing a compound as a liquid crystal layer forming material or a coloring material.

액정표시소자(liquid crystal display: LCD)는 음극선관(Cathode Ray Tube : CRT)을 이용한 화상 표시 장치에 비하여 중량이 가볍고 크기가 작아서 휴대가 간편하며, 소비전력이 작고, 인체에 유해한 전자파가 나오지 않는다는 장점을 가지고 있다. 따라서 액정표시장치는 전자계산기의 소형 표시부에서 노트북 컴퓨터의 대형 표시부에 이르기까지 광범위하게 사용되고 있다.Liquid crystal display (LCD) is lighter and smaller in size compared to image display device using cathode ray tube (CRT), which is easy to carry, has low power consumption, and does not emit harmful electromagnetic waves. It has advantages Therefore, the liquid crystal display device is widely used from the small display unit of the electronic calculator to the large display unit of the notebook computer.

액정표시소자방식중에서 STN(Super Twist Nematic) 패시브 매트릭스(passive matrix) 방식은 주로 액정 재료와 외부 구동 I.C를 이용하여 표시기능을 수행한다. 따라서 제조하기가 용이하고 제조비용이 저렴하다는 장점을 가지고 있어서 그동안 액정표시소자의 주류를 차지하였다.Among the liquid crystal display device methods, the STN (Super Twist Nematic) passive matrix method mainly uses a liquid crystal material and an external driving IC to perform a display function. Therefore, it is easy to manufacture and the manufacturing cost is low, so it has taken the mainstream of the liquid crystal display device.

그 후, 액정표시소자는 트랜지스터, 다이오드 등의 스위칭 소자를 액정 재료와 조합한 AMTN(Active Matrix Twisted Nematic) 방식을 이용하게 되었다. AMTN 방식에 따르면, 고품질의 화상을 얻을 수 있지만, 제조방법이 복잡하고 제조비용이 상승된다는 문제점을 가지고 있다.Subsequently, the liquid crystal display device uses an AMTN (Active Matrix Twisted Nematic) method in which switching elements such as transistors and diodes are combined with liquid crystal materials. According to the AMTN method, a high quality image can be obtained, but there is a problem that the manufacturing method is complicated and the manufacturing cost is increased.

한편, 정보 표시량이 점차 증가됨에 따라, 고정세화 및 화상 품질이 우수한 화상 표시 장치에 대한 요구가 더욱 더 높아지게 되었다. 이러한 요구에 부응하여 강유전성 액정(ferroelectric liquid crysatl: FLC)을 이용한 강유전성 표시소자가 개발되었다.On the other hand, as the information display amount gradually increases, the demand for an image display device having high definition and excellent image quality is further increased. In response to this demand, ferroelectric display devices using ferroelectric liquid crysatl (FLC) have been developed.

상기 강유전성 액정표시소자는 패시브 매트릭스 방식으로 구동되며, 네마틱 액정을 사용한 경우에 비하여 응답속도가 100배 정도 빠르다. 또한 시야각이 넓고 광학적 메모리 특성이 우수하다. 이러한 강유전성 액정표시소자의 개발과 동시에 저온 공정을 이용한 폴리실리콘 박막 트랜지스터(Thin Film Transistor: TFT) LCD의 양산기술, 상하 및 좌우 140인 초광각 시야각 기술, 반사형 칼라 LCD 기술 등과 같은 신기술이 속속 개발되고 있다.The ferroelectric liquid crystal display device is driven in a passive matrix manner, and the response speed is about 100 times faster than that of the nematic liquid crystal. It also has a wide viewing angle and excellent optical memory characteristics. With the development of ferroelectric liquid crystal display devices, new technologies such as mass production technology of polysilicon thin film transistor (TFT) LCD using low temperature process, ultra-wide viewing angle technology of up, down, left and right 140 and reflective color LCD technology are being developed one after another. have.

한편, 액정 화합물은 막대 모양, 원판 모양 등을 가지고 있다. 원판 모양을 갖고 있는 액정 화합물로는 트리페닐렌, 포르피린, 프탈로시아닌 등과 같은 원판형 고리 화합물 등이 있다. 이러한 고리 화합물들은 마치 동전들이 일정한 형태로 쌓여져 동전 기둥을 이루는 것과 같이 원기둥(columnar) 형태로 적층되며, 원판 주위에 연결되어 있는 알킬 사슬들은 원기둥 사이에서 매질 역할을 하게 된다. 원기둥을 형성하고 있는 단단한 원판 모양의 방향족 치환체들은 기둥안에서 3.5 내지 4Å 정도로 매우 가깝게 인접되어 있으므로 궤도의 겹침이 상당한 정도로 일어날 수 있어 원기둥형 액정 화합물이 적당한 도핑과정을 통하여 1차원 전도도와 분자전선(molecular wire) 역할을 할 수 있다.On the other hand, the liquid crystal compound has a rod shape, a disc shape, and the like. Examples of the liquid crystal compound having a disc shape include disc-shaped ring compounds such as triphenylene, porphyrin, phthalocyanine, and the like. These ring compounds are stacked in a columnar form, as if coins are stacked in a shape to form a coin column, and the alkyl chains connected around the disk serve as a medium between the cylinders. Since the rigid disk-shaped aromatic substituents forming the cylinder are closely adjacent to each other in the column such as 3.5 to 4 Å, the overlap of the orbits can occur to a considerable extent, so that the cylindrical liquid crystal compound has a one-dimensional conductivity and molecular wire through proper doping process. wire).

또한, 상기 원판형 액정 화합물은 광화학적 방법을 통해서도 전하운반체를 형성한다. 따라서, 제록스 복사기, 유기 발광층 활성층의 광전도도 신소재로도 유용하게 사용할 수 있다.In addition, the disc-shaped liquid crystal compound also forms a charge carrier through a photochemical method. Therefore, the photoconductivity of a Xerox copier and an organic light emitting layer active layer can also be usefully used as a new material.

이에 본 발명이 이루고자 하는 기술적 과제는 실온에서 액정 성질을 나타내는 원판형 액정 화합물이면서 이와 동시에 발광 성질을 나타내는 서브프탈로시아닌 화합물 및 그 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a sub-phthalocyanine compound and a manufacturing method thereof, which is a disc-shaped liquid crystal compound exhibiting liquid crystal properties at room temperature and at the same time exhibits luminescence properties.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 서브프탈로시아닌 화합물을 액정층 형성물질 또는 발색재료로서 채용하고 있는 표시소자를 제공하는 것이다.Another object of the present invention is to provide a display device employing the subphthalocyanine compound as a liquid crystal layer forming material or a coloring material.

도 1a-b는 합성예 4에 따라 제조된 서브프탈로시아닌(subphthalocyanine)의 시차열주사열량계(differential scanning calorimeter: DSC)를 이용한 분석 결과를 나타낸 도면들이고,1a-b are diagrams showing the results of analysis using a differential scanning calorimeter (DSC) of subphthalocyanine prepared according to Synthesis Example 4,

도 2는 합성예 6에 따라 제조된 서브프탈로시아닌의 X-선 회절 분석 결과를 나타낸 도면이다.2 is a diagram showing the results of X-ray diffraction analysis of subphthalocyanine prepared according to Synthesis Example 6.

상기 첫번째 과제를 이루기 위하여 본 발명에서는, 화학식 1로 표시되는 서브프탈로시아닌 화합물을 제공한다.In order to achieve the first object, the present invention provides a subphthalocyanine compound represented by the formula (1).

<화학식 1><Formula 1>

상기식중, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고, X는 할로겐 원자이고, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.Wherein R is an alkyl group having 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group having 5 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms, X is a halogen atom, B is boron (B) or aluminum (Al) Indicates.

바람직하게는, R은 탄소수 8 내지 18의 알킬기이고, X는 Cl이고, B는 붕소이다.Preferably, R is an alkyl group having 8 to 18 carbon atoms, X is Cl and B is boron.

본 발명의 두번째 과제는 1,2-디할로겐 4,5-디시아노벤젠 (A)와 티올 화합물 (B)를 염기 존재하에서 반응시켜 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 얻는 단계; 및The second object of the present invention is to react 1,2-dihalogen 4,5-dicyanobenzene (A) and thiol compound (B) in the presence of a base to produce 1,2-dialkylthio-4,5-dicyanobenzene ( C) obtaining; And

상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 고리축합시키는 단계를 포함하는 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌의 제조방법에 의하여 이루어진다.It is made by the method for producing a subphthalocyanine represented by the formula (1) comprising the step of ring condensing the 1,2-dialkylthio-4,5-dicyanobenzene (C).

상기식중, Q와 X는 할로겐 원자이고, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고, X는 할로겐 원자이고, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.Wherein Q and X are halogen atoms, R is an alkyl group of 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group of 5 to 20 carbon atoms or an aromatic hydrocarbon group of 6 to 30 carbon atoms, X is a halogen atom, and B is boron (B) or aluminum (Al) is shown.

바람직하게는, 상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)의 고리축합 단계는 상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 BX3(X는 할로겐 원자로서, Cl, Br, I 등이 가능하다)와의 반응으로 이루어진다.Preferably, the said 1,2-alkylthio-4,5-dish ring condensation step of dicyano benzene (C) is the 1,2-di-alkylthio-4,5-dicyano benzene (C) BX 3 (X is a halogen atom, and Cl, Br, I, etc. are possible).

본 발명의 세번째 과제는 화학식 1로 표시되는 서브프탈로시아닌을 액정 재료 또는 발색 재료로 채용하고 있는 것을 특징으로 하는 표시소자에 의하여 이루어진다.A third object of the present invention is achieved by a display element, wherein the subphthalocyanine represented by the general formula (1) is employed as a liquid crystal material or a coloring material.

<화학식 1><Formula 1>

상기식중, R은 탄수소 1 내지 30의 알킬기이고, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고, X는 할로겐 원자이고, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.Wherein R is an alkyl group of 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group of 5 to 20 carbon atoms or an aromatic hydrocarbon group of 6 to 30 carbon atoms, X is a halogen atom, B is boron (B) or aluminum ( Al).

상기 표시소자는 특별히 제한되지는 않으나, 액정표시소자 또는 유기 전자발광소자(organic electro-luminescence: EL)인 것이 바람직하다.The display device is not particularly limited, but is preferably a liquid crystal display device or an organic electro-luminescence device (EL).

본 발명에 따른 화학식 1의 서브프탈로시아닌 화합물은 가열 및 냉각시에 가역적으로 상변화를 일으키는 쌍방성 액정이다. 이와 같이 화학식 1의 서브프탈로시아닌 화합물이 액정 성질을 갖는다는 사실은 시차주사열량계과 열분석기를 이용한 열분석, 편광 현미경 및 X-선 회절 분석을 통하여 확인할 수 있다.The subphthalocyanine compound of formula 1 according to the present invention is a bidirectional liquid crystal which reversibly causes a phase change upon heating and cooling. Thus, the fact that the subphthalocyanine compound of Formula 1 has liquid crystal properties can be confirmed through thermal analysis using a differential scanning calorimeter and a thermal analyzer, polarization microscope and X-ray diffraction analysis.

이하, 반응식 1을 참조하여, 화학식 1의 서브프탈로시아닌 화합물의 제조방법을 살펴보기로 한다.Hereinafter, a method of preparing the subphthalocyanine compound of Chemical Formula 1 will be described with reference to Scheme 1.

먼저, 티올 화합물 (B)를 제1유기용매에 용해시킨 다음, 여기에 1,2-디할로겐 4,5-디시아노벤젠 (A)를 부가하여 소정시간동안 교반시킨다. 이어서, 상기 반응 혼합물에 염기를 부가하여 반응시킨다. 이 때 상기 유기용매와 염기는 특별히 제한되지는 않는다. 유기용매의 구체적인 예로는 디메틸술폭사이드 등이 있고, 염기의 구체적인 예로는 탄산칼륨 등이 있다.First, the thiol compound (B) is dissolved in the first organic solvent, and then 1,2-dihalogen 4,5-dicyanobenzene (A) is added thereto and stirred for a predetermined time. Subsequently, a base is added to the reaction mixture for reaction. In this case, the organic solvent and the base are not particularly limited. Specific examples of the organic solvent include dimethyl sulfoxide and the like, and specific examples of the base include potassium carbonate and the like.

상기 반응이 완결되면, 워크-업(work-up) 과정을 거쳐 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 얻는다.Upon completion of the reaction, a work-up process affords 1,2-dialkylthio-4,5-dicyanobenzene (C).

그 후, 상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 제2유기용매에 용해한 다음, 여기에 BX3, 특히 BCl3또는 AlX3를 부가하여 고리축합반응을 실시함으로써 화학식 1의 서브프탈로시아닌 화합물이 제조된다. 여기에서 제2용매는 특별히 제한되지는 않으나, 1-클로로나프탈렌 등을 사용한다.Thereafter, the 1,2-dialkylthio-4,5-dicyanobenzene (C) is dissolved in a second organic solvent, and then BX 3 , particularly BCl 3 or AlX 3, is added to carry out a ring condensation reaction. Thus, the subphthalocyanine compound of the formula (1) is prepared. The second solvent is not particularly limited, but 1-chloronaphthalene or the like is used.

상기식중, Q와 X는 할로겐 원자이고, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.Wherein Q and X are halogen atoms, R is an alkyl group of 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group of 5 to 20 carbon atoms or an aromatic hydrocarbon group of 6 to 30 carbon atoms, and B is boron (B) or aluminum ( Al).

상술한 방법에 따라 제조된 서브프탈로시아닌 화합물은 표시소자, 특히 액정표시소자의 액정층 형성용 재료 또는 유기 전자발광소자의 발광층 형성용 재료로 이용가능하다. 이에 대하여 구체적으로 설명하면 다음과 같다.The subphthalocyanine compound prepared according to the above method can be used as a material for forming a liquid crystal layer of a display device, particularly a liquid crystal display device, or a material for forming a light emitting layer of an organic electroluminescent device. This will be described in detail below.

먼저, 액정표시소자는 통상적으로 다음과 같은 구조를 갖는다.First, the liquid crystal display device generally has the following structure.

즉, 소정간격으로 이격되어 상호대향되어 있는 상, 하 기판상에는 투명전극층들이 형성되어 있고, 이 투명전극층들 상부에는 액정의 배향을 위한 배향막(alignment layer)이 형성되어 있다. 그리고 상기 상, 하 기판상의 배향막사이에는 액정층이 형성되어 있다. 이 때 상기 액정층 형성물질로서 본 발명에 따른 화학식 1의 서브프탈로시아닌 화합물을 사용할 수 있다.That is, transparent electrode layers are formed on upper and lower substrates spaced apart from each other by a predetermined interval, and an alignment layer for alignment of liquid crystals is formed on the transparent electrode layers. A liquid crystal layer is formed between the alignment films on the upper and lower substrates. In this case, the subphthalocyanine compound represented by Chemical Formula 1 may be used as the liquid crystal layer forming material.

한편, 유기 전자발광소자는 통상적으로 기판 상부에 애노드(anode), 발광층 및 캐소드(cathode)가 순차적으로 형성되어 있는 구조를 갖는다. 이 때 상기 애노드와 발광층 사이에 홀수송층을 더 형성하거나 또는 상기 발광층과 캐소드 사이에전자수송층을 더 형성시키면, 유기 전자발광소자의 발광효율과 휘도를 개선시킬 수 있다.On the other hand, an organic electroluminescent device typically has a structure in which an anode, a light emitting layer and a cathode are sequentially formed on the substrate. In this case, if the hole transport layer is further formed between the anode and the light emitting layer or the electron transport layer is further formed between the light emitting layer and the cathode, the luminous efficiency and luminance of the organic EL device can be improved.

상기 홀 수송층, 발광층 및 전자수송층은 모두 유기 화합물로 이루어진 유기박막들로서, 그중에서 발광층 형성물질로서 본 발명에 따른 화학식 1의 서브프탈로시아닌 화합물을 이용할 수 있다. 여기에서 발광층 형성시 화학식 1의 서브프탈로시아닌 화합물 자체만을 이용할 수도 있지만, 폴리비닐카바졸 등의 매트릭스 고분자등과 소정 혼합비로 혼합한 조성물을 이용하기도 한다. 이와 같이 매트릭스 고분자를 발광 화합물에 부가하여 발광층을 형성하면, 희석 효과(dilution effect)에 의하여 엑시톤의 분자간(체인간) 상호작용이 감소되어 양자효율이 증가하고 에너지 전이(energy transfer)에 의하여 유기 전자발광소자의 휘도가 증가되는 효과를 얻을 수 있다.The hole transporting layer, the light emitting layer, and the electron transporting layer are all organic thin films made of organic compounds, and among them, a subphthalocyanine compound represented by Chemical Formula 1 according to the present invention may be used as a light emitting layer forming material. Here, only the subphthalocyanine compound of Formula 1 may be used when forming the light emitting layer, but a composition mixed with a matrix polymer such as polyvinylcarbazole and the like at a predetermined mixing ratio may be used. In this way, when the matrix polymer is added to the light emitting compound to form the light emitting layer, the intermolecular (chain-to-chain) interaction of the excitons is reduced by the dilution effect, thereby increasing the quantum efficiency and the organic electrons by the energy transfer. The effect of increasing the brightness of the light emitting device can be obtained.

이하, 본 발명을 하기 합성예와 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Synthesis Examples and Examples, but the present invention is not limited to the following Examples.

합성예 1. 1,2-디도데실티오-4,5-디시아노벤젠의 제조Synthesis Example 1. Preparation of 1,2-didodecylthio-4,5-dicyanobenzene

아르곤 가스 분위기하에서, 도데칸 티올 7㎖를 디메틸술폭사이드 40㎖에 용해한 다음, 여기에 4,5-디시아노벤젠 2.85g을 부가하여 20분동안 교반하였다.Under argon gas atmosphere, 7 ml of dodecane thiol was dissolved in 40 ml of dimethyl sulfoxide, and then 2.85 g of 4,5-dicyanobenzene was added thereto and stirred for 20 minutes.

상기 반응 혼합물에 탄산칼륨 7.27g을 1시간에 걸쳐 조금씩 부가한 다음, 40℃에서 12시간동안 교반하였다.7.27 g of potassium carbonate was added little by little over 1 hour to the reaction mixture, followed by stirring at 40 ° C. for 12 hours.

반응이 완결되면, 반응 혼합물에 물 100㎖를 부가하고 나서, 클로로포름으로 추출하였다. 모아진 클로로포름층을 탄산나트륨 수용액으로 세척한 다음, 무수 황산나트륨(Na2SO4)으로 건조하였다. 이어서, 상기 결과물을 여과한 다음, 여액으로부터 클로로포름을 제거하였다. 그 후, 에탄올을 이용하여 재결정하여 1,2-디도데실티오-4,5-디시아노벤젠 6.23g을 얻었다(수율: 81%).When the reaction was completed, 100 ml of water was added to the reaction mixture, which was then extracted with chloroform. The combined chloroform layers were washed with an aqueous sodium carbonate solution and then dried over anhydrous sodium sulfate (Na 2 SO 4 ). The resultant was then filtered and chloroform was removed from the filtrate. Thereafter, the mixture was recrystallized from ethanol to obtain 6.23 g of 1,2-didodecylthio-4,5-dicyanobenzene (yield: 81%).

1H NMR(CDCl3, 300MHz): δ 0.87(t, 6H), 1.48(m, 28H), 1.76(m, 4H), 3.01(t, 4H), 7.38(s, 1H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.87 (t, 6H), 1.48 (m, 28H), 1.76 (m, 4H), 3.01 (t, 4H), 7.38 (s, 1H).

13C NMR(CDCl3, 300MHz): δ 14.51, 23.07, 28.45, 29.29, 29.49, 29.68, 29.82, 29.90, 32.27, 33.12, 111.43, 116.09, 128.52, 144.63 13 C NMR (CDCl 3 , 300 MHz): δ 14.51, 23.07, 28.45, 29.29, 29.49, 29.68, 29.82, 29.90, 32.27, 33.12, 111.43, 116.09, 128.52, 144.63

합성예 2. 클로로[2,3,9,10,16,17-헥사키스(도데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아자사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4)-보론의 제조Synthesis Example 2. Chloro [2,3,9,10,16,17-hexakis (dodecylthio) -7,12,14,19-diimino-21,5-nitrilo-5H-tribenzo [chm ] [1,6,11] Triazacyclopentadecinenate- (2-)-N 22 , N 23 , N 24 ]-(T-4) -Boron Preparation

아르곤 가스 분위기하에서, 1,2-디도데실티오-4,5-디시아노벤젠 2.89g을 1-클로로나프탈렌 4㎖에 용해한 다음, 여기에 BCl3용액(1M solution in n-heptane) 1.0㎖를 부가하여 100℃에서 4시간동안 교반하였다.Under argon gas atmosphere, 1,2-didodecyl-4,5-dicyano-thio dissolved in benzene 2.89g of 1-chloronaphthalene 4㎖ Next, here BCl 3 solution (1M solution in n-heptane) adding 1.0㎖ And stirred at 100 ℃ for 4 hours.

반응이 완결되면, 상기 반응 혼합물을 실온으로 냉각하였다. 이어서, 반응 혼합물에 에탄올을 부가하여 침전물을 형성시켰다. 얻어진 침전물을 여과한 다음, 이를 실리카겔 칼럼 크로마토그래피(전개용매: 디클로로메탄)로 정제하여 클로로[2,3,9,10,16,17-헥사키스(도데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아자사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4) 0.18g를 얻었다(수율: 11%).Upon completion of the reaction, the reaction mixture was cooled to room temperature. Then ethanol was added to the reaction mixture to form a precipitate. The precipitate obtained was filtered and then purified by silica gel column chromatography (developing solvent: dichloromethane) to give chloro [2,3,9,10,16,17-hexakis (dodecylthio) -7,12,14, 19-Diimino-21,5-nitrilo-5H-tribenzo [chm] [1,6,11] triazacyclopentadedecyneto- (2-)-N 22 , N 23 , N 24 ]-( T-4) 0.18 g was obtained (yield: 11%).

1H NMR(CDCl3, 300MHz): δ 0.88(t, 18H), 1.59(m, 84H), 1.89(m, 12H), 3.31(m, 12H), 8.51(s, 6H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.88 (t, 18H), 1.59 (m, 84H), 1.89 (m, 12H), 3.31 (m, 12H), 8.51 (s, 6H).

13C NMR(CDCl3, 300MHz): δ 14.52, 23.09, 28.86, 29.56, 29.72, 29.74, 29.96, 30.01, 32.31, 34.08, 119.91, 128.69, 141.23, 149.53 13 C NMR (CDCl 3 , 300 MHz): δ 14.52, 23.09, 28.86, 29.56, 29.72, 29.74, 29.96, 30.01, 32.31, 34.08, 119.91, 128.69, 141.23, 149.53

IR(KBr): ν 2955, 2924, 2853, 2360, 2342, 1597, 1462, 1419, 1368, 1080, 979IR (KBr): ν 2955, 2924, 2853, 2360, 2342, 1597, 1462, 1419, 1368, 1080, 979

UV(CHCl3): λmax(lg ε) 602(5.00), 306(4.85), 415(4.53), 389(4.52)UV (CHCl 3 ): λ max (lg ε) 602 (5.00), 306 (4.85), 415 (4.53), 389 (4.52)

형광분석기(여기 파장: 360㎚, CHCl3) λmax613, 504㎚Fluorescence spectrometer (excitation wavelength: 360 nm, CHCl 3 ) λ max 613, 504 nm

질량분석기: m/e 1463.8Mass spectrometer: m / e 1463.8

합성예 3. 1,2-디헥사데실티오-4,5-디시아노벤젠의 제조Synthesis Example 3. Preparation of 1,2-dihexadecylthio-4,5-dicyanobenzene

도데칸 티올 4㎖와 4,5-디시아노벤젠 1.88g 대신 헥사데실 티올 5㎖와 1,2-디클로로-4,5-디시아노벤젠 1.59g을 사용한 것을 제외하고는, 합성예 1과 동일한 방법에 따라 실시하여 1,2-디헥사데실티오-4,5-디시아노벤젠 4.74g을 얻었다(수율: 92%).The same method as in Synthesis Example 1, except that 5 ml of hexadecyl thiol and 1.59 g of 1,2-dichloro-4,5-dicyanobenzene were used instead of 4 ml of dodecane thiol and 1.88 g of 4,5-dicyanobenzene. It carried out according to the above, to obtain 4.74 g of 1,2-dihexadecylthio-4,5-dicyanobenzene (yield: 92%).

1H NMR(CDCl3, 300MHz): δ 0.87(t, 6H), 1.48(m, 52H), 1.77(m, 4H), 3.01(t, 4H), 7.38(s, 1H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.87 (t, 6H), 1.48 (m, 52H), 1.77 (m, 4H), 3.01 (t, 4H), 7.38 (s, 1H).

13C NMR(CDCl3, 300MHz): δ 14.53, 23.10, 28.46, 29.50, 29.77, 29.84, 29.96, 30.04, 30.07, 30.10, 32.33, 33.12, 111.43, 116.08, 128.45, 128.51, 144.63 13 C NMR (CDCl 3 , 300 MHz): δ 14.53, 23.10, 28.46, 29.50, 29.77, 29.84, 29.96, 30.04, 30.07, 30.10, 32.33, 33.12, 111.43, 116.08, 128.45, 128.51, 144.63

합성예 4. 클로로[2,3,9,10,16,17-헥사키스(헥사데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아조사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4)-보론의 제조Synthesis Example 4. Chloro [2,3,9,10,16,17-hexakis (hexadecylthio) -7,12,14,19-diimino-21,5-nitrilo-5H-tribenzo [chm ] [1,6,11] triazocyclopentadecineto- (2-)-N 22 , N 23 , N 24 ]-(T-4) -preparation of boron

1,2-디도데실티오-4,5-디시아노벤젠 2.89g 대신 1,2-디헥사데실티오-4,5-디시아노벤젠 2.89g을 사용한 것을 제외하고는, 합성예 2와 동일한 방법에 따라 실시하여 클로로[2,3,9,10,16,17-헥사키스(헥사데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아자사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4)-보론 0.68g을 얻었다(수율: 23%).The same method as in Synthesis Example 2 was used except that 2.89 g of 1,2-dihexadecylthio-4,5-dicyanobenzene was used instead of 2.89 g of 1,2-didodecylthio-4,5-dicyanobenzene. Chloro [2,3,9,10,16,17-hexakis (hexadecylthio) -7,12,14,19-diimino-21,5-nitrilo-5H-tribenzo [chm] 0.68 g of [1,6,11] triacyclopentadedecineito- (2-)-N 22 , N 23 , N 24 ]-(T-4) -boron was obtained (yield: 23%).

1H NMR(CDCl3, 300MHz): δ 0.88(t, 18H), 1.66(m, 156H), 1.90(m, 12H), 3.31(t, 4H), 8.52(s, 6H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.88 (t, 18H), 1.66 (m, 156H), 1.90 (m, 12H), 3.31 (t, 4H), 8.52 (s, 6H).

13C NMR(CDCl3, 300MHz): δ 14.54, 23.11, 28.87, 29.58, 29.75, 29.79, 29.99, 30.09, 30.13, 32.34, 34.08, 119.90, 128.70, 141.25, 149.53 13 C NMR (CDCl 3 , 300 MHz): δ 14.54, 23.11, 28.87, 29.58, 29.75, 29.79, 29.99, 30.09, 30.13, 32.34, 34.08, 119.90, 128.70, 141.25, 149.53

IR(KBr): ν 2955, 2923, 1732, 1598, 1463, 1369, 1240, 1185, 1081, 979IR (KBr): ν 2955, 2923, 1732, 1598, 1463, 1369, 1240, 1185, 1081, 979

UV(CHCl3): λmax(lg ε) 602(5.19), 304(5.08), 559(4.92), 421(4.86)UV (CHCl 3 ): λ max (lg ε) 602 (5.19), 304 (5.08), 559 (4.92), 421 (4.86)

형광분석기(여기 파장: 360㎚, CHCl3) λmax612,506㎚Fluorescence spectrometer (excitation wavelength: 360 nm, CHCl 3 ) λ max 612,506 nm

질량분석기: m/e 1969.65(Calcd for C120H240BClN6S6: 1969.65):Mass spectrometer: m / e 1969.65 (Calcd for C 120 H 240 BClN 6 S 6 : 1969.65):

합성예 5. 1,2-디옥타데실티오-4,5-디시아노벤젠의 제조Synthesis Example 5. Preparation of 1,2-dioctadecylthio-4,5-dicyanobenzene

도데칸 티올 4㎖와 4,5-디시아노벤젠 1.88g 대신 옥타데실 티올 7.03g과 1,2-디클로로-4,5-디시아노벤젠 1.93g을 사용한 것을 제외하고는, 합성예 1과 동일한 방법에 따라 실시하여 1,2-디옥타데실티오-4,5-디시아노벤젠 6.51g을 얻었다(수율: 95%).The same method as in Synthesis Example 1, except that 7.03 g of octadecyl thiol and 1.93 g of 1,2-dichloro-4,5-dicyanobenzene were used instead of 4 ml of dodecane thiol and 1.88 g of 4,5-dicyanobenzene. According to the above procedure, 6.51 g of 1,2-dioctadecylthio-4,5-dicyanobenzene was obtained (yield: 95%).

1H NMR(CDCl3, 300MHz): δ 0.87(t, 6H), 1.48(m, 60H), 1.77(m, 4H), 3.01(t, 4H), 7.38(s, 1H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.87 (t, 6H), 1.48 (m, 60H), 1.77 (m, 4H), 3.01 (t, 4H), 7.38 (s, 1H).

13C NMR(CDCl3, 300MHz): δ 14.53, 23.10, 28.46, 28.95, 29.31, 29.51, 29.66, 29.78, 29.84, 29.97, 30.05, 30.08, 30.12, 32.34, 33.13, 111.43, 116.08, 128.51, 144.63 13 C NMR (CDCl 3 , 300 MHz): δ 14.53, 23.10, 28.46, 28.95, 29.31, 29.51, 29.66, 29.78, 29.84, 29.97, 30.05, 30.08, 30.12, 32.34, 33.13, 111.43, 116.08, 128.51, 144.63

합성예 6. 클로로[2,3,9,10,16,17-헥사키스(옥타데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아자사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4)-보론의 제조Synthesis Example 6. Chloro [2,3,9,10,16,17-hexakis (octadecylthio) -7,12,14,19-diimino-21,5-nitrilo-5H-tribenzo [chm ] [1,6,11] Triazacyclopentadecinenate- (2-)-N 22 , N 23 , N 24 ]-(T-4) -Boron Preparation

1,2-디도데실티오-4,5-디시아노벤젠 2.89g과 BCl3용액 1.5㎖ 대신 1,2-디옥타데실티오-4,5-디시아노벤젠 1.46g과 BCl3용액 0.7㎖를 사용한 것을 제외하고는, 합성예 2와 동일한 방법에 따라 실시하여 클로로[2,3,9,10,16,17-헥사키스(옥타데실티오)-7,12,14,19-디이미노-21,5-니트릴로-5H-트리벤조[c.h.m][1,6,11]트리아자사이클로펜타데시네이토-(2-)-N22,N23,N24]-(T-4)-보론 0.11g을 얻었다(수율: 7%).Didodecyl 1,2-thio-4,5-dicyano benzene and 2.89g BCl 3 solution 1.5㎖ instead of 1,2-di-octadecyl-thio-4,5-dicyano benzene with 1.46g and BCl 3 solution 0.7㎖ Except that, chloro [2,3,9,10,16,17-hexakis (octadecylthio) -7,12,14,19-diimino-21, 5-nitrilo-5H-tribenzo [chm] [1,6,11] triacyclopentadedecineito- (2-)-N 22 , N 23 , N 24 ]-(T-4) -boron 0.11 g was obtained (yield: 7%).

1H NMR(CDCl3, 300MHz): δ 0.87(t, 18H), 1.22(m, 180H), 1.90(m, 12H), 3.30(m, 12H), 8.60(s, 6H). 1 H NMR (CDCl 3 , 300 MHz): δ 0.87 (t, 18H), 1.22 (m, 180H), 1.90 (m, 12H), 3.30 (m, 12H), 8.60 (s, 6H).

13C NMR(CDCl3, 300MHz): δ 14.50, 23.09, 28.89, 29.56, 29.76, 29.98, 30.11, 32.33, 34.12, 120.03, 128.77, 141.33, 149.55. 13 C NMR (CDCl 3 , 300 MHz): δ 14.50, 23.09, 28.89, 29.56, 29.76, 29.98, 30.11, 32.33, 34.12, 120.03, 128.77, 141.33, 149.55.

IR(KBr): ν 2955, 2923, 1732, 1598, 1463, 1369, 1240, 1185, 1081, 979IR (KBr): ν 2955, 2923, 1732, 1598, 1463, 1369, 1240, 1185, 1081, 979

UV(CHCl3): λmax(lg ε) 602(4.70), 307(4.56), 415(4.24)UV (CHCl 3 ): λ max (lg ε) 602 (4.70), 307 (4.56), 415 (4.24)

형광분석기(여기 파장: 360㎚, CHCl3) λmax610, 505㎚Fluorescence spectrometer (excitation wavelength: 360 nm, CHCl 3 ) λ max 610, 505 nm

질량분석기: m/e 2138Mass spectrometer: m / e 2138

DSC(Perkin elmer사 모델명: Pyris), 편광 현미경(Zeiss 회사, 모델명: JENALAB-pol) 열중량 분석기(Perkin elmer사 모델명: TGA 7) 및 X-선 회절기(포항 방사광 가속기, 모델명: Rigaku Denki generator)를 이용하여 상기 합성예 2, 4 및 6에 따라 제조된 서브프탈로시아닌 화합물의 액정 성질을 조사하였다. 여기에서 DSC를 이용하는 경우에는 서브프탈로시아닌 화합물의 상전이온도와 상전이에 따른 엔탈피 변화를 측정한다. 그리고 편광 현미경으로는 액정의 특징적인 광학적 구조를 조사하며, 열중량 분석기로는 열적 안정성을 조사하며, 그리고 X-선 회절기를 이용한 X-선 회절 분석으로는 서브프탈로시아닌화합물의 입체적 구조를 조사한다.DSC (Perkin elmer Model: Pyris), Polarization Microscope (Zeiss Company, Model: JENALAB-pol) Thermogravimetric Analyzer (Perkin elmer Model: TGA 7) and X-ray Diffractometer (Pohang Radiation Accelerator, Model: Rigaku Denki generator ) Was used to investigate the liquid crystal properties of the subphthalocyanine compounds prepared according to Synthesis Examples 2, 4 and 6. When DSC is used here, the phase transition temperature of a subphthalocyanine compound and the enthalpy change according to a phase transition are measured. The polarizing microscope examines the characteristic optical structure of the liquid crystal, the thermogravimetric analyzer examines the thermal stability, and the X-ray diffraction analysis using the X-ray diffractometer examines the three-dimensional structure of the subphthalocyanine compound.

먼저, DSC를 통한 분석 결과를 살펴보면 다음과 같다.First, the analysis results through DSC are as follows.

상기 합성예 2에 따라 제조된 서브프탈로시아닌 화합물은 가열과 냉각시에 결정과 액정간의 전이가 관찰되지 않았다. 그리고 가열시 86℃에서 그리고 냉각시에 70℃에서 각각 액정과 등방성 액체간의 전이가 관찰되었다.In the subphthalocyanine compound prepared according to Synthesis Example 2, no transition between crystal and liquid crystal was observed during heating and cooling. The transition between the liquid crystal and the isotropic liquid was observed at 86 ° C. on heating and at 70 ° C. on cooling, respectively.

합성예 4에 따라 제조된 서브프탈로시아닌 화합물은 도 1a-b을 참조하면, 가열시 27℃에서 결정에서 액정으로 전이되고, 75℃에서 액정에서 등방성 액체로 전이된다. 그리고 냉각시에는, 68℃에서 등방성 액체에서 액정으로 전이되고 21℃에서 액정에서 결정으로 전이된다.Referring to FIGS. 1A-B, the subphthalocyanine compound prepared according to Synthesis Example 4 transitions from crystal to liquid crystal at 27 ° C. and isotropic liquid at 75 ° C. when heated. And upon cooling, it transitions from an isotropic liquid to liquid crystal at 68 ° C. and from crystal to liquid crystal at 21 ° C.

그리고, 합성예 6에 따라 제조된 서브프탈로시아닌 화합물은 가열시 43℃에서 결정에서 액정으로, 78℃에서 액정에서 등방성 액체로 전이된다. 그리고 냉각시에는, 68℃에서 등방성 액체에서 액정으로 전이되고, 36℃에서 액정에서 결정으로, 33℃에서 결정에서 또 다른 결정으로 전이된다.Then, the subphthalocyanine compound prepared according to Synthesis Example 6 is transferred from crystal to liquid crystal at 43 ° C. and isotropic liquid at 78 ° C. upon heating. And upon cooling, it is transferred from the isotropic liquid to the liquid crystal at 68 ° C, from the liquid crystal to the crystal at 36 ° C, and from crystal to another crystal at 33 ° C.

하기 표 1에는 상기 합성예 2, 4 및 6에 따른 서브프탈로시아닌 화합물들의 DSC를 이용하여 얻은 광학적 및 열적 데이터를 나타내었다.Table 1 below shows optical and thermal data obtained using DSC of the subphthalocyanine compounds according to Synthesis Examples 2, 4, and 6.

구분division 가열heating 냉각Cooling 합성예 2Synthesis Example 2 D 86.1a(0.68b) ID 86.1 a (0.68 b ) I I 70.5a(1.31b) DI 70.5 a (1.31 b ) D 합성예 4Synthesis Example 4 K 27.2a(13.42b) D 75.3a(0.35b) IK 27.2 a (13.42 b ) D 75.3 a (0.35 b ) I I 67.6a(0.61b) D 20.9a(10.36b) KI 67.6 a (0.61 b ) D 20.9 a (10.36 b ) K 합성예 6Synthesis Example 6 K 43.4a(21.80b) D 70cIK 43.4 a (21.80 b ) D 70 c I I 65cD 36.6a(0.53b) K 33.6a(9.56b) K1 I 65 c D 36.6 a (0.53 b ) K 33.6 a (9.56 b ) K 1

a: DSC를 이용하여 측정된 전이온도(℃)로서, 측정속도는 10℃/분이다.a: The transition temperature (degreeC) measured using DSC, and the measurement rate is 10 degrees C / min.

b: DSC를 이용하여 측정된 엔탈피(J/g)로서, 측정속도는 10℃/분이다.b: Enthalpy (J / g) measured using DSC, measuring rate is 10 ° C / min.

c: 편광현미경으로 관찰된 전이온도(℃)이다.c: transition temperature (degreeC) observed with the polarization microscope.

K,K'는 결정상, D는 원기둥형 상, I는 등방성 액체상을 각각 의미한다.K, K 'is a crystalline phase, D is a cylindrical phase, I is an isotropic liquid phase, respectively.

편광 현미경을 이용하여 상기 합성예 2, 4 및 6의 서브프탈로시아닌 화합물의 광학적 구조를 관찰하면, 상기 서브프탈로시아닌 화합물들은 준원추 초점형 구조로서 전형적인 원판 형태를 갖는 액정임을 확인할 수 있었다.Observing the optical structure of the subphthalocyanine compounds of Synthesis Examples 2, 4 and 6 using a polarization microscope, it was confirmed that the subphthalocyanine compounds are liquid crystals having a typical disc shape as a semiconical focusing structure.

또한, 열중량 분석기를 이용하여, 상기 합성예 2, 4 및 6의 서브프탈로시아닌 화합물의 열적 안정성을 조사한 결과, 250℃까지 안정하다는 것을 알 수 있었다.In addition, when the thermal stability of the subphthalocyanine compounds of Synthesis Examples 2, 4 and 6 was examined using a thermogravimetric analyzer, it was found to be stable up to 250 ° C.

도 2에는 상기 합성예 6에 따른 서브프탈로시아닌 화합물의 X-선 회절 분석 결과를 나타내었다.2 shows the results of X-ray diffraction analysis of the subphthalocyanine compound according to Synthesis Example 6.

도 2을 참조하면, 옥타데실기가 치환된 서브프탈린시아닌 화합물은 소각 부근에서 3개의 피크가 관찰되었는데, 각각 (100), (110),(200) 브레그 회절에 해당하는 장거리의 비가 1:√3:2로 격자 상수가 33.02Å이며, 실린더의 규칙적인 육각배열을 하는 것으로 밝혀졌다. 알킬 사슬기간의 무질서화된 액체 성격의 피크가 2θ=20℃ 부근인 광각에서 나타났다.Referring to FIG. 2, three peaks were observed near the incineration of the subphthalincyanine compound in which the octadecyl group was substituted, and the long distance ratios corresponding to (100), (110), and (200) Breg diffraction, respectively The lattice constant of 1: √3: 2 was 33.02Å, and it was found to be a regular hexagonal arrangement of the cylinders. The peak of the disordered liquid nature of the alkyl chain period appeared at a wide angle around 2θ = 20 ° C.

한편, 합성예 2, 4 및 6에 따른 서브프탈로시아닌 화합물의 X선 회절 분석 결과 데이터를 하기 표 2에 나타내었다.Meanwhile, X-ray diffraction analysis data of the subphthalocyanine compounds according to Synthesis Examples 2, 4, and 6 are shown in Table 2 below.

구분division 중간상(mesophase)Mesophase 격자상수(Å)Lattice constant 피크(Å)Peak 밀러 인덱스(Miller indexes)Miller indexes 합성예 2Synthesis Example 2 D at 60℃D at 60 ℃ 29.7429.74 25.7414.9225.7414.92 (100)(110)(100) (110) 합성예 4Synthesis Example 4 D at 상온D at room temperature 33.0233.02 28.616.514.34.4328.616.514.34.43 (100)(110)(200)halo(100) (110) (200) halo 합성예 6Synthesis Example 6 D at 50℃D at 50 ℃ 33.2233.22 30.5017.6530.5017.65 (100)(110)(100) (110) K at 상온K at room temperature 37.4037.40 32.3932.39 (100)(100)

상기 표 2에서 K는 결정상, D는 원기둥형상을 각각 의미한다.In Table 2, K means a crystal phase and D means a cylinder shape, respectively.

한편, 상기 합성예 2의 서브프탈린시아닌 화합물의 발광 스펙트럼은 613㎚와 513㎚에서, 합성예 4의 서브프탈린시아닌 화합물의 발광 스펙트럼은 612㎚와 506㎚에서, 그리고 합성예 6의 서브프탈린시아닌 화합물의 발광 스펙스럼은 610㎚와 505㎚에서 각각 흡수 파장을 나타냈다. 이러한 결과로부터, 상기 합성예 2, 4 및 6에 따른 서브프탈린시아닌 화합물들은 적색 계열의 칼라를 구현할 수 있다.On the other hand, the emission spectra of the subphthalincyanine compound of Synthesis Example 2 were at 613 nm and 513 nm, and the emission spectra of the subphthalincyanine compound of Synthesis Example 4 were at 612 nm and 506 nm, and in Synthesis Example 6 The emission spectrum of the subphthalin cyanine compound showed absorption wavelength at 610 nm and 505 nm, respectively. From these results, the subphthalincyanine compounds according to Synthesis Examples 2, 4, and 6 may implement a red-based color.

하기 실시예들은 상기 합성예 2, 4 및 6에 따라 제조된 서브프탈로시아닌 화합물을 이용한 액정표시소자와 유기 전자발광소자에 관한 것이다.The following examples relate to a liquid crystal display device and an organic electroluminescent device using the subphthalocyanine compounds prepared according to Synthesis Examples 2, 4 and 6.

실시예 1. 액정표시소자의 제조Example 1 Fabrication of Liquid Crystal Display Device

유리 기판에 박막 트랜지스터를 형성한 다음, 여기에 스페이서를 분사하였다.After the thin film transistor was formed on the glass substrate, spacers were injected therein.

다른 유리 기판에 ITO 전극층, 블랙 매트릭스 및 칼라필터를 형성하고 그 상부에 실란트를 도포한다. 이 때 실란트로는 UV 경화성 또는 열경화성 물질을 이용하였다.An ITO electrode layer, a black matrix, and a color filter are formed on another glass substrate, and a sealant is applied thereon. At this time, a sealant was used as a UV curable or thermosetting material.

얼라이너를 사용하여, 박막 트랜지스터가 형성된 상기 유리 기판과, 전극층, 블랙 매트릭스 및 칼라필터가 형성된 유리 기판 각각에 미세한 화소들을 정렬 배치한 후, 이 두 기판을 접합하여 소정의 두께를 갖는 공셀을 제조하였다. 이렇게 만들어진 공셀에 합성예 2에 따른 서브프탈로시아닌을 주입한 후 자외선을 조사함으로써 액정표시장치를 완성하였다.After aligning and arranging fine pixels on the glass substrate on which the thin film transistor was formed and the glass substrate on which the electrode layer, the black matrix and the color filter were formed, the two substrates were bonded to each other to prepare a blank cell having a predetermined thickness. . After injecting the subphthalocyanine according to Synthesis Example 2 into the empty cell thus prepared, the liquid crystal display device was completed by irradiating ultraviolet rays.

실시예 2-3. 액정표시소자의 제조Example 2-3. Manufacture of liquid crystal display device

합성예 2에 따른 서브프탈로시아닌 대신 합성예 4 및 6의 서브프탈로시아닌 화합물을 각각 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 액정표시소자를 완성하였다.A liquid crystal display device was completed in the same manner as in Example 1 except that the subphthalocyanine compounds of Synthesis Examples 4 and 6 were used instead of the subphthalocyanines of Synthesis Example 2.

실시예 4. 유기 전자발광소자의 제조Example 4 Fabrication of Organic Electroluminescent Device

유리 기판상에 ITO 전극을 형성한 다음, 상기 합성예 2의 프탈로시아닌 화합물과 폴리비닐카바졸을 이용하여 발광층을 500Å 두께로 형성하였다.After the ITO electrode was formed on the glass substrate, the light emitting layer was formed to a thickness of 500 kV using the phthalocyanine compound of Synthesis Example 2 and polyvinylcarbazole.

그 후, 상기 발광층 상부에 Al:Li을 진공증착하여 1200Å 두께의 알루미늄·리튬 전극을 형성함으로써 유기 전자발광소자를 제조하였다.Thereafter, Al: Li was vacuum-deposited on the emission layer to form an aluminum lithium electrode having a thickness of 1200 Å, thereby manufacturing an organic EL device.

실시예 5-6. 유기 전자발광소자의 제조Example 5-6. Fabrication of Organic Electroluminescent Device

합성예 2에 따른 서브프탈로시아닌 대신 합성예 4 및 6의 서브프탈로시아닌 화합물을 각각 사용한 것을 제외하고는, 실시예 4와 동일한 방법에 따라 유기 전자발광소자를 제조하였다.An organic electroluminescent device was manufactured according to the same method as Example 4 except that the subphthalocyanine compounds of Synthesis Examples 4 and 6 were used instead of the subphthalocyanines of Synthesis Example 2.

상기 실시예 1-3에 따라 제조된 액정표시소자의 성능을 평가하였다.The performance of the liquid crystal display device manufactured according to Example 1-3 was evaluated.

평가 결과, 상기 실시예 1-3에 따라 제조된 액정표시소자의 응답속도, 구동전압,시야각 및 광학적 메모리 특성이 모두 우수하였다.As a result of evaluation, the response speed, driving voltage, viewing angle, and optical memory characteristics of the liquid crystal display device according to Example 1-3 were excellent.

한편, 상기 실시예 4-6에 따라 제조된 유기 전자발광소자의 구동전압은 통상적인 유기 전자발광소자에 비하여 거의 동일하거나 낮은 수준이었으며, 적색 계열의 칼라를 양호한 발광효율로 구현할 수 있었다.On the other hand, the driving voltage of the organic electroluminescent device manufactured according to Example 4-6 was almost the same or lower level than the conventional organic electroluminescent device, it was possible to implement a red-based color with good luminous efficiency.

본 발명에 따른 화학식 1의 서브프탈로시아닌 화합물은 실온에서 액정 성질을 가지면서, 발광 특성을 가지고 있다. 따라서, 이러한 서브프탈로시아닌 화합물은 액정표시소자, 유기 전자발광소자 등과 같은 표시소자에 매우 유용하게 적용가능하다.The subphthalocyanine compound of Formula 1 according to the present invention has liquid crystal properties at room temperature and has luminescent properties. Therefore, such a subphthalocyanine compound is very usefully applicable to display devices such as liquid crystal display devices, organic electroluminescent devices, and the like.

Claims (8)

화학식 1로 표시되는 서브프탈로시아닌 화합물:Subphthalocyanine compounds represented by Formula 1: <화학식 1><Formula 1> 상기식중, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고,In the above formula, R is an alkyl group having 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group having 5 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms, X는 할로겐 원자이고,X is a halogen atom, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.B represents boron (B) or aluminum (Al). 제1항에 있어서, 상기 R은 탄소수 8 내지 18의 알킬기이고, X는 염소이고, B는 보론인 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌 화합물.The subphthalocyanine compound of claim 1, wherein R is an alkyl group having 8 to 18 carbon atoms, X is chlorine, and B is boron. 1,2-디할로겐 4,5-디시아노벤젠 (A)와 티올 화합물 (B)를 염기 존재하에서 반응시켜 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 얻는 단계; 및Reacting 1,2-dihalogen 4,5-dicyanobenzene (A) and thiol compound (B) in the presence of a base to obtain 1,2-dialkylthio-4,5-dicyanobenzene (C); And 상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 고리축합시키는 단계를 포함하는 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌의 제조방법:Method for producing a subphthalocyanine represented by the formula (1) comprising the step of ring condensing the 1,2-dialkylthio-4,5-dicyanobenzene (C): 상기식중, X와 Q는 할로겐 원자이고,Wherein X and Q are halogen atoms, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고,R is an alkyl group having 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group having 5 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.B represents boron (B) or aluminum (Al). 제3항에 있어서, 상기 고리축합단계가 상기 1,2-디알킬티오-4,5-디시아노벤젠 (C)를 BX3(X는 할로겐 원자임)와 반응시키는 것에 의하여 이루어지는 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌 화합물의 제조방법.4. The ring condensation step according to claim 3, wherein the ring condensation step is performed by reacting the 1,2-dialkylthio-4,5-dicyanobenzene (C) with BX 3 (X is a halogen atom). Method for producing a subphthalocyanine compound represented by the formula (1). 제3항에 있어서, 상기 R은 탄소수 8 내지 18의 알킬기이고, X는 염소이고, B는 붕소(B)인 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌 화합물의 제조방법.The method of claim 3, wherein R is an alkyl group having 8 to 18 carbon atoms, X is chlorine, and B is boron (B). 제3항에 있어서, 상기 염기가 탄산칼륨인 것을 특징으로 하는 화학식 1로 표시되는 서브프탈로시아닌 화합물의 제조방법.The method for producing a subphthalocyanine compound according to claim 3, wherein the base is potassium carbonate. 화학식 1로 표시되는 서브프탈로시아닌을 액정 재료 또는 발색 재료로 채용하고 있는 것을 특징으로 하는 표시소자.A display element comprising subphthalocyanine represented by the formula (1) as a liquid crystal material or a coloring material. <화학식 1><Formula 1> 상기식중, R은 탄소수 1 내지 30의 알킬기, 탄소수 5 내지 20의 지방족 고리 탄화수소기 또는 탄소수 6 내지 30의 방향족 탄화수소기이고,In the above formula, R is an alkyl group having 1 to 30 carbon atoms, an aliphatic ring hydrocarbon group having 5 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms, X는 할로겐 원자이고,X is a halogen atom, B는 붕소(B) 또는 알루미늄(Al)을 나타낸다.B represents boron (B) or aluminum (Al). 제7항에 있어서, 상기 표시소자가 액정표시소자 또는 유기 전자발광소자인 것을 특징으로 하는 표시소자.The display device according to claim 7, wherein the display device is a liquid crystal display device or an organic electroluminescent device.
KR1019980050471A 1998-11-24 1998-11-24 Liquid crystal display employing liquid crystal material using subphthalocyanine compound KR100335962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980050471A KR100335962B1 (en) 1998-11-24 1998-11-24 Liquid crystal display employing liquid crystal material using subphthalocyanine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980050471A KR100335962B1 (en) 1998-11-24 1998-11-24 Liquid crystal display employing liquid crystal material using subphthalocyanine compound

Publications (2)

Publication Number Publication Date
KR20000033562A true KR20000033562A (en) 2000-06-15
KR100335962B1 KR100335962B1 (en) 2002-11-13

Family

ID=19559507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980050471A KR100335962B1 (en) 1998-11-24 1998-11-24 Liquid crystal display employing liquid crystal material using subphthalocyanine compound

Country Status (1)

Country Link
KR (1) KR100335962B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341394B2 (en) * 1993-10-08 2002-11-05 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same

Also Published As

Publication number Publication date
KR100335962B1 (en) 2002-11-13

Similar Documents

Publication Publication Date Title
Zhao et al. Room-temperature phosphorescence from organic aggregates
Wang et al. Rational control of charge transfer excitons toward high‐contrast reversible mechanoresponsive luminescent switching
Babu et al. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation
Uemura et al. Sequential multiple borylation toward an ultrapure green thermally activated delayed fluorescence material
US8344142B2 (en) Perylene charge-transport materials, methods of fabrication thereof, and methods of use thereof
Zhang et al. Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens
Huang et al. Molecular uniting set identified characteristic (MUSIC) of organic optoelectronic material
EP1175129B1 (en) Luminescence device
Qiu et al. Achieving purely organic room-temperature phosphorescence mediated by a host–guest charge transfer state
Zabulica et al. Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization
Kim et al. Solid‐State Light Emission Controlled by Tuning the Hierarchical Superstructure of Self‐Assembled Luminogens
JP5618272B2 (en) Photoresponsive liquid crystal compounds and their applications
Jiang et al. Luminescent columnar liquid crystals based on AIE tetraphenylethylene with hydrazone groups bearing multiple alkyl chains
CN106467516A (en) A kind of compound with triazine as core and its application on organic electroluminescence device
Zhang et al. Highly Fluorescent Liquid Crystals from Excited‐State Intramolecular Proton Transfer Molecules
CN106467550A (en) A kind of dibenzo hexatomic ring substituted compound with xanthone as core and its application
JPH0794807A (en) Amorphous organic thin film element, amorphous organic polymer compound and amorphous inorganic compound
Zhou et al. Cruciform molecules bearing bis (phenylsulfonyl) benzene moieties for high‐efficiency solution processable OLEDs: when thermally activated delayed fluorescence meets mechanochromic luminescence
Han et al. Dual guests synergistically tune the phosphorescence properties of doped systems through chemical interactions with bases
Gupta et al. Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores
CN110272440A (en) A kind of boracic 6-membered heterocyclic compound and its application in organic electroluminescence device
Wen et al. A multifunctional luminescent material based on quinoxaline and triphenylamine groups: polymorphism, mechanochromic luminescence, and applications in high-efficiency fluorescent OLEDs
Zheng et al. Excitation-& concentration-dependent color-tunable ultra-long phosphorescence of isophthalonitriles doped polymers
Riebe et al. Alkylated Aromatic Thioethers with Aggregation‐Induced Emission Properties—Assembly and Photophysics
Xu et al. Room‐temperature phosphorescence materials from crystalline to amorphous state

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20010319

Effective date: 20020228

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee