KR20000031388A - 생체자기 측정 장치 - Google Patents

생체자기 측정 장치 Download PDF

Info

Publication number
KR20000031388A
KR20000031388A KR1019980047405A KR19980047405A KR20000031388A KR 20000031388 A KR20000031388 A KR 20000031388A KR 1019980047405 A KR1019980047405 A KR 1019980047405A KR 19980047405 A KR19980047405 A KR 19980047405A KR 20000031388 A KR20000031388 A KR 20000031388A
Authority
KR
South Korea
Prior art keywords
magnetic field
channel
squid
sensor
insert
Prior art date
Application number
KR1019980047405A
Other languages
English (en)
Other versions
KR100313480B1 (ko
Inventor
이용호
임청무
김진목
권혁찬
박용기
박종철
Original Assignee
정명세
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명세, 한국표준과학연구원 filed Critical 정명세
Priority to KR1019980047405A priority Critical patent/KR100313480B1/ko
Publication of KR20000031388A publication Critical patent/KR20000031388A/ko
Application granted granted Critical
Publication of KR100313480B1 publication Critical patent/KR100313480B1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

본 발명은 생체자기 측정장치에 관한 것으로, 특히 이중이완발진 스퀴드 방식의 집적화된 평면형 미분계를 사용하고, 기준채널을 사용하여 신호대 잡음비를 높이고, 인체표면에 대해 접선성분의 자장을 측정하고, 센서가 모듈화되어 센서의 교체가 용이하고, 슬라이딩 메카니즘을 이용하여 인서트의 길이변화를 보상할 수 있고, 헬륨가스를 이용하여 신호선을 냉각하는 것을 특징으로 되어 있다.
상기 본 발명으로서 뇌, 심장, 태아의 심장, 척수, 위(창자) 등으로부터 발생하는 자장을 측정하는 장치로 활용된다.

Description

생체자기 측정 장치
본 발명은 생체자기 측정장치에 관한 것으로, 특히 이중이완발진 스퀴드 방식의 집적화된 평면형 미분계를 사용하고, 기준채널을 사용하여 신호대 잡음비를 높이고, 인체표면에 대해 접선성분의 자장을 측정하고, 센서가 모듈화되어 센서의 교체가 용이하고, 슬라이딩 메카니즘을 이용하여 인서트의 길이변화를 보상할 수 있고, 헬륨가스를 이용하여 신호선을 냉각하는 것을 특징으로 되어 있다.
상기 본 발명으로서 뇌, 심장, 태아의 심장, 척수, 위(창자) 등으로부터 발생하는 자장을 측정하는 장치로 활용된다.
종래에는 자장신호에 대한 스퀴드 출력전압 계수가 작은 직류 스퀴드를 채택하며 교류 인가전류 방식을 사용하고, 스퀴드와 전단증폭기 사이에 임피던스 매칭회로를 사용하며 위상민감 검출방법을 사용한다.
인체표면에 수직한 자장성분을 측정하고, 권선형 미분계를 사용하며, 서로 다른 채널의 검출코일이 같은 지지대에 고정되며 검출코일과 스퀴드가 별개의 몸체로 구성되며 스퀴드를 초전도 차폐시킨다.
인서트가 하나의 몸체로 냉각용기에 고정되며 신호선을 냉각시키기 위한 별도의 열교환 공간이 없다.
그러나 상기 종래기술은 임피던스 매칭회로는 센서부의 부피를 증가시키고,
자속변조 및 위상감응검출방법은 스퀴드 구동회로를 복잡하게 한다.
권선형 미분계는 균일한 자장잡음을 소거시키는 소거비가 부족하고 검출코일과 스퀴드 홀더가 차지하는 부피가 커서 동작을 위해 냉매가 많이 필요하다.
또한 센서 교체시 스퀴드와 검출코일을 분리시킨 후 초전도결합을 해야하므로 센서 교체과정이 매우 복잡하고, 초전도차폐는 인접한 채널의 검출코일의 외부잡음 소거비를 나쁘게 한다.
법선성분의 센서배열은 인체내의 필요한 정보를 얻는데 넓은 부위에 걸친 측정이 필요하다.
또한 인서트 냉각시 부품의 길이 변화를 보상시키기 어렵고 열교환공간이 없으므로 증발되는 헬륨가스를 이용한 신호선의 냉각이 부족하여 액체헬륨 증발율이 높아진다.
본 발명은 스퀴드 구동회로를 획기적으로 간단히 하여 시스템의 신뢰성을 개선시키며 시스템의 가격을 내리고, 검출코일을 스퀴드와 같은 기판에 집적화시켜 센서의 신뢰성을 크게 높이고 센서를 모듈화하여 센서의 교체를 쉽게 하기 위한 것이다.
기준채널로서 신호채널과 같은 방식의 미분계 뿐만아니라 자력계를 사용하여 신호대 잡음비를 높이고, 인체내의 정보를 얻는데 필요한 센서 커버면적을 줄이고, 슬라이딩 메카니즘을 이용하여 인서트의 길이변화를 보상할 수 있고, 냉매의 소모량을 줄이기 위해서 이다.
본 발명을 구성하는 제 1 발명으로서 뇌, 심장, 태아의 심장, 위, 창자 등으로부터 발생되는 자장을 측정하는 장치를 구성하는데 있어서 이중이완발진 스퀴드를 채택하고, 자장 검출코일이 스퀴드와 동일 기판에 집적화된 평면형 미분계를 사용하고, 신호대 잡음비를 개선하기 위해 신호채널(2)과 기준채널(3)을 동시에 사용하는 방법이고,
제 2 발명은 상기 제 1 발명에 있어서 인체표면에 수직한 방향을 z 방향이라 할 때 신호채널(2)의 자장센서를 dBy/dz 및 dBx/dz 성분의 자장을 동시에 측정하도록 평면형 미분계를 배치시키고, 기준채널(3)로서 dBy/dz 및 dBx/dz 성분의 자장을 동시에 측정하는 평면형 미분계(4)와 x, y, z 방향의 자장성분을 동시에 측정하는 벡터 자력계(5)을 채택하고 신호채널(2)과 기준채널(3)을 이용하여 적응필터를 사용하는 방법이고,
제 3 발명은 상기 방법을 수행하는 생체자기 측정장치의 구조로 완성되어 있다.
도 1은 본 발명중 센서의 구조 사시도
도 2는 도 1의 센서를 이용한 측정장치의 구조 개략도
도 3은 생체자기 측정 블록 다이아그램
<도면의 주요 부분에 대한 부호의 설명>
(1) : 센서 (2) : 신호채널
(3) : 기준채널 (4) : 평면형 미분계
(5) : 벡터 자력계 (6) : 인쇄회로 기판
(7) : 에폭시 블록 (8) : 인서트
(9) : 슬라이딩 메카니즘 (10) : 열차단판
(11) : 열교환 공간
도 1은 본 발명중 센서의 구조 사시도이고
도 2는 도 1의 센서를 이용한 측정장치의 구조 개략도이며,
도 3은 생체자기 측정 블록 다이아그램인 바,
이중이완발진 스퀴드 방식의 집적화된 평면형 미분자를 센서로 사용하고, 직류 인가전류방식과 직류 전단증폭기를 사용한다.
신호대 잡음비를 높이기 위해 평면형 미분계와 자력계를 가준채널로 이용한다.
모듈화되어 교체가 용이한 센서 지지대, 슬라이딩 메카니즘을 이용한 인서트, 헬륨가스를 이용한 열교환 공간 등으로 구성된다.
센서(1)는 자속-전압 변환계수가 직류(dc) 스퀴드(SQUID : superconducting quantum interference device)에 비해 1O배 이상 큰 이중이완발진 스퀴드(double relaxation oscillation SQUID) 방식과 검출코일이 스퀴드와 동일 기판에 집적화된 평면형 미분계를 사용한다.
직류 인가전류를 사용하며 실온의 직류 전단증폭기로 스퀴드 출력전압 신호를 직접 검출한다.
신호대 잡음비를 개선하기 위하여 평면형 미분계를 이용한 신호채널(2)외에 기준채널(3)로서 평면형 미분계(4)와 자력계(5)를 사용한다.
신호채널(2)은 인체로부터 발생되는 자장신호와 외부자장잡음을 동시에 측정하고 기준채널(3)은 외부 자장잡음만 측정하므로 신호채널(2)의 출력에서 기준채널(3)의 출력을 빼주는 적응필터(adaptive filtering)를 채택함으로써 신호대 잡음비를 개선시킨다.
센서(1)는 인쇄회로 기판(6)에 직접 부착되고, 센서 지지대인 에폭시 블록(7)에 센서가 x, y방향으로 각각 두 개씩 부착되어 있는데 에폭시 블록(7)내에서 센서(1)는 독립적으로 교체가 가능하고, 각각의 블록(7)도 인서트(insert)(8)로부터 독립적으로 교체가 가능하도록 되어 있다.
열전달에 의한 냉매손실을 최소화하기 위해 열전도도가 적은 망가닌 선을 전류인가와 자속귀환에 사용하며, 스퀴드 출력전압은 선 저항에 의한 전압잡음 유입을 최소화하기 위해 인청동(phosphorous bronze)선 사용한다.
스프링과 굵기가 다른 두 개의 에폭시 글라스 튜브(fiber glass tube)로 된 슬라이딩 메카니즘(sliding mechanism)(9)을 사용하여 냉각시 인서트(8) 부품의 열수축에의한 길이 변화를 보상할 수 있도록 하였다.
이때 안쪽 튜브의 외경이 바깥 쪽 튜브의 내경보다 미세하게 작게 함으로써 냉각시 인서트의 길이가 짧아져도 인서트의 자체 무게에 의해 인서트의 아래 끝부분이 냉각용기의 바닥에 접촉할수 있고, 인서트의 길이가 늘어나도 슬라이딩이 가능하므로 인서트가 용기에 무리한 압력을 가하지 않도록 되어 있다.
열차단판(10)을 사용하여 헬륨듀아의 입구로부터 유입되는 열을 차단하도록 되어 있고, 열교환 공간(11)의 사용과 증발되는 헬륨가스를 이용하여 스퀴드와 실온의 구동회로 사이의 배선을 냉각시키도록 함으로써 액체헬륨의 증발율을 최소화하도록 되어 있다.
센서(1)를 이중이완발진 스퀴드 방식과 일체형 평면형 미분계로 함으로써 센서의 신뢰성을 크게 높혔고 간단한 구동회로로써 스퀴드 동작이 가능했으며, 에폭시 블록(7)에 x 및 y 방향으로 각각 두 개씩 배치시켜 4채널 장치를 구성하여 뇌로부터 발생하는 매우 미약한 자장을 측정하였다.
또한 전압신호는 인청동선을 사용함으로써 선저항에 의한 잡음발생을 제거시킬 수 있었으며, 인가전류 및 자속귀환에는 망가닌 선을 사용하여 헬륨증발율을 최소화하였다.
다른 실시예(변형예, 응용예)
본 발명의 측정장치 방식을 4개의 신호채널(2)과 4개의 기준채널(3)로 된 생체자기 측정시스템에 적용하여 심장 및 뇌로부터 발생하는 자장신호를 측정하였다.
이때 심장 또는 뇌로부터 발생되는 자장신호가 스퀴드에 가해지면 외부자장신호에 대해 비선형적인 전압출력이 스퀴드로부터 발생되고 이 전압은 인서트의 신호선을 따라 인서트의 끝부분에 있는 구동회로에 입력된다.
스퀴드동작을 위한 회로는 크게 전단증폭기, 주증폭기, 적분기, 인가전류 조절기, 자속옵셋 조절기, 적분옵셋전압 조절기 등으로 구성되어 있다.
FLL회로를 거친 신호는 스퀴드의 동작상태를 조절하는 조절기와 증폭기, 고역통과, 저역통과필터 및 60 Hz 제거필터를 거쳐 컴퓨터에 입력시킨다.
그리고 신호채널의 출력에서 기준채널의 출력을 적절한 비율로 빼줌으로써 뇌 또는 심장으로부터의 신호대 잡음비를 높일 수 있었다.
또한 40채널 시스템에 전압신호는 인청동선을 사용하고 인가전류 및 자속귀환에 망가닌 선을 사용했을 때 선에 의한 헬륨증발율을 매우 줄일 수 있었다.
상기의 본 발명은 스퀴드를 이용한 생체자기 측정 장치의 전자회로를 획기적으로 간단히 하고 시스템의 가격을 내리게 하고, 센서 및 시스템 동작의 신뢰성을 향상시키고, 센서의 유지보수를 쉽게 하고, 헬륨증발율을 줄이는데 크게 기여한다.

Claims (3)

  1. 뇌, 심장, 태아의 심장, 위, 창자 등으로부터 발생되는 자장을 측정하는 장치를 구성하는데 있어서 이중이완발진 스퀴드를 채택하고, 자장 검출코일이 스퀴드와 동일 기판에 집적화된 평면형 미분계를 사용하고, 신호대 잡음비를 개선하기 위해 신호채널(2)과 기준채널(3)을 동시에 설치하는 것을 특징으로 하는 생체자기 측정 장치.
  2. 제1항에 있어서 인체표면에 수직한 방향을 z 방향이라 할 때 신호채널(2)의 자장센서를 dBy/dz 및 dBx/dz 성분의 자장을 동시에 측정하도록 평면형 미분계를 배치시키고, 기준채널(3)로서 dBy/dz 및 dBx/dz 성분의 자장을 동시에 측정하는 평면형 미분계(4)와 x, y, z 방향의 자장성분을 동시에 측정하는 벡터 자력계(5)을 채택하고 신호채널(2)과 기준채널(3)을 이용하여 적응필터를 사용하는 것을 특징으로하는 생체자기 측정 장치.
  3. 뇌, 심장, 태아의 심장, 위, 창자등으로부터 발생되는 자장을 측정하는 장치를 구성함에 있어서,
    센서(1)는 인쇄회로기판(6)에 직접 부착되고 센서 지지대인 에폭시블럭(7)에 센서가 x,y방향으로 각각 두 개씩 부착되며 각각의 블록(7)은 인서트(8)에 설치되여 모듈화되고 인서트(8)의 상단에 슬라이딩 메카니즘(9)이 설치되고 인서트(8) 몸체에 알루미늄 호일, 동판, 스치로품으로 구성된 열차단판(10)을 설치하고 인서트(8)의 상단에 열교환공간(11)을 형성하여 냉각기능을 수행케 하고 기준채널로서 평면형 미분계(4)와 벡터 자력계(5)를 각기의 블럭(7)에 설치하며 직류 인가전류를 사용하고, 스퀴드 출력전압을 실온의 직류 증폭기로 직접 검출하게 하고 제1, 2항에 있어서 전압신호에 인청동선, 인가전류 및 귀환신호에 망가닌선을 사용한 것을 특징으로 하는 생체자기 측정 장치.
KR1019980047405A 1998-11-05 1998-11-05 생체자기측정장치 KR100313480B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980047405A KR100313480B1 (ko) 1998-11-05 1998-11-05 생체자기측정장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980047405A KR100313480B1 (ko) 1998-11-05 1998-11-05 생체자기측정장치

Publications (2)

Publication Number Publication Date
KR20000031388A true KR20000031388A (ko) 2000-06-05
KR100313480B1 KR100313480B1 (ko) 2001-12-28

Family

ID=19557305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980047405A KR100313480B1 (ko) 1998-11-05 1998-11-05 생체자기측정장치

Country Status (1)

Country Link
KR (1) KR100313480B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437601B1 (ko) * 2001-04-03 2004-06-26 한국표준과학연구원 고감도 스퀴드 자력계를 이용한 생체자기 측정장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437601B1 (ko) * 2001-04-03 2004-06-26 한국표준과학연구원 고감도 스퀴드 자력계를 이용한 생체자기 측정장치

Also Published As

Publication number Publication date
KR100313480B1 (ko) 2001-12-28

Similar Documents

Publication Publication Date Title
Giffard et al. Principles and methods of low-frequency electric and magnetic measurements using an rf-biased point-contact superconducting device
EP1372477B1 (en) Apparatus for magnetic susceptibility measurements on the human body and other specimens
US5243281A (en) Multi-channel magnetic flux detector comprising a magnetometer modular construction in a vessel containing a cooling medium
US6418335B2 (en) Ferromagnetic foreign body detection using magnetics
JPS59133475A (ja) 種々の磁場源によつて生ずる弱磁場の多チヤンネル測定装置
EP0107238B1 (en) Nuclear magnetic resonance tomography apparatus
US4827217A (en) Low noise cryogenic apparatus for making magnetic measurements
Tsukada et al. Multichannel SQUID system detecting tangential components of the cardiac magnetic field
JPH0333670A (ja) 超伝導磁力計装置のためのジユワー容器
JPS59133474A (ja) 生体磁気の多チャンネル測定装置とその製造方法
JPH02281170A (ja) 多チヤネルスクイド装置を校正する方法と装置
JPH0614899A (ja) 脳磁界計測装置
JPH05264692A (ja) 遮蔽装置を備えるスクイド測定装置
KR20000031388A (ko) 생체자기 측정 장치
Lee et al. A whole-head magnetoencephalography system with compact axial gradiometer structure
US5453691A (en) Miniaturized squid module having an intermediate super conducting support for connecting squid input terminals to gradiometer wires
Dossel et al. A modular 31-channel SQUID system for biomagnetic measurements
Lee et al. SQUID systems for magnetocardiographic applications
Sander-Thömmes et al. Active field compensation using optically pumped magnetometers
JP3156396B2 (ja) 差動型squid磁束計及びこれを用いた生体磁場計測装置
Sachslehner et al. Measurement of the low-field Hall coefficient by dc SQUID technique
JPH0274882A (ja) 多チャンネルスクイッド磁束計
Lee et al. A Low-noise Multichannel Magnetocardiogram System for the Diagnosis of Heart Electric Activity
Lee et al. System for the Diagnosis of Heart Electric Activity
Yong-Ho Lee et al. SQUID Systems for Magnetocardiographic Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151006

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee